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It is the purpose of this survey to provide some preliminary
- insight into the connections between topoi and the following fields

of endeavour.

(a) The theory of sheaves.
(b) General topology.
- {c) Algebraic geometry.

(d) Classical set theory.

(e) Variable set theory (or higher-order intuitionistic logic)
as a framéwork -for non-standard analysis, independence
“results, representations of rings.

(f) Geometric theories.

(g} Local structures.

{h) Cohomology.




1. The space of germs of analytic functions

Let X be an open subset of the complex numbers ¢ (or, more
generally, any complex manifold). For each point x ¢ X, let Ey be
the set of power series a about x convergent in some neighbourhood

of x : that is,

ay) = a, +a,(y-x} +a,{y-x)2+ ..., ajet

convergent for y 1in some open neighbourhood of x. Let E be the
disjoint union of the E, ; that is,

E = { (x;a) | xeX, aeEy }.

There is an obvious topology on E: (x.a) is close to (y,b) when x
is close to y and a, b are power series for the same analytic functions..
Then we have a continuous function p: E— X given by p(x,a) = x. Yet
p bhas a further property. For each (x,a) ¢ E, put N = {.-(y,b-)' | a is
convergent at y and b 1is the power_series expansion of a about y };
then N is an open neighbourhood of (x.a) in E ‘which is-mapped homeo-

morphically by p  to p(N).

2. Local homeomorphisms

A Tocal homeomérphism is a continuous function p: E— X between
topological spaces E, X such that, for each e ¢ E, there exists an open
heighbourhood N of e ‘which is mapped homeomorphically by p onto an
open neighbourhood p{N). of 'p(e). Clearly local homeomorphisms take open
sets to open sets, and any homeomorphism is5a loca],homeomorphism. For

each x e X, the space E, = { ecE | ple)=x} is called the Fibre or the




“stalk over x. As subspaces of E the stalks are all discrete (for

e ¢« Ey, choese an open nbd - N of e such that p restricted to N

is a homeomorphism onte p(N), then .ef € Ex n N implies p(e') = x = pfg,
.which implies e' = e since p fs one-to-one on N; so e} = Ex n N |
is an open subset of E,). Given X, to give a local homeomorphism into

it is to give all the stalks Ey - pictured as dotted vertical Tines, and a

topology on the disjoint union E such that small horizohtal cuts look

like their projections onto X.
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Examples of local homeomorphisms are p: R —+-$1 given by

p(x) = e2ﬂ1x, and- p: E— X as in 1. above. For any open subset U
of a space X, the ihc1usion.-iu: U— X 1s a local homeomorphism; we
shall see that all local homeomorphisms are obtained by "gluing: together®

inclusions of open subsets.

3. Sections

Suppose p: E-— X is any continuous function and U is an open
subset of X. 4 section of p over U is a-continuoﬁs function s: U— E
for which p(s(x)) = x for all x e U. Write E(U) for the set of
sections of p over U. If V< U notice that restriction gives us a
function pg: E(U) — E(V); that is,"pﬁ(s) is. s restricted to V.
~ These functions satisfy pg‘? 1E(U)’ pg'pﬁi’= pg ~which we shall see means
that we have a set-valued functor. A section: s of.a Tocal homeomorphism

over U can be nicely pictured as a continuous path picking out a point in




each stalk over points in U.

If p: E<> X s an inclusion of an open subset of X then there

is precisely one section over U when U < E and none otherwise,

If p: E— X is as in 1., sections s: U~ E are in bijection

with analytic functions U - C.

4. Categories and functors

A category C consists of objects A, B, C, ..., arrows .

f: A— B, ..., and an associative composition of ‘arrows A-4i—¥‘B;Ji—+'C
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which has identities 1x: A — A. Write C(A,B) for the set of arrows in

C from A to B; such.sets are called hom-sets of. C.

A functor T: C— D assigns to each object A of C an object
TA of D and, to each arrow f: A — B, an arrow ~Tf: TA— TB such that

composition and identities are preserved; that is, T{gf) = (Tg)(Tf) and

T 1y = 1l1pa-

A natural transformation o: T — S bekween functors T,5: C— 7D
assigns to each object A  of C an arrow aA: TA — SA of - D such that,

for all arrows f: A— B in  C, the sgquare

A oA + SA

TF Sf

TB > SB
oB

commutes; that is, (Sf)(oA) = (aB)(Tf). Natural transformations can be
composed. T Jl%s-—§+ R. in the obvious way: cemponentwise in D. MWe obtain

‘a category [C,DP] whose objects are the functors‘frOM-rC ~tov P and whose




arrows are natural transformations.

For any category C, write P for the category with the same

objects as C  but with the arrows in the reverse direction.

The basic example of a big category is the category S of small
sets; that is, the objects are sets in some universe and the arkows are

functions.

5. Two fundamental categorical theorems.

Suppose T: C <+ D- is a functor. Each object. D of D gives

rise to a functor T & D: ¢%? — S as follows:

P A «

T4oD

g D(TA,D) - . p(T8.D)
D(Tf,D)

TA _Ys p A T Yo TE

Each arrow  h: D — D' of D gives rise to a natural transformation
Thh: ThaD—Tnh D" given by:
D(TA,D)" (T & h)A > D{TA,D")

AL D~ A Y

What we have now described is a functor
T4 -2 0 — [c9P,3]
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Starting with T as. the identity functor 1o of C, we obtain the
Yoneda embedding le b - ='YC (or just Y when C_ is understood):

¢ — [P, ).

First theorem (Yoneda) Suppose K,D are objects of C,0 and T: C— D

is a functor. For each arrvow. h: TK — D, there is a unique natural

transformation o: Y,K—> T .h D such that {aK)1g = h. -

As a particular case, suppose F: ¢°P — g is a functor which can
also be considered as a functer _Fo?:'c-+ SOPaV'Appiy the theorem with
p=S5P, 1=FP and D the set 1= {0}. This gives that natural

transformations YCK-—+-F are in bijectien with elements of FK.

As another more particular case, take. T ='Y,L. We see that natural
transformations a:‘YCme+-YCL are in bijection with arrows h: K— L.
ConsequentTyithe Yoneda émbedding allows us to regard . C - as that part of
[c“P,s] consisting of the objects of the form -YCK,'ca11ed representable

functors.

Second_theorem (D. Kan) - Suppose C. is a small category and D is a

eocomplete category with small hom-sets. Then, for any functor T: C — D,

there is a functor
-®T: [P, 81— 1D
and a natural bijection

(P@ T, D) = [¢°P,81(P, T & D).

The situations we have in mind for this theorem are as follows. The
small category C consists of certain simple model objects of some bigger

nice category E which lies somewhere between C.:and-_[COp,S], If we




have a way T of regarding the models as ebjects of 0 then the theorem
gives us a useful extension so that: the general-objects of. £ give rise

to objects of 7.

6. Two categories associated with a space.

Let X denote a topological space. First we have a small category
gX whose objects are the open subsets of ' X 'and'the arrows are the
inclusions. Note that ©X 1is really a preordered set in that each hom-set

(@X)(V,U) has at most one element (one when V 'c U, none otherwise).'

The second category Top/X is cocomplete and not small. - The objects
are pairs (E,p) where p: E— X is a continuous function,.and the arrows
f: {(E,p) — (F,q) are continucus functions f: E.— F -such that gqf = p.

Sometimes we just write E for (E,p) and refer to it as a space over X.

There is an obvious functor I: 68X — pr/X"given by U = {U,iy)
where 1y is the inclusion of U in X, and I‘ig =.i$ where ig: V—1U

is an arrow of ©X.

By 5. we obtain a functor

Id-: Top/ XK —— [(o%)°P,s]

which is given by

(Top/X) (1U,(E,p))
E(U); the set of sections of p.

(1 4 (E.p)JU-

"Also, by the theorem of Kan we have a functor

- ® 1: [(6%)P,8] — Top/x.




7. The etale space of a presheaf.

A functor P: (8X)F — S is called a presheaf on X. We saw in
3. that each space E over X gives rise to a presheaf which we have
now seen is I & E. For a presheaf P we shall now describe the space
P®I over X, called the etale space of P. First form the disjoint
union of all the sets PUx U as U runs over the open subsets of X;

that is,

{ (Usssx) | xelUe®X, sePU } ‘

Nextzconsidethhe equivaTence-re]ation generated by identifying the
elements (UsS.X)» (V,(Pig)s,x) for each arrow 13: V— U in OX and

x € V.. The elements of P.® I are the equivalence classes [U,s,x] of
elements of the above diéjoint union under this equivalence relation. For
each U ¢ @K and s ¢ PU we have a function U-— P ® I taking x to
[U,s.x]; = the topology on P'€>I-'is the one with theﬁ]argest set.of_open

~ sets for which all these functions are continuous. The continuous function

p: P®1 — X 1is given by plUss,x] = x.

Proposition. The function p: P& T — X is a local homeomorphism for

all presheaves P on X.

Exercises. A) Let E be the space of germs of analytic functions over
X (see 1.).and let P =14 E be the presheaf of sections of E. Prove

that E s homeomorﬁhic to P®1I ‘as spaces over X.

B) For each presheaf' P on a space X and each space E -over X, show
that there is a bijection between continuous functions over X from the
eta]e.space'of P to E and ﬁatural transformations from P to the
presheaf of sections of E. (This shGWSfthat.formation of the eté]e space

15 an instance of Kan's theorem.)




C) Let U be a family of open sets of a space X and let U=y y
be the union of the sets in U; so U . is-an open cover of the open
subset U of X. Observe that the following describes a presheaf R
on X:

1 when o We U with WoV,
Ryv: =

0 otherwise.

Describe the etale space of Ryj-

8. Sheaves on a space.

A presheaf F: (GX)Op-—+jS on a space X ‘'is called a sheaf when

it satisfies the following condition:

- for each family U of open subsets of X and each fﬁmily of .

elements Sy € FVY, V ¢ U, such that

It

V W
()  (F 1Vf1hJ$V (F iy, sy Torall Vel

there exists a unique S ¢ FU where U = u U such that

(Figs = s, foratl Vel

Theorem. The following conditions on-a presheaf on a space X are

equivalent:

(a) F is a sheaf;

(b) there exists a space E over X and a natural isomorphism
F=1akE;

(¢) there exists a local homeomorphism. p: E — X and a natural iso-
mQr*phism F=14deE; |

(d) for each open subset Y of X and each open cover U of U, each
natural transfbﬂmation o Ry~ F  extends uniquely to a natural transfor-

mation B: YU — F (see Exercise C) above).




Outline of proof.

(a) = (d) The Yoneda theorem yields that natural transformations
B: YU — F amount to elements s  of ‘FU.: It is easily seen that natural
transformations o: Ru-—+ F amount to families Sy e FY, V e U,

satisfying ().
(c) = (b) is trivial.

(b) = (3) We must see that I & E has the sheaf property for any space
E over X. Given U and sections Sy of E over V, we can defiﬁe

sx = sy when x eV provided condition (*) is satisfied.

-~ (a) = (c¢) - For any presheaf F we have a canonical natural transformation
F— 14 (F‘g I). which can‘be shown to be an- isomorphism if and only if F

satisfies the sheaf condition. O

Actually more is true. Consider the pair of functors:

Top/X =t L(x)P,s].

_ T
On the one hand we have ‘the subcategory Et(X) of Top/X consisting of
the Tocal homeomorphisms into X and all arrows between them. On the other
“hand we have the subcategory Sh{X,S}- 6f-~[(ﬁX)Op,S]f consisting of the
sheaves and all natura1-transformatiens between them. The above.functors
induce an equivalence of'caiegories between these two subcatégories
E£(X) = Sh(X,8). In particular, this means that a bijection is induced
 between the natural transformations F — F' where F, F' are sheaves

and arrows F® I — F' ® 1 1in Top/X between the corresponding etale

spaces.

In dealing with sheaves on a space X we free]y bass back and forth

from the sheaf itself to its corresponding etale space.




10.

9. Sheaves of functions.

Let X be a space and M a set. For each open subset U of
X, let F,U be the set of functions from U to M. Together with
the restriction functions this defines a sheaf . F, on X called the

sheaf of W-valued funetions on X.

With more structure on M and X, there are subsheaves of F;
arising from any locally defined class of functions. For example, if
M is a topoiogicaT space we can take - F,U to be the set of continuous
functions from U to M. Or, if S, M are differentiable manifo]ds,.we
can take F3U to be the set of differentiable funetions from U to M,

ttc.

Indeed, the space of germs of analytic functions is just the etale
space of the sheaf of €-valued analytic functions on the compléx manifold
X. But this ekamp]e is a Tittle nicer‘aﬁ an etale space than the sheaves
of all, continuous, differentiable or even smooeth funétions;,in particular,

the etale space is hausdorff whereas it is not in the other examp1es.

However, not all the interesting examples of sheaves arise as

subfunctors of sheaves of functions.

10. The spectrum of a ring.

Let A denote any commutative ring with an identity element 1. A

subset P of A is called an ideal when:

‘a, a' «P == _ata' ¢ P

aeA,beP = abelP.
An ideal P of A is called prime when 1&P and

a,be A, abe P = acP or belP.
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For example; if A is the ring Z of integers, each integer a gives
an ideal {ab | beZ } =aZ ; as a runs over all the non-negative
integers aZ runs over all the ideals of Z. Of course, aZ is

prime if and only if a = 0. 0r ca is prime.

Let SpecA denote the set of prime ideals of A. For each a e A,
pdt D(a) = { PeSpecA | a¢P } and note that D(a) n D(b) = D(ab). A
topology on SpecA 1is obtained by taking the open subsets to be arbi-

trary unions of subsets of the form D(a).

A Space K is said to be reducible when it can be written as a
union of two proper closed subsets. A space. X 1is said to be-sober'when,
for each irreducible closed subspace K of X, there exists a unique

' H ufa(&"‘ff'
point x € K such that K . is the.clesure of '{x}.' Anx(%pace '

is sober. Points in: SpecA are not clesed in general,

yet:

Theorem.  For each commutative ring A, the space Spech is eompact and

sober. L1 -

A Boolean algebra A gives a ring with operations
a+b = (a f\frb)'_\f (maab), ab = aab. Then SpecA is the Stone space of

the Boolean algebra; it is totally disconnected, compact and hausdorff.

For'any family A of polynomials-over € in indeterminates

Xgsee0sXps let V be the set of points-in €" which are zeros for all

the polynomials in A. Such a V is called a complex affine variety.
Let A be the set of functions 'a from:V to ¢ for which there exists
a polynomial p over € din n indeterminates such-that a(v) = p{v)

for all v ¢ V. These are called the vegular funections frem V to C.

Pointwise addition, muitiplication and scalar multiplication make A an
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algebra over €. For each. v e V, the subset P, = {-acA | a(v)=0}

is a prime ideal of “A. The assignment _v4++.PV3 is one-to-one and so

‘a11ows us to regard V' as .a sabset of SpecA. The topology induced

on V by that on SpecA is called the Zariski topelogy; -a subset C

of V 1is closed if and only if there is a family.of polynomials in n
indetérminates for which: C_.is precisely the set of common zéros. There
are thus far fewer closed subsets than in-the usual tepOTogy.that )
inherits as a subset of ¢", yet the Usuaiftopology'taken.in.iso1ation
from the embedding V — ¢" contains Tittle information ‘regarding the

algebraic geometry of V.

11. Rings of. quotients.

Let A be a commutative ring with an identity 1 and let S be a
subset of A which contains 1 and “is clesed under multipTication. Define

an equivalence relation of A x S by:
(a,s) ~ {(b,t) =3 we S with w(sb-at) = 0.

Let A[S™!] denote the set of equivalence classes a/s of elements (a,s)
of A x S under this relation. With the usual formulas for addition and
multiplication of fractions ‘A[S™']. becemes a. ring. There is .a ring

homomorphism A — A[S'i] given by a |— a/l -which provides inverses for

- all elements of S, and is universal amongst all ring hemomorphisms. out of

A which do this.

As a particular case, take S = s" | ne N} where s isa
given element of A. Then we.denote-~A[S"l] by "A[s"!]. Note that, even

if s is nilpotent (that is, s" = 0. for some n e N} “then Als~H]

- still makes sense, but it reduces te the ring with one element. .
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The other important special case is when S 1s the compiement
<P of a prime ideal P.of A. Then A[S™'] is denoted by Ap and is
called the localization of -A: at P. A ring B 1is said to be local

when, for all x < B, either x or 1-x is invertible, and 15%0,
Proposition. For each prime ideal P of A, the ring Ap isg local.

Proof.  The elements of the set M .of non-invertible elements in Ap
have the form a/s where a e.P, s ¢ P. It follows that M is an
ideal of Ap not containing 1.- But if x, 1-x e'M' then -1.=x*+l-x € M,

a contradiction. O

12. The structure sheaf of a ring.

It is a theorem of Stone that there is a duality: between Boolean
a]gébras and totally-disconnected compact -hausdorff spaces; the Boolean
algebra A gives rise to the Stone space and A . can be recaptured from |
the space. We have also given the example of a complex. affine variety V
and mentfoned that the algebra A of regular functions from V to ¢
Teads to a space SpecA which contains 'V  as a subspace; .in fact, V

amounts to the subspace of SpecA = consisting of the maximal ideals.

It is not however the case that- A. can be recaptured from the
-topological space SpecA alone. The extra structure needed turns out to

be a sheaf A on. Spec A. It is this sheaf we wish now to describe.

Let A be a commutative ring with a 1. Let'-DA -denote the cate-
gory whose objects are elements ‘a of- A and for which there is precisely
one arrow b — 2 when 1D(b) c‘D(a)r:and nene otherwise. Let

D: Dy — O(SpecA) be the functor taking a to D(a).
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To say D{b) < D{a} 1is to say every prime ideal containing a
contains b. It follows that the coset b+{a) 1is contained in every
pﬁime ideal of the factor ring A/(a). The intersection of all prime
ideals of a ring is the set of nilpotent elements of the ring. So
D(b) =« D(a) means precisely that b" = ac for some n > 0, ¢ ¢ A.
Thus the homomorphism A —- A[b™!] which. inverts b -also inverts a

and so induces a homomorphism  A[a~1] — A[b~11.

What we have described-in the last paragraph is a functor
AL-"1]: Di? — S (in fact it Tands in the category of rings, not just
sets). Using the theorem of Kan, we see that'there-éxists a functor
A: aTSpecA)OP — S, unique up to isomorphism, such that there is a
natural bijection between-natura?-transformations‘ P— A and natural
transformations PDFp.—+ A[-"1] (where. P -is an arbitrary presheaf on

SpecA and - DF: Dﬁ? — &{(Spech)°P is induced by D).

Theorem.  The presﬁeaf R on Spech described above is a sheaf. U

Exercises. D)_ Prove that the stalk above P ¢ SpecA for the etale

space associated with & is Ap.

E) When A 1is a Boolean algebra, A is the sheaf of 2-valued Boolean
homomorphisms on SpecA. |

F}) When A is the ring of regular functions from a complex affine

variety' V- to €, then A "pulls back" to the sheaf of regular C-valued -

functions on V.

13. Spatial topoi

A category -E ‘is said to be a spatial topos when there exists a

topological space X and an equiﬁalence of categories E =~ Sh(X,S).
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Suppose K: D — E s any functor. A limit for . K 1is an object
L of € tegether with a natural transformation A: L! — K, where L!
denotes the constant functor at' L, such that, if ar Al — K is any
natural transformation from a censtant.functor, then there exists a

unigue arrow ‘us A— L such that oD = AD.u for all D in D.

When 7 ds the empty category; a limit of;the unique functor
D— E is called a terminal object of E; that is, an object 1 for

which there is precisely one arrow ‘A — 1 for each object A of E.

When "D 1is the category with precisely two non-identity arrows
and these having the same target.but.different:seurces-(there being three
objects in al]); then a functor K: D — E amounts to a diagram
A-—?ﬁ C-+a— B in €T and a limit for K is called a pullback.of .93
that is, a universal commuting diagram

A category E 1is called fimitely complete when, for all finite
categories D, all functors K: D — E have limits. If E has pull-

backs and a terminal object then E 1is finitely complete.

A category £ @ is called complete (relative to a given category S
of sets) when,_for each category U whose set of arrows is in S, all

functors Ki D— £ have limits.

Proposition. . Spatial tepoi ave complete.
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Proof.  Any category equivalent to a complete category is complete.
Given any functer - K: D — Si(X,S), each open subset U of ‘X gives us
a functor K(-}: 2 — S. If, as usual, 1 denotes a set with one element,
put LU equal to the set of natural transformations from 1! to K(-)U.
When D s small this set is in S. The restriction functions of the

KD induce restriction functions betweén;the. LU determining a pre4
sheaf L. The sheaf'condition is satisfied by L since it is for each

KD. One checks readily that there is:an obvious natural transformation

A LI — K yielding a limit fbr K. In other words, 1imits in Sk(X,S)

are formed pointwise. O

In a finitely complete category, a particular choice of a pullback
of A—1<«—B is denoted by A <P~ AxB -1 B; call AxB the

product of A and B, and call p, q the projections.

A finitely complete category E 1is called cartesian élosed when, -
for each pair of objects B, C, there exists-an object [B,C] and an
arrow e: [B,C]xB — C such that, for each arrow- f: AxB — C, there

exists a unique arrow g: A — [B,C] such that the following commutes.

AxB f = L

gxip ' £

[B,CIxB

Proposition. . Spatial topol are cartesian closed.

Proof. - For any object B of Sh(X,S) and any open subset. U of B,
we obtain a subsheaf By of B by defining 'EUV =BV when V c U, and
ByV = 0 otherwise. For sheaves B, C, we now define [B,C] to be the

sheaf whose sections over U are arrows BUﬂ—+-CU'“in Sh(X,8), and




17.

whose restriction functions are given by restriction. Then

el: [B,CJUxBU — CU 1is given by evaluation. [

A subobject classifier in a category E s an object  together
with an arrow t: 1 — @ such that, for each monomorphism m: A' — A,
there exists a unique arrow X ¥ A — 2 such that the following square

is a pullback.

Recall that an arrow m: A' — A is a monomorphism when the following

diagram is a puliback

Proposition.  Spatial topoi have subobject classifiers.

Proof. U = {VeOX|VecUl}, (tU)o = U. O

This teads us to define an elementary topos to be a finitely-complete
cartesian—c1qsed category with a subobject'classifier.: we do not ask for
completeness since the concept would then depend on an externaT category of
sets. It turns out that elementary topoi are complete in an internal sense
which we shall probably not have time to discuss. (My 1972 lectures gﬁve

some indication.)
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14. Topoi-as generalized spaces

Suppose f: X ==Y 1is a continuous function between topological

spaces.
If we take a local homeomorphism p: E— Y and form the pullback

f*E > E

-~ Y
X f

(so that f*E = {_(x,e) | fx=pe } as a subspace of X><E). then gq fis
also a local homeomorphism.  This gives a functor f*: E2{(Y) — EI(X)
which takes E to f'E. By 8. we have a functor Sa{Y,$) — Sh(X,S)
which we denote by the same symbol ™ f*. PuTiing back along .f preserves
finite limits, so f  ‘does. A functor which preserves finite limits is

called left exact.

On the other-haﬁd,tf' induces a functor Fl: 8Y — OX given by
FW =] xeX | fxeV}. This leads to a functor _ |
£.: [(6X)°P,S] — [(6V)°P,S] given by (f*P)v = P(f7ly). If F disa
sheaf on X it is easily seen that f,F 'is a sheaf on Y. So f,

restricts to a functor fy: Sh(X,S) — Sh{Y,8).

The.functors_vf*, fa betwéen' Sh(X,S). and Sh(Y,S) in opposite
directioné are related. Suppose p: E— Y is-a local homeomorphism and
F 1is a sheaf on X. Each section s: V-—E over VcY induces a
section 4 f*lv;—+ f*E over. f"lV<X. via the formula s(x) = (x,8fx).

.Thus each arrow of sheaves d:::Igyf*Ei—+.F induces an-arrow of sheaves
& IHE— f,E given by (&V)s = a(f W) (8) e F(F V). It is readily
chécked that the assignment o [— & -is an isomorphism between the set

of arrows T4 f°E — F and the set of arrows I§E — f,F.
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A functor S: F-—— E s said to be Zeft adjoint to a functor

.T: E — F when, for each pair of objects -E, F of E, F, respectively,
there is an isomerphism between the set of arrows ur SF— E in E
and the set of arrows vi.F — TE in F such that,sif u, v ‘correspond
and m: E— E', n: F''— F are any arrows in_-E;~F,»respective1y, then
mu{Sn) -and  (Tm)vn also correspond,; write“'S-—~4-T, Adjoints. are
uniquely determined up to isemorphism. by the other functor. ”Lefﬁ ddjoints'
preserve all colimits which exist and.right.adjoints (in the aboye T is
a right adjoint for . S} preserve a1]-iimitsﬂwhich'exist; :zf-‘s-m~+ T and
S'— T' and T'T 1is defined-then S$' —1 T'T. Note that the theorem

of Kan can be restated. as: - @ T —| T.4 -.

Proposition. - For a continuous funetion T: X — Y, the fumector
%1 Sh{Y,8) — Sh(X,S) is d left exact left-adjoint for
foi SA(X.S) — SH(Y,S). O vy =l
Proof. A geometric morphism M::Si—+ Sh{Y,8) is determined up to iso-
morphism by its left-exact 1eft~édjeintf M*. The etaTé space construction
: show§ that every ]oca1~homeomorphism is-a colimit of open subsets. Since
M* preserves colimits, it suffices to know er on the open subsets of Y.
Since M* preserves products, for aﬁy open-*V,'the diagonal function
MY = M*(Vn V) — MY MY is an isomorphism. So M*V has at most one
element. So it suffices to-know for which V the set M™Y. 1is empty.
let W denote the union.of the open' V for which MV is empty. Then
W s the largest open for which MW s empty-(the arrows V — MO
corresponding to M*V =0 are compatible on 1ntersect10ns‘and S0 induce
an arrow W~ MO,rso' M*wﬁ='0). Thus MV = 0 if and 0n1§ﬁif= Vcld. .
'So M is uniquely determined up to isomorphism by w._ We claim =W 1is

irreducib1e. For suppose ™MW = CuD where C, B are c]osed. Then
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W =-1C nD .which is a product in E£(Y). So .0 = M*W = M*(1C) x M*(AD).

So MCcW. . S0 C=7TW is not a proper subset of T W.

Thus we have described a monomorphism which takes the isomqrphism
c]ass of M to —W. Suppose K is an irreducibie closed subspace of Y.
Let K*: Y — S denote the functor given by"zK*U =1 when,-erU #0
and K*U = 0 otherwise. Irreducibility of ~K - amounts precisely to the
statement: K (UnV) = K*UxK*Y. By the theorem of Kan, K* extends to a

functor M*: E£(Y) — S such that functions ME — $ are in bijection
with natural transformations IHhE — K*#S. For general reasons, left

exactness of K* implies that of M*. Let M be the composite functor:

s Kb-, [(ov)P,5] —L& L Ee(y).

Then M* —| M, so M is a geometric morphism. Moreover,
Vv mMyv=01 =0 V] Vak=0} ={J{V ]| VcIK} = -K. So we have

the desired isomorphism. [

Given any topological space X, let oX denote the set of irredu-
cible closed subSpaceS'of X. We have an inclusion X-—» oX -Which takes
x to the closure of {x}. Give oX . the topelogy with the largest set of

open sets such that this inclusion is continuous.

-Exereige G.  Prove that X '— oX inducés an isomorphism of categories
O(oX) = 0X and that oX s sober. Any continuous function X — Y with

Y sober uniquely-factors through X — oX.
- Corollary.  The category of sober spaces and continuous funetions is
equivalent to the category of spatial ‘topoi and isomorphism classes of

geometric morphisms.

Proof. If E is a spatial topos equivalent to: Sh{X;S) then, by
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Exercise G, it is also equivalent to Sh(oX,S) and. oX is sober.

Suppose. X, Y are sober and. M: Sh(X,S) — Sh(Y,S) is a geometric
morphism. Each point x: 1 —X of X yields a geometric morphism
Xe: S — Sh(X,S8); it corresponds to the “irreducible closure of {x}.
Composing we obtain a geometric merphism - Mx;: 8. — Sh(Y,S} -which by the
ébove Proposition yields an irreducible closed subspace-@f“.Y .which must
be the closure of a unique singleton {fx} since Y is sober. Thus we
have described a function f: X — Y; we leave the proof of continuity and
f* =~ M* to the reader. So isomorphism classes of geometric morphisms

Sh(X,8) — Sh{Y,S) are in bijection with continuous functions X — Y. O

15. First-order 1anguage'andwintefpretatien.

A great deal of what follows applies to categories E more general

. than elementary topoei. For i11ustrat19e purposes we shall suppose: E s

the category Sh{X,S) for some fixed topological space X.

For each object A of E we suppose we have a supply of symbols

a, a', ... called variables of type A.

A term of type A is an expression f(a;,...,ap) where

f: AX ...xAp— A is an arrow-of T .and a;,...,ay are variables of

 type Ais...,Aps respectively. We make the obvious substitution conventions.

For example, given g:'B><C — A;s h: D— Ay, f: AyjxA, — A and

variables b, ¢, d of type B, €, D, we write F(g(b,c),h{d)} for the
term ((fk)(b.c.d)) of type A where: k: BxCxD — A, xA, is the unique

| arrow whose first projection is g and second projection is h.

We define inductively what is meant by a formula in the (free)

variables al,...,am{
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(i) For terms f(aj,...,am)s 9{bis....by) of the same type,

flays....ap) = g(bl;.,.,gn) is a formula in the variables a;,...,ap

bys-.. by

(i1) For a term f(ay,....ay) of type A and a subsheaf A' of A,

f(ay,....ap) € A' 1is.a formula in the variables ~aj,....ap.

(iii) If ¢, ¢ .are.formulas with no constrained variable of ohe

see {iv}. appearing in the other, then ¢ a1, ¢\f¢, ¢=:¢ are . each
formulas whose variables are the union of those for ¢ and Y, and "¢ -
is a formula with the same variables as ¢.

(iv) If ¢ is a formula.in the distinct variables a, by,...,b, wheve
a is of type A, then aaeA and ¥, _, are formulas in the variables
bi1,....bps also a is called a dummy or constrained variable in any

formula of which these formulas are a part.

Next we-shall explain how to interpret formulas. The interpretation
of a formula ¢ in the variables a;,...,ap .of type Aj;,....A; is a

subsheaf . of A; x...x Ay which we shall describe inductively énd denote by:
{ (al,...-,,am)gAl x...XAm I ¢(a1,.....,am) ]‘

(i}  The interpretation of f(aj,...,ap) = g(by,...,b,) is the equalizer
--of the two arrows P — A; x...x Ay i C, P — By x...x Bn'—94 C where
P s the product of the types of the distinect variables._'
(ii). The interpretation of -the formula f(ai,....ay) € A _ié-the pull-
back of the incliusion A' — A along f..
 (ii1) Suppose the interpretations of ¢, ¢ are: the subsheaves A, B of C.

Then the'interpretations of ¢)\w, vy, d=¢, T1d are the-subsheaves of

¢ given as follows. For each open subset U of X:
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[ceC | ¢payp JU {seCU | scAU and seBU},

{ seCU | there exists an-open covering (UX) of

il

feeClove ju
U such that SIUA belongs to either AUy or BU, for each X },

{ceC o=y U = [secU] if S|y<AV for VcU open then

S|y eBY bs

{ceC |9 }u = {secy | s|y#AV for all VeU open }.

(iv) Suppose the interpretation of ¢ is the subsheaf A of BxC.
Then the interpretations of 3beB¢"'VbeB¢ are given as follows. For

open UcX :

| [ cecC | 3.t (bsc) lu = { seCU | there exist an open cover (Uy) of

U and, for each A,aty « BUy -such that (tl,s|uk) e AUy 1,

{ceC |V golbc) JU = {secy | (t.s]y) € AV for all V<U open
and all- teBV }.

A formula ¢ s said to'be walid (in this interpretation) when its
interpretation { ceC | ¢ } is .C (that is, the whole sheaf C and not

a proper subsheaf of it).

For UcX open, let's agree to write U for the sheaf 6f sections
of the 1np1usion U—X. In particular, the termina] object 1 of E fis
denoted by X. Subsheaves of X are prec£3e2y~£hé open.subséts U. The
fnterpretation of the formula xcU (where x has type X)1 is.just u.
The 1ntérpretation of “1{xeU) can be seen to be'the'interior of the. com-
plement of U. Now the interior of the complement of theﬁinterior of the
 comp1ement of an open subset U of X need not be U- (for example,

X =10,1], U=1[0,%)u(%,1]). Hence the formulas ¢s 717 ¢ do not
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generally have the same interpretation. The formulas ¢ =—717¢ and

Mg =TT are valid however. In classical logic we have the Taw of

the excluded middle: ¢ v ¢ is always valid. This law does not hold

in a géneral topos; the logic of a topos is intuitionistic, not classical.
In classical logic 4 can be defined in terms of ¥ by means of

i =1¥. In intuitionistic logic the validity of 'Vbéé1¢(b,c) does not
imply the validity of “}Jb€B¢(b,c). Of course there are spaces X 1in
which every open subset is also closed (for example, the Stone space of a

Boolean algebra); then the.fikst*order logic of . Sh(X,$). is classical.

16. Sheaves. of models of geometric theories

A presheaf on a space - X with values in an arbitrary category
is a functor P: (0X)P — c. So werhavqgcategory:-[(OX)OP,C] of |
- C-valued presheaves on X. Refer to the definition of a sheaf on page 8.
This definition cannot be transferred verbatim et litteratum to C-valued
.presheaves since it inv61ves elements - sy of FV and for a C-valued
presheaf F we just have that FV  is an object:of C.  As usual in
categories we replace the e]ements-in the set case by arrows. So a C-
valued presheaf F s said to -be a sheaf when, for each family &{. of
open subsets of - X, each object C. of. C, and‘each family of arrows
sy: C— FV, Velf, such that ... there exists a unique arrow
s: C—FU te. . Write Sh(X,C) .for the category of C-valued sheaves and

all natural transformations between them.

In particular we have the notions of growp-valued, ring-valued, and

' small-category=-valued sheaves.

On the other hand, in any categoky‘ E with finite 1imits we can

speak of models of such finitary algebraic theories. For example, a ring
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in E 1is an object A together with arrows 0: 1 — A, n: 1 —A,

1t A— A, a: AxA— A, p: AxA-— A (thought of as “zero, one, minus,
add, mu]tiply?) satisfying certain axioms which can.a11.be expressed by
‘commuting diagrams. In particular, the.axioms a+{(b*+c) = (a+b)+c,

at(-a) = 0 for rings become the commuting diagrams:

AxAxA—2 ,axp 0 opad1a0  a a1 a0
‘otX1 o o
AsxcA A -, 1 > A

_ " 5

Asanother example, a category C in E consists of an object C, ("of
objects"), an object C {"of arrows"), arrows dg.d,:C, — C,»

.i:_CO — C;s c€: C; — C; ("which assign domains, codomains, identity
arrowé, composites") where C, is the pullback of dg,d; ("the object of
composable pairs*) satisfying certain-commutative-diagrams which involve

a further pullback.

Models of such an:a]gebraié theory in-a category are taken to
models of the same theory in another category by any left-exact functor

- petween the two categories.

Homomorphisms of models of a theory in E - are defined in the

. obvious way as structuke-preserving'fami?ies of arrows. between the families
of objects involved in the models. Write Mod(T,E) for the category whose
objects are models of the theory “T' in E and whose arrows are homo-

. morphisms. For exampTe, if T 1is the theory of rings and E 1is the cate-

gory of sets then Mod( T,E)} 1is the category of rings.

“Theorem. For any algebraic theory T and topological space X, the cate-

'goriQS'-Sh(X,qu(T,S)) and  Mod{T,Sh(X,S)) are equivalent. U
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In particular, a ring-valued sheaf is essentially the same thing
as a ring in the category of (set-valued) sheavés. However, if non-
equational axioms are allowed.in the theory this happy situation is upset.
In 11. we met the concept of alocal ring; the extra axiom is not
equational. The stalks of the sheaf K on  SpecA are local rings’ AP S0
one would Tike to say that R is a local ring in the category of sheaves
on SpecA. However, A D(a) = Ala-!] is certainly not a local ring in
genera]l(for example, Z[2"'] 1is the ring of rationals of the form n/2™
where m, n are integeré, and neither 3/2™ nor 1 'E%T is. invertible);

~

so A is not a local-ring-valued sheaf on Spech. .

The logic of a topos & allows us to define Tocal rings in it. For a
ring A in E, " the..terms- of type A corresponding. to 0, n are
denoted by 0, 1, and the terms a,-ala,b), ula,b) are denoted by -a,

ath, ab. We define A to be Zocal when-the formula
Gbe-Aab_: 1) v (EICEA(l—a)c =1),

is valid for a of type A and the formula ~—1(1=0} interpr‘ets“és'-?-ﬂw_e.termi.-na‘l
object 1:.. It can be shown that.for'a.geometric morphism. M: F — E |
between topoi, if A s a local ring in E then M*A is a local ring

in F. For each point x: 1 -— X of a space X, the functor

X" Sh(X,8) — S assigns to each sheaf the stalk at x of the corres-
ponding etale space. So if A is a local ring in Sh(X,8) then the stalks

of the etale space of A are all local rings. The convérse is actually

also true; hoWever,'for elementary topoi we must rely on the definition of

local ring as given in terms of formulas.

Theorem. For any commutative ring A with:'a 1, the structure sheaf A

18 a local ring in Sh(Spech,S). O
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A ring homomorphism f: A— A' din E 1is called Iocal when the
following formula is valid:

7 “ _ (ﬂbEAgbfjl)é??(ﬂa;éA{f(a)a'= 1).

It is not our purpose here (however, see 22.) to describe general
gecmetric theories. The logical operations allowed in their description
are true, false, A, v, 1; the axioms allowable are assefﬁibns of
validity of formulas of the form ¢ = ¢ where ¢, ¥ are formulas
involving only true, false, A, v, 3. The symbols 1, ¥ are not
allowed and = 1is only aliowed in the axioms in the manner explained.
It is then true that left adjoints of geometric morphisms take models

of a geometric theory to models of the same theory.
17. Higher-order language |

“ First-order language involves the symbols T, ¢, =, A, v, 7, =, 4, ¥V
read "true, false, equé1s, and, or, not,:imp11es, there'exists, for all®.
To exemplify the distinction between this and a higher-order language we
~ shall look at the definition of a preordered set and related concepts. A
?ose# P consists .of element symEsz "Xs ¥s Zy ... and predicate symbols

P(x,y) satisfying certain axioms the first of which is:
¥y (POGY) =) v (P(x,y) =) .
Define (x=sy) = [P(x,y)==T); then the other axioms are:

Vi{xsx), V.xVyV.Z(xsy)A(y.sz) = (x<2z).

~We say that P has a Zeast element when d,(¥,0<x). We say that P is

an upper semi-lattice when
Vlydy((xsu) a{y<u)) a¥ {(x<z) a(y<z) =us<z}.

A1l statements in the language must be expressible by a finite string of
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symbols. An upper semi-lattice with a least element has a supremum for
any given finite string of elements X;,...,xns that is, for all intents

and purposes, for any natural number n, we have
Yy .Vxhﬂu((xl su)A. . A(xy <u)) AV ((x;sz)rcalxp<z) = us<z).

Universal quantification over a finite string of elements xj,....,xn 1S

defined by VX1?--- = Vx, -V, A complete lattice is a poset P

sxn 1
satisfying:

Vscpﬂu:fvx(x €S =x<u) A\J’Z[Vx(x e§S=x<z)= usz)] .

The quantifier VSCP cannot be defined in the first-order language; we
cannot quahtify over an infinite "set" of element symbols. Higher-order
languages allow us to do this. Given the first-order language and a model
of set theory of course we can take the elements of P to form a set in the
set theory and then V¢ p can be defined. But this is more data than is

really required.

Let us return to the language and its interpretation in. Sh(X.S}
as described in 15. A sentence is a formula with no free variables. The
interpretation of a sentence is thus a subobject of the empty product
(= terminal object) X ; thaf is, an1open.subset U of X, called the
truth—vazﬁe'of the sentence.. A sentence is ¢rue when its interpretation is
X and false when its interpretation is the empty subset 0 of X; but

these are not the only possibilities.

 An element of an object A is an arrow X — A from the terminal
object to A. This amounts to a section of the sheaf A -over the whole
space; that is, a global seetion of  A. In general, objects are not deter-
mined by their elements (és fn the case of sets); sheaves are not deter-'

mined by their global sections.
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Elements of © correspond to subsheaves-of X; that is, to open
subsets of X. So Q 1is regarded as the object of truth-values. For a
formula ¢, the interpretation of ¢ is a subobject { ceC | ¢} of
C and so yields an.arrow- |¢[: C— Q3 arrows into Q are called

predicates and. |¢| ‘is the predicate associated with ¢.

Elements.of [A,B] .correspond to arrows:. A— B.. For a variable
‘a of type A and a variable. f of type [A,B], the term e(f,a) of
type B 1is denoted by f(a) where e: [A,B]xA — B is the evaluation

arrow.

It can be shown that an arrow f: A— B is a monomorphism if and

only if the sentence

f(a) = f(a') = a = a'

VaEA a‘feA M

is true. Also f: A— B is an epimorphism (that is, right cancellable)

if and only if the sentence

Yoeplacaf(a) = b

is true. But now with the notation of the last paragraph we can take f
to be a variable of type [A,B] so that the two sentences displayed above
become formulas with free variable f;. their interpretations give sub-
objects of [A,B] called the object of monomorphisms and the object of

‘epimorphisms from A to B.

- Elements..of [A,2] correspond:to:predicates. A= .which:corres-
pond to -subobjects of - A.i'SO'wefthink~of-f[A,Q}?.aSmthe-abjeét-0f~3ubobjects

“of A, .0r.the powerrobjeét'of A.
We now extend the language by admitting as a formula the expression

a e A
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where a 1is a variable of type A and A' 1is a variable of type [A.2].
The interpretation of this formula is the subobject of: [A,Q]xA corres-
ponding to the evaluation arrow e: [A,Q]><A?~+ Q. For-a formula ¢ with
free variables a, b, we define HaeAr¢(a;b)_ to be HaeAaesA'z\¢(a,b),

and we define VaEA,¢(a,b) to be VaEAa(sA'=# ¢{asb). Thus we have exten-

ded quantification to "guantification over subobjects".

A relation from A to B is a-subobject R of -AxB. A relation
R from A to B 1is said to be funetional when the following two

sentences are true:

¥ .Y €B(a,b)a=.R.f\(a!,b')<-:R==‘b=b'

ach berﬁ'

VaeAHbeB(asb)E R.

It can be proved that R from A to B -is functienal if and only if

there is an arrow f: A — B whose graph is R (that is, the monomorphisms
R— AxB and .[iA}E-A-—+.A><B 'aresisomorphic). But now with=the extension
of the last paragraph we can take R to be :a variable of type [AxB,2] so
that the two sentences displayed above become fdrmulas in R. It can be
proved that the interpretation of their conjunctfonris the subobject [A,B] -

of TAxB.,n].

18. The language for -elementary topoi.

Let E denote an-é]ementary topés. ‘For each object: A of E, let
SubA denote the preordered set of monomorphisms into A. We often write
A' instead of the monomorphism. A" — A. It can be shown that SubA 1is
a lattice with smallest element O and largest :element . A. ‘Moreoyer, for
each pair of elements A', A", -there is an element A" = A" such that
A"; < A' = A" if and only if A™ A A' < A". This means SubA is a

Heyting algebra. Define TA' to be A'=0. Then A' <<77A" but we do
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not have 1A' s A'.

For any arrow f: A-— B, pullback along f gives an order preser-
ving function f*: SubB — SubA. It can be shewn that ‘there are also order
preserving functions Hf, Vf: SubA — SubB determined by the following

' conditipns:
HfA' < B' if and only if A' < f*B',
B! < VA' if and only if *Bg A'.
Exercises H) Describe Hf, Vf “in the case where 'E is the category of

sets.

I) Modify the interpretation of formulas as given in 15. so that only the
Heyting algebra structures on the ordered sets SubA- together with the
functions df, V¢ are used. With this modification we get the Tanguage

and interpretation for an elementary topos.

J) The predicate |acA'aracA"|: [AQQ]X{A,Q]><A —  -corresponds to an
arrow n: [A,0] % [A.2] — [A.Q]. For variables At,A" .of type [A,Q] de--
fine the formula. A’ < A" to mean n(A',A") = A'. The interpretation of
A' < A" defines the-order relation on [A,Q]. Prove that the following

sentences are true:

YBe[A,01 YA c[A,01 YA LA, q] (BN (ATA")) <= (B<A'AB<A"),

VA'€[AsQ]VA"E[A,Q]aCE[A’Q]VBG[A"Q]BS C = n.(B-’AI ) < A"',

Yeerta,al.a3seranl (arcph < S)a¥p 1 o (Y fA' sB = S<B)).

These sentences express the internal sense in which [A,R] -is a comp]ete

Heyting algebra (it is not in general Boolean).
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19. Intuitionistic mathematics

"AT1 -the theorems of intuitionistic mathematics are true when
interpreted in an elementary topos E." A 1ittle care must be taken:
the early writers on intuitionism did not take into account the empty
type 0, however, their work can be easily modified to do this. The
solution is not to Teave 0 out of the category since quite respectable
sheaves can have some empty stalks and these cause the same difficulty;
‘the sdiution is to modify the rules of deduction. Of course, for special
topoi E there will be more theorems. When £ -is the category of sheaves
on a space, the validity of a formula can be tested by reducing it (using‘
the interpretations of 15.) to a statement about sheaves and then using
the methods of classical mathematics. The a]ternativeais to establish a
suitable 1ist of basic theorems (axioms) and a list of basic allowable
deductions (rules of-inférence) which then allow theorems to be proved with-

~ in the Tanguage by a sequence of deductions from the axioms.

Suppose we work now in a fixed elementary. topos E. . A theorem is a
valid formula. For all formulas ¢, ¢, ¥ and all terms t in which a is

not a variable, the following are theorems:

a=a, | a=a" =o¢(a) = (a')
b=ds AU, AV =YAd, ¢ =gV,
x=o)alx=v)=x=¢rp), (@=x)a@=x))=(dve=x)
(0ap)ax=0dA(vAry), x=(6=9)) = xnro=9),
o(t) =4, pola), Y pea) = e(t).

These formulas will be calied axioms.

Given formulas ¢,,...,9y, ¢, 1f under the assumption that ¢,,....¢y,

-are valid it can be proved in the topos E that ¢ is valid, we write




33.

For formulas ¢, ¢ such that the free variables of ¢ are also free in

¥ and for a formula yx in which a 1is not a free variable, we have the

- following for any E:

6. 020 _x=o(a) | _ofa)=x
v X:Vaeﬂq)(a)' gaEA¢(§)=>X

In each case we shall say the formula on the bottom is obtained from those
or that on the top by a rule of inference; these are the three rules of

inference.

A deduction of the formula ¢ from the formulas: ¢;,....¢p 1S 2
finife'sequence [1s..vsIm of finite sets of formulas Ty such that
Ty = {¢1seeestnls Tp = {v}, and each formula in: T; is either an axiom,
an element of some [y with J <1, or obtained from elements of Tj.,
by a ru]e.df inference. MWrite ¢1,..;,¢n I— ¢ when there exists a |

deduction of ¢ from .¢1,...,¢n. CTear]y dysesestpn ¥ fmplies

Cbl,...,cbn E .

Completensss theorem.  If, fbr all elementary topoil E?

then ¢ys...s¢p 9. O

This formalizes the connection’ between elementary topoi and intui-

tionistic logic.
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Given a theorem of classical mathematics, we try to adjust the
proof into intuitionistic deductions. This may not be possible if an
essential use is made of the axiom of choice or even of proof by contra-

diction. If it is possible we obtain a theorem in any topos.

20. Coordinate-free definitions of local structures.

A local-ringed. space is a pair (X,R) where X -is a topological
space and R is a local ring in Sh{X,S). A morphism of local~ringed
spaces (f,¢): (X,R} — (Y,S) consists of a continuous function f: X — Y

and a lTocal ring homomorphism. ¢ s — R in Sh(X,S).

Let us formulate the definition of a djfferentiab1e manifold. For
each open subset G of RM, we have a loca1—r1hged'space (G,DG) where
Dg is the sheaf of differentiable R-valued functions on. G. 4 differen-
- tiable manifold is a local-ringed space (X,R) such that each point of X
has an open neighbourhood U for which (U,iER) is isomorphic to a local-
ringed space of the form (&,Dg) where G 1is an open subset of some RN,
Then of course, R 1is the sheaf of differentiable R-valued functions on
X. A differventiable function between differential manifolds is precisely

a morphism of the corresponding local-ringed spaces.

In the above; the important property that'the~mode1 local-ringed
spaces (G,Dg) have is that, for each open H<cG, we obtain .a monomorphism

(H,DH)-—+ (G.Dg).

For each ring A {commutative with.a 1), the Tocal-ringed space
(SpecA,R)- is called an affine scheme.  Given an open subset . H ='g:D(ak)
of speaA,'let I denote the ideal of A generated by all the ay, and

let B denote the quotient ring A/I. It can be shown.that_there is a
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homeomorphism SpecB = H given by P/I I P (where P 1is a prime. ideal

of A containing I), and we obtain‘a monomorphism . (SpecB,B) — (SpecA,A).

Theorem. The dual of the category of ecommutative rings with 1 and homo-
morphisme of vings which preserve 1 18 equivalent to the category of_affine

schemes and local-vinged space morphisms.

Proof.  Given (SpecA,R), we can recapture A as the ring of global
sections of A (the continuous function SpecA — 1 .induces a geometric
morphism from sheaves on SpecA to S which takes the Tocal ring R to

the local ring A).

Given a ring homomorphism 6: B — A, we obtain:a continuous function
f: SpecA — SpécB which takes P to 87 'P. For each beB, the composite
B2 a— Ale(b)™!] inverts b and So induces a homomorphism
B[b™'] — A[6(b)™'] which is a homomorphism. B D{b) — & D(eb) = (f,R)D(b).
These components extend to an arrow ¢;:.§-f A of sheaQeé"which corres-
ponds to an arrow ¢:-f*§-—+ ﬁ. The assignmeﬁta 6 | (f,p): is an iso-
morphism between the set of’ring'homomorphisms 8: B— A and the set of

morphisms of local-ringed spaces (f.): (Spech,R) — (SpecB,B). 0

A scheme is a local-ringed space (X,R) such that eaéh point of X
has an open neighbourhood U for which -(U,i;R) is isomorphic to an
- affine scheme. 4 morphism of schemes 1is just'a morphism of. the correqumﬁng
local-ringed spaces. An affine variety gives rise to an affine scheme which
is a scheme, and the regular functions between affine varieties correspond :
to morphisms of schemes. 'Howevér5 the notion of schemewinc1u3§2?goncepts of

algebraic geometry, for example, the notion of'projectivé;variety'(= subset

of projective space given by zeros of a family of homogeneous polynomials).

In keeping with the spirit that a topos is a generalized space, one
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is led to define a Zocal-ringed topos to be a pair (E,R) where E is a
topos and R s a local ring in E. A morphism of local-ringed topoi 1$
a pair (f,0): (E,R) — (F,S) where f: E— F s a geometric morphism
and ¢: s — R is a -Tecal ring homomorphism in E. A transformation
a (f,0) — (f',¢') between such morphisms is a matural transformation

a: f-— f' such that the diagram

commutes where ¢,, ¢', correspond to ¢, ¢' under the adjunctions
' — f, F'* —] ', The category of Tocal-ringed ‘topoi and 1somorphism
classes of morphisms contains "all categories of local structures” as full

subcategories.

21. Grothendieck topologies.

We saw in the 1ast.se¢tion-that:an open subset.of SpecA could be
regarded as a specia1 kihd of monomorphism (SpecB,B) — (SpeaA,ﬁ) in the
category of -affine schemes. The topology on- SpecA can thus be described
by the specification of -certain monomorphisms 1into -(Sp@QAgE)‘ in the cate-
gory of affine schemes. _Sheaves'on SpechA can then be identified with
fqnctors from the dua1'of.a subcétegory of the :category of affine sub-
schemes of (specA,K) into 8. It was found by Grothendiéck:in his work
on descent and the étale fundamental group that these.sheavés.did:not.pr@—
vide ail the information required and that the restriction to "monomorphism"

'above'cdu]drbe relaxed without affecting the sheaf condition. provided one
had a good notion of covering; then, by looking at the category of affine

‘schemes with an "&tale morphism® into (SpecA,R) and a-sqitabfe notion of
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cover, he was able to define "sheaves" containing breciseTy the right

information.

Let C denote a. category. A Grothendieck pretopology on C 1is
‘a function J which assigns to each object U of ¢ a set J(U) whose

elements are sets of arrows into U, such that

- for all U, {1j: U— U} «J(u)

- for all f: V— U and U e J{U), each arrow in U has a pull-

back along f and the set Ff*U of arrows into  V so obtained is in J(V);

- given U eJ(U) and U e d{V) for each k: V—U 1in U, the
set { kh | kel, he U } s in J(U). |

A functor F: C%P — S s called a sheaf for the pretopology J
when for each object U of 'c, each UWe J(U), and each family of elements
sy € FV where k: V-> U runs over U satisfying the conditions

(Fp)sk = (Fq)sp where the square

is a pullback and h,k e U, there exists a unique element s ¢ FU such

that (Fk)s = sp  for all k e .

For any category C, a set R of arrows into an object U is said
:to be a U-crible when, for.all -h: V— U in R 'and-a11.arrbws f:W—1V,
the composite hf dis in R. We can 1dentffy a U-crible R with the sub-
functor of YCU: %P 3 (see 5.) whose va1pe at V 1is the set of arrows

in R from V to U.
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When C has pullbacks, a Grothendieck topology J on C 1is a

pretopology such that the elements of each J(U) are all U-cribles. When
one looks at the axioms for a pretopology in the case where each ¢ J(U)
is a'crible one finds that they can be expressed without the need for pull-
backs in C. This is left to the reader. Moreover, in this case, one does
not need pullbacks to define sheaf. - A functor Fr P 58 isa sheaf for
the topology J when for.each object U of C and each R e J(U), each
natural transformation .o: R — F extends uniquely to a natural transfor-

mation B: Y,U— F {compare the theorem in 8.).

Edch set U of arrews into an object U of any category C
generates the crible consisting of those arrows into U  which factor
"through some arrow in U. The topology J generated by a pretopology J
on ¢ 1is given by taking J{U). to be the set of cribles generated by the
‘elements of J(U). Then the sheaves for J are precisely the same as the

sheaves for J. A set of arrows into U s said to be a covering of U

in the topology J when the crible generated by it is in- J(U).

For a topological space X, we obtain a Grothendieck topology on
gX by requiring that a set of arrows into an object U should covér pre-
cisely when the union of the sources of the arrows fs‘a]] of U. The
sheaves for'this topoiogy are the sheaves on X as defined previously in

8.

On any category C we have the chaotic topology for which the only
covering crible for each object U 1is the set of all arrows into U.

Then every functor F: %P S is a sheaf.

A category C together with a Grothendieck tepology is called a

site which we often denote also by C. Write Sh(C,S) +For the category




39.

of sheaves for the topology and all natural transformations between them.

A site is called small when the underlying category is small.

Propogition. For each small site, the category Sh{C,S) - is a complete

elementary topos.

A Grothendieck topos 1s a category - E for which there exists a
small site C and an equivalence E = Sh{C,S). - It can be shown that ¢

can always be taken to be finitely complete. ,

Since we have the chaotic topo1ogy:on any category, for each.small
category C, the functor category [¢%,8] is a Grothendieck~topos. In
fact, the subobject classifier @ 1in this topos is the functor
Q: €P — S whose value at U is the set U of U-cribles. A Grothen-
dieck topology J on C can:be thought of as a subobject of @ 1in the
category [COp,S]. Since & 1is the subobject c1assif1er; the subobject
J of & corresponds to an-arrow Jj: Q - Q. In-fact, Grothendieck topo-
]qgies J on C are in bijection -with order-preserving arrows ‘j: g — 0
sﬁch that j2 =Jj and 1. = j. Notice that in any elementary topos
we could consider.an arrow j: Q@ — f satisfying these conditionsﬁ this

is important in the development of elementary topoi.

Given a group G, we obtain a category C -with only one object U,
~with ¢(U,U) = G, and with composition group multiplication. Then a
functor - F: ¢%? — S amounts to.a set FU onwhich G acts; so [CP,S]

is the category of G-sets, a Grothendieck topos.

For a topoiogicaT space X, we have the Grothendieck topoi Sh{X,S)
and E(OX)OP,S].. The inclusion of the first in the second has a left

adjoint ‘I 4 (4fg-1) given by taking a presheaf to the sheaf of sections
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of the associated etale space. It can be shown that this Teft adjoint is

left exact. More generally, we have the following result.

Theorem (Grothendieck). For each small site - C, the inclusion of

Sh(C,S) in [c°P,s] is a geometric movphism. [l
For a small category C, each functor: ¢’ — 8 has a limit, so
we have a functor
 Zim: [CP,8] —> S

which assigns to each functor its Timit. This‘functor-has a left adjoint
which preserves all limits {a set S ‘is taken to the functor which is
constant at S) and so Iim is a ge0metric morphism. - For a small site C(,

the composite

I': Sh(C,S8) — [C°P,s] —_-l--:—+_3
m

is called the global sections functor,'although there is no analogue for a

site to the etale space construction for a space.

22. Classifying topoi

For each of the algebraic theories discussed in 16. there is a
~ finitely complete category C which we think of as the theory for‘that
type of algebraic structure such that a model of the theory in a category

€ - amounts (up to isomorphism) to a Teft exact functor M: C — E.

For example, for the theory of groups, take  C to be.the:dual of
the category of finiteTy presented groups and.homomorphisms‘between them.
(4 finitely presented group is a group given by a finite number of

generators and. relations.) Since C?p has pushouts and~an'initia] object1;
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(the group with one element), this C 1is finitely complete. Every
finitely presented group is a finite colimit of copies of the infinite .
'cycTic group (x’, so a left exact functor M:.C — E. is determined on
objects by M(x) = G, say. Moreover, G becomes a group in E by
taking the multiplication arrow GxG — G to be the image under M of
the homomorphism (Xx) — (X.¥) which takes "% to xy (note that the
free two generator group {X.y)  is (X) X (YD in C)._.Cbnvefsely,
”each group in. € defermines'a left exact funct0r  C — E; also-homo-
morphisms of groups in E correspond to natural transformations between

the associated left exact functoré.

Consequently, for a finitely complete category C, we write
Mod{C,E) -for the category of left exact functors from C to E and

natura}.transfokmations between them.

For elementary topei E, F, we write Geom(E,F)} for the category
of geometric morphisms from £ to- F and natural transformations between

their left adjoints.

7 For a small category C and.a cocomplete category E, we saw in
5. that each functor T: C — E gives rise to a functor wa-ﬁ £ — [Cép,S]
which has a left adjoint - ® T. Each functor ¢ — S is a colomit of
representables, and so -® T 1is determined by T (up to isomorphic) |
via the formu1é YeU® T-=TU. If E is a Grothendieck topos, T is
left exacf;if and on1y if -@T 15 Jeft éxéctf'-THere:is in fact an

equivalence of categories:
(%) Mod(C,E) =~ Geom(E,[CP,S]).
Let us look at some special cases of this equivalence. Take (P to

be the category of finite sets. A left exact functor. C — E is deter-

. mined by its value at the set 1 with one element (¢ s "the theory of
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objects"); so Mod(C,E) ~ E. So geometric morphisms £ — [cP,s] are
determined up to isomorphism by objects of L. We learnt in 14. that, for
a spatial topos, geometric morphisms from S amount.to points of the
space. With the point of view that topoi are generalized spaces and that
a point of a generalized space is a geomefric morphism from S we see
that [c%P,8] is a topos whose points are sets. So. -[c%P,8]1 is the

-'generalized space of all sets.

‘As another example, take C to be the theory of groups as describéd
above. A geometric morphism E — [C°P,S] amounts to a group in E. In
particular, taking the identity geometric morphism of = [c°P,S] we obtain
a group G in [c“P,S] called the generic group. Any group in ahy
Grothendieck topos E can be obtained as the image of G under a left
adjoint for a geometric morphism (unique up to isomorphism). It may be
profitable to study G; it is a special group in.a particular (intuition-
istic) set theory, yet any theorems holding for G . which are formulas
preserved by left adjoints to geometric‘morphisms will hold for all groups

in all Grothendieck topoi.

Next we shall consider the refinement of the above which is needed

- to account for geometric theories.

First observe that a Grothendieck topos € can be made into a site
in a canonical way. A set U of arrows into. an object A s said to be
Jointly epimorphic when uk = vk for all ke U implies u = v. Put
the smallest Grothendieck topology on E for which the jointly epimorphic
sets are coverings. The sheaves for ‘this site turn out to be precisely

the functors which are isomorphic to representables:
- Sh(E,S) = E.

This means that E ‘can be regarded as a defining site for itself; however,
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of course, £ 1is not small.

If C 1is-a finitely-complete small site.and E 1is a Grothendieck
topos, define Mod(C,E} to be the category of left-exact covering-preserving
functors from C to E. This equivalence of categories (*) restricts to

an equivalence:

Mod(C,E) = Geom(E,Sh(C,S))

When the topology of C s chaotic'this.gives back :(*}. We~$ha1] give
evidence below that a finité1y—comp1ete small site C is.a.good;ndﬁion of -
geometric theory. We call Sh(C,8) the classifying topos for the theory;
models of the theory correspond'to geometric morphisms into it. We have
the result that every Grothendieck topos is the classifying topos for a

geometric theory.

Let C denote the dual of the category of finitely presented rings
(as a1ways, commutative with 1). The objects of € are quotients of poly-
nomial rings Z[X;,...,%n] by finitely generated ideals. This € 1is the
(algebraic) fheory of rings. A left exact functor M: C — E amounts to
a ring in E whose under1yfng object is M Z[x] = R. Now enrich C to a
site by taking the smaliest Grothendieck topology such that the one-point
ring has no coverings and the pair of arrows into Z[x] corrésponding to

the two homomorphisms

Z[x] ————— Z[x,y]/(1 - xy)

|

Z[x,y1/(y(1-x) - 1)

'_‘(whiéh each take x "to the coset of x) is a covering. To ask that M.

preserve the latter covering is to ask that the two first projections
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[ (a,b) | ab=1}

|

{ (a,b) | b(1-a)=1 } —— R

should be jointly epimorphic. So we see that- Mod{C,E) 1is the category
of Iocal.rings-and homomorphisms (not just local ones!) between them in

E. The topos Sh(C,S) is cé]led the Zariski topos ; ft.is the classify-
ing topos for local rings. This topos was originaITy.constructed by the
French School using_as a site a small subcategory of the category of

~ affine schemes. The relationship can be seen using the Theorem in 10.

Just as we afgued that we may as well forget the space once we
know the. category of sheaves, we now argue that we may as well forget the
site once we-havé its category of sheaves. It is not easy to see in
general-when two sites determine equivalent topoi and hence the same geo-
metric theory. The real.invariant of:the;geometric theory is the classi-

fying topos itself.

23. Analysis in a topos.

An elementary. topos is said to satisfy the awiom of infinity or

have a natural numbers object when:

(NNO) there emist an object N and arrows 0: } — N, sue: N— N such
that, for all arrows Xp : 1— A, u: A— A, there exists a unique arrow '

s: N— A such that s0 = X, and S suc = us.

‘One can deduce the usual Peano axioms for N: namely, sue: N— N. is a

monomoyphism, JneN(sucﬁn)?O) is false, and,for all formulas ¢(n) when

n _is of type "N, the following is a theorem:

9(0) A ¥ (6(m) = ¢(m1)) = o(n).
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This 1ast theorem can be added to the 1ist of axioms in 19. and we obtain
the corresponding completeness theorem for elementary topoi satisfying

(NNO) .

For a space X, the topos Sh{X,S) has a natural numbers object
N which is the sheaf of sections of the local homeomorphism XxN — X
given by first projection (where N is the set of natural numbers). So
NU is the set of locally constant. functions from the open subset U of
X to N. | |

For a Sma]] category C, the functor N which is constant at thé

set N s a natural numbers cbject. for [c°P,s].

If M: F— E is a geometric morphism between topoi and N is a
natural numbers object in E then M*N is a natural numbers object in F.

This implies that each Grothendieck topos satisfies (NNO).

The categories of finite sets and of (finite) permutation represen-

tations of a group are examples of elementary topoi not.satisfying {NNO).

For a topos E satisfying (NNO), the usual operations can be
defined for N. For example, the operation NxN-— N. of addition is
- defined to correspond under cartesian closedness to the unique arrow

a: N—> [N,N] such that the diagram

' N
e
17 o, o
] R[N,N] +f[N.,N-j

[IN,suc]

SUC
-+ N

commutes, where j .corresponds: to the projection 1xN — N. - For

variables myn of type N, we define the formula m<n to be
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ﬂpeN(m+p=n). We also have multiplication and exponentiation arrows
U, NxN— N and we write mn and m" for the terms u(m,n) and
g(m,n) of type N. The familiar properties hold; for example, we have

the theorem

Vm,n,peN(O <p, m<n =>pmspn).

The usual construction of the rationals as equivalence classes of-
pairs of integers leads to an ordered ring Q in E. In Sh{X,S) where
X s a space, Q is the sheaf of locally constant rational-valued .

functions on X.

The construction of the reals as equiva]ence'c1asses of. Cauchy
sequénces of rationals leads to an ordered ring Rc in E. In Sk(X.,8),

.RC is the sheaf of locally constant real-valued functions on X.

The more interesting construction is the one of Dedekind involving
cuts. Let R, denote the subobject of [Q,2] obtained as the inter-

pretation of the formula

WL0) A L=Q) A ¥ o ¥ (ap=ael) A ¥, 3 per,

where L 1is a variable of type . [Q,2]. So RK is the object of lower
ceuts of - Q. In Sh{(X,S), 'Rﬂ ' is the sheaf of lower-semi-continuous real-

valued functions on X.

Alternatively we could use upper cuts or upper and lower cuts and
~ so obtain objects Ry, Ry. In Sh(X,8), Ry 1is the sheaf of upper-semi-
continuous real-valued functions on X, and Ry is the sheaf of continuous

real-valued functions on X.

The usual proof shows that RE’ Rys Rq are ordered rings. They are
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fields in the sense that the following formula is valid:

13 xy=1) == x = 0.

yeRy

However the following are not valid:
=1 (x=0) = ﬂyeRd xy=1,

x=0 v ayeRd xy = 1.

The first of these three formulas is not geometric; the third is. The
sense in which Ry is a field is not a geometric one. It is however true

that R,, Rys Ry are all Tocal rings in E.

Leaving off the formulas 71(L=0), "1(L=Q) in the formula for ower
cuts, we obtain an object Rz which is a complete Tattice. Similarly
(=] OO
for Ru’ Rd’

24, Representation theory of rings.

A representation.of a ring A s a homomorphism from A into
some nice ring of functions on a space. More precisely, a representation
of A is a space X, a sheaf F of rings on X and a homomorphism from
A to the ring of global sections of F. Note that the glebal sections
functor preserﬁes models of algebraic theories (rings in particular) but

not models of general geometric theories.

A classical example is the case where X is a compact hausdorff

~ space and F is the ring Ry in Sh(X,S). The prob}emrwéS'notrclassica11y
- phrased in terms of sheaves but rather in terms of the ring TRy = Tap(X,R)
of real-valued continuous functions on X. However, as.a ring Top(X,R) s

‘not very interesting; it has none of the special properties that allow the
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deep results of ring theory to be applied to it. It has been persuasively
argued by Chris Mu]ﬁey that the object of study in this context is the
representing sheaf of rings F. After all, as we have pointed out, Ry
s for_exampTe a local ring in .Sh(X,S). So any intuitionistically valid
results of ring theory about local rings should be applicable to Ry. As

an example, Mulvey takes the theorem:

Theorem: (Kaplansky). 4Amy finitely generated projective module over a

local ring in S admite a finite basis.

The proof can be shown to be intuitionistic and so remains valid in any
topos. For a compact hausdorff space -X it is easily seen that the global
sections functor T 1nduces'an equivalence between the category of Ry-
modules in SA(X,8) - and the category of ' TRy-modules in S; moreover,
finitely generated projective modules correspond under this equivalence.
For any space X, finite dimensional vector spaces over Ry in Sh(X,S)

are precisely finite dimensional real vector bundles on X. Thus we obtain

a more. conceptual proof of the following fundamental reéu]t of K-theory.

Theorem (Swan).  For any compact hausdorff space X, the category of
. finite dimensional real vector bundles on X <& equivalent to the cate-
_gory of finitely‘generatéd projective modules over the ring of real-valued

continuous functions on X.

Thé structure sheaf A provides a representation of an arbitrary
commutative ring A as a king of g1oba1 sections of a local rfng in
Sh(SpecA,S). -This gives another view-point to the theorem in 20.: any
commutative‘ring can be represented as a local ring. by a "change of set
theory" from S to Sh (SpecA,S) . This illustrates the-genera1,pfincip1e
that for geometric theories “free constructions" may require a change of

set théory. It is well known that for two é1gebraic theories T, T' with
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the first richer than the second (for example, T the theory of rings
and T' the theory of monoids) it is possible to construct the free
model M of T in S on any mbde] ‘M'" of T in (the monoid ring
M=Z(M) on the monoid M'). For geometric theories the free model - M
of T on the model M' of T' in S will in general be a model of T

in some topos other than 8.

25. Classical mathematics.

In 19. we claimed that mathematics in a general topos could not be
taken to be anything more specific than intuitionistic mathematics. We
shall now consider elementary conditions on a topos which eventually pin
it down to a category of sets in some (slightly weakened) model of

Zerme]o—Fraenkel.set theory (ZF).

There. is a simple elementary property'satisfied.by a spatial topos
Sh(X,S). Two arrows of sheaves f,g: A— B are equal if and only if
(fu)s = {gu)s 1in BU for all open subsets U of X and all. s e AU.

Open subsets .U of X 'amount_to subsheaves of the terminal object 1.

It follows that spatial topoi have the property (0G) that "opens generate":

(06)  for all arrows f,9: A —» B, if fs = gs for all arrows s: U— A

such that U~ 1 <s a monomorphism, then T = q.

Any partially ordered set fl 'can be regarded as a site by giving

it the smallest Grothendieck topology for which sets of elements with

Ue H as supremum are coverings of U. The topos. Sh(H,S) then satisfies

(06).

Theorem. An elementary topos E with a geometric morphism Et — S (for

example, any Grothendieck topos) satisfies (0G) if and only if there exists

a eomplete Heyting algebra H in S such that E = Sh(H 3).
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Not every complete Heyting algebra is the partially ordered set
OX  for some space 'X. Each poset 0X 1is isomorphic to cne for which
X is sober. . Then the points of X are. in bijection with arbitrary-
supremum-preserving finite-infirmum-preserving functions OX — 01 (where
01 is just the ordinaT 2). Thus we define the points of a Heyting
algebra H (as against its "e]emehts") to be arbitrary-sup-preserving
- finite~inf-preserving maps H — (1. However; a Heyting algebra, as we
have said, may not have "enough pofnts" to make it the poset of opens on a

space.

A topes E is said to have enough points when, for all arrows
f,g: A— B, if M*f = M*g for all geometric morphisms (points)
- M S—E, then f =g. This is not an.elementary condition on E
however it can be made elementary in terms of a given geometric morphism

£ — S.

Theorem. A topos € is spatial if and only if there is a geometric

morphism E — S, condition (0G) is satisfied, and E has enough points,

A topoé E is said to be Boolean when the Heyting algebra § - in
E is a Boolean algebra. This s an e]ementary_condition on. E: the arrow
|7(Xe:9)]: £ — @ composes with itself to yield the identity of Q. In
a Boolean topos, for all formulas ¢, the formuTa 19 = ¢ is valid.

The first-order logic of a Boolean topos is classical.

A topos E s said to be two-valued when the ferminal object 1
has only two subobjects {more preciseiy,-if b — 1 1ds.a monomorphism and
U dis not initial then it is an fsomorphism). For a two-valued topos the
condition (0G) becomes the condition that 1 should generate: distinct

arrows can be detected by arrows from 1.
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A two-valued Boolean topos E satisfying (NNO) and (0G) has all

the elementary properties of a category of sets satsifying {ZF) (omitting

the axiom of choice). The replacement schema of (ZF) is not .an elementary

condition. It can be shown that E gives a model of set theory satisfying

all of the other axioms of (ZF) together with a "hounded" replacement

schema. If E has a geometric morphism into' S then the second last

theorem above yields that E ~ S (for this (NNO) and (AC) are not needed

in E nor 8).

Now coensider the axiom of choice. A'topos E s said to satisfy

"the axiom of choice" when:

(AC) for all épimorphisms e: A —+ C, there exists an arrow’ M: C— A
such that em = lg.

In 8, t0-givé an gpimorphism et A—C is.to give the family of non-
empty disjoint setg A, = { ach |‘ea==c } indexed‘by ceC, and an arrow
m such that em = 1. 1is a choice of an e1ehent'out of each . A.. - We

shall suppose. that the sets in S are a model of (ZFC) tthat is,'(ZF) plus

choice) so that. S satisfies (AC).

Theorem, An elementafy topos E with a geometric morphism t — § satis-

fies (AC) <f and only if E is Boolean and satisfies (0G).

Classical mathematics takes place in a two-valued elementary topos‘

satisfying (NNO) and (AC).

16. Compieteness for geometric theories.

As was remarked in 22., a finitely-complete small site C is a good
notion of geometric theory. The theory is-ca11ed,finitary when the topology
on C is génerated by a pretopology J in which the elements of each J(U)

are all finite sets of arrows into U. Categories which are equivalent to




52.

categories of sheaves on such a site C are called coherent topoi.
Theorem (Deligne). Coherent topoi have enough points.

A gebmetric formula for a geometric theory. C 1is a formula 7 in
the "language of C" which is of the type allowable as axioms for a geo-
metric theory: (see end 16.). To say T <s a theorem of C 1is to say

T 1is valid in every model of C in every Grothendieck topos E.

Completeness theorem.  For any finitdry geometric theory C, a geometric

formula T 4s a theorem of C if and only if 7T <e valid for every

model of C in. S,

Proof. Geometric formulas T are preserved by left adjoints of geometrié
morphisms -and so, to say T 1is valid for every model of € in every
Grothendieck topos is to say it is valid for the generic.model A ef C in
the c}éssifying:topos Sh{C,S). By Deligne's theorem Sh(C,S)' has énough‘
points so T s valid for A in Sa(C,S) if it is valid for all models
of C in S (the questﬁoh'of Va1idity.of T in A amounts to the

question of whether or not two arrows in Sh(C,S) are equal). O

If a Grothendieck topos E has enough points then there is a set
A (= a category with only identity arrows) and a geometric morphism
M: [A,8] — E such that M* is faithful (that is, M*f = M*g implies
f = g). The category [A,S] is a Grothendieck topos satisfying (AC). A

general Grothendieck topos need not have enough points yet we do have:

Theorem (Barr). For each Grothendieck topos E there exist a Grothen-
dieck topos B satisfying (AC) and a geometric morphism M: B — E such

that M* dis faithful. O

This theorem cannot be refined to the extent of replacing B by a

product of two-valued Grothendieck topoi satisfying (AC} (that is, a pro-
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duct [A,8] of copies of .S). The reason for this lies in the work of
Kripke who observed that; for the intuitionistic first-order predicate
calcuius (Heyting algebra), a two-valued semantics (true-false) is
inadequate, and one needs the semantics of arbitrary complete Boolean
algebras (B in the last theorem is equivalent to the category of sheaves
on a compléte Boolean algebra by the theorems of 25.). The theorem of
Bérr can be regarded as a comp]eteﬁess theorem'for.genera1,geometric

thebries.

7. NOn—standard.aha1ysis (of Robinsoﬁ)..

Recall that a fiZter v on a lower sehi]attice P s a subset
such that 1 g'V, if X,y eV then xayeV, and, if x =<y and xeV
then y ¢ V. .In Other words, the characteristic function Xg* P— 2
of V s -a. lower semilattice homomorphism. A fiiter-is proper when
V # P. An ultrafilter on P s a_maxima]-proper ff]ter. Zorn's lemma

implies that each proper filter is contained in an ultrafilter.

A filter V on a Heyting algebra P determines an equivalénce
relation on. P given by: x ~y if and only if (x=y) A (y=x) ¢ V.
There is a unique Heyting-a]gebra structure on the set P/V .of equiva-
{lence classes such that the éanonicaT epimorphism. P— P/V 1is a Heyting

algebra homomorphism.

| fheorem. For a proper filter V on a Heyting qlgebra P the following
conditions are equivalent: | o |

(a} | V is an ultrafilter;

(b} Xyt P— 2 is a Heyting -adebra homozﬁorphism;

(c) P/v =2 | | |

(d) for all x e P, either x €V or X e V.
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We shall now describe a procedure for cutting down a topos to a

two-valued topos without damaging the logic.

Let £ be a topos and let # = SubEl. be the Heyting algebra of
subobjects of the tefmina1 object. let Set denote a category of sets
_Targe encugh to contain the set of arrows of £, and write Cat for the
- category of models of the theory of categories in Set. It 'is possible
to define a functor E: #P — Cat such that EU =~ E£/U and, for i: V> U,
the functor E£7: EU — EV. correéponds to .the functor i*: E/U— E/V given
by pullback along 1i. ({The reason for not taking EU = E/Y 1is that the
assignment i ¥ only preserves composition up to isomorphism and so
is technically not a functor.) - Each of the-categories  E/U is an elemen-
tary topos and i* s a homomorphism of elementary topoi (1.e_ preserves
- all the data involved -in the definition of an e]ementafy topos; such func-
tors are‘ca11ed logical morphisms . So E lands in the category of
models of the theory of e]ementary'topoi in Set. It can be shown that
the theory'of elementary topoi is algebraic in the seﬁse needed for the
first theorem of 16. So- E is actually a model of the theory of elemen-

tary topoi in the category [HF,Set].

A filter Vv on H yields a left exact characteristic functor
Xy H— Set (XVU has one element when U ¢ V and none otherwise).

Thus we obtain a left exact functor
- @ xgt [HF.Set] — Set .

The elementary topos E in [HOP,Sei] yields an elementary topos
E® Xy n Set since left exact functors preserve models of:a1gebraic

theories. We denote E-@)XV by E/V..
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Mere explicitly, the objects of E/V are the same as the objects
of E, and (£/V)(A,B) is the direct limit of the sets E(AxU,B) as
U runs over the poset V. It can be shown directly that E/V is an
elementary topos with a Togical morphism (the canonical projection)
E— E/V whichrc611apses all UeV to terminal objects. This allows
‘those who will to ignore the last two paragraphs! If E 1is Boolean,
satisfies (NNO}, or satisfies (AC) then.so dbes E/V. There is an equi-
valence between the Heyting algebra of éubobjects of 1in E/V aﬁd.the
Heyting .algebra H/V. So, when V <8 an ultrafilter, E/V is two-valued;
it-is called the ulirapower of E modulo V. In this case, if E satis-
fies (AC), E/V. is Grothendieck if and only if E/v.~ S (a two-valued
Grothendieck topos satisfying {AC) is equivalent-to S). So either this
constructibn'aTways yields S itself or else it produces elementary topoi-

which are not Grothendieck. The latter is the case.

The sﬁecia]-topos which leads via the above construction to "non-
‘standard analysis" is simply the category E = [N,S] of sequences of
sets. The objects of E are sequences A = (An) of sets and. the arrowé
are sequences f=(f): A— B of functions fy: Ay — By.. The terminal
object 1 of E s the_constant sequence .at the one-point set. A subobject
U of 1 1is a sequence of sets with at most one element; each such U
can be identified with the subset of N consisting of those n for which
U, is non-empty. Thus SubEl =~ PN, the Boolean algebra of subsets of
the natural numbers N. A filter.on the Boolean algebra PN is also
khbwn as a filter V on the set N. The objects of E/V are sequences
of sets. An arrow [U,fl: A— B 1in E/v 1is an equivalence class of
pairs (U,f) where U €V and f is a family of functions fp: Ay — By
indexed by n e U; pairs (U,f), (V,g) are equivalent when there exists

WeV such that WelUnV and f, =g, forall nel.
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When. V is a prineipal ultrafilter (that is, "V ={ UeN | meU }
for some fixed m e N) then [N,S]/V is equivalent to S which is
certainly two-valued, and the logical morphism [N¥,S] — S 1is evaluation

at m.

Interest is in the case where V 1is a non-principal ultrafilter
(they exist by Zorn's lemma which holds in some model of set theory if
there are any models at-all!). It can be shown that ~[N,S]/v is not
equivalent to  S; yet it is a model of set theory. - -a two-valued

elementary topos satisfying (AC) and (NNO), not Grothendieck.

The “giobaI.sections” functor T: [N,S]/V — S .which assigns to
each object its set of arrows from 1 is not a logical: (nor a geometric)
morphism when:-V. is not principal. However, it does preserve all the
. -first-order logic (and all Timits).r Note that 3rA ié the set of equi-
valence classes of elements of nz& A, where a~b when

fneN | ap=by} ¢ V; this set A 1is called the uZtraprodﬁct of the

sets A, modulo V.

Regarding each set as a constant sequence we obtain a logical mor-
phism S — [N,S], and hence a‘1dgica1 morphism S — [N,S]/V which is
in fact faithful. So [M,S]/V 1is a logical extension of S. For each
set A there i1s a monomorphism- A — T'A which is not in genera1’an_iso-
morphism.. In particular, TR 1is the éet of non-gtandard real ﬁuﬁbers and
the elements of TR not 1h-the image of R — TR are the infinitesimals.
of course,..R is the real-numbers ebject {R. = Rg) 1in [N.S]/v, so we
_have represented the-set of non-standard real numbers as-the‘g10ba1 sections
. of a rea?énumbers object in a noh-standard model of set theory.. Now R
in [N,S]/@ ‘has all the properties of the real number field (the higher-

: order'logic s that of set theory), and since’ T preserves the first-order
logic, TR has all the first—ofder properties of the real number’field (it

is an ordered field for example).
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28. Independence results in set theory.

In the. last part we saw how to force a topos to become two-valued
by stopping its variation at an ultrafiiter. It is also poésib1e~to force
& topos to be Boolean by ‘taking the "sheaves fbr the double negation
topology" which we shall now explain in a special case general enough for

our purpose here.

Let P be a poset. Then [P°?,S] 1is not in-general Boo?ean. We
put a.Grothendieck. topology on P by taking as the covering crib1es'of
x € P the cribles "C at . x such. that. yEx =} ze;C with"z s‘y.'
This.“is:cﬁ1fled:'the._double negation topology on P.. Nrite .Shjj(P,S)
for the category of sheaves on P with this topology. In this case, not

only is _Shq7(P,S) "Boolean, it satisfies (AC}.

The hard part of independence proofs is: to find an approprlate poset
P such that the axiom in questTOn fails in Shqj(P,S) Then we just take
an ultrapower of Shﬂj(P,S) to-obtain a model of set theory :in which the
axiom fails. This is the technigque of foreing developed by P.J. Cohen

(1963).

For exampie, to show the independence of the comtimum hypothesis,
one constructs a poset P for which there is an object A in S$h4(P.S)
with monomorphisms N — A, A-—+'[N,Q] .and yet the objects of epimorphisms

from N to A and from A to [N,2] are initial.

29. . Cohomology.

Since we have shown that a topos E is a generalized space (amongst
other’ things), it is reasonable to expect there to be a good notion of co-

homology for E. This is indeed the case.
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Suppose the homsets of E are in S. Write I': E— S for the
"global sections" functor TA = E(I,A). Since I 1is left exact it takes

abelian groups in € to abelian groups.

Recall that an abelian group D 1is injective when, for every
monomorphiém A— B between abelian groups, each homomorphism A - D
extends to a.homomorphism. B— D. This can be said in .E too, and it
can be shown.that each abe]ian group A in E admits a monomorphism
A== D into an injective abelian group D. It follows that we can find

an exact sequence

d ds

] ——> A —r D,

L D, dl’ D,
of abelian groups in E for each A in which each D, 1s injective;
this is called an injective resolution of A. Thus we obtain a-.complex. of
abelian groups

d

1 p,—do . p 4, p,

Put H"(E;A) equal to the factor group of the kernel of TI'd, by the image
of Tdy_y. In particular, H°(E;A) is the kernel of Td,, and since T

is left exact, we have an isomorphism
H°(E3A). = TA.

It is a standard result of homologicd] algebra .hat any other choice of in-
Jective resolution would yield isomorphic groups H'(E;A), and so we call

these groups the cohomology groups of E with coejficients in A.

As one would hope, when E = Sh(X,S) where X 1is a space and A

| is 'a sheaf of abelian groups on X, then

HYE3A) = H"(X;A),
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where the right-hand side is the usual cohomology of X with values in

A (see Godement's "Topologie Algébrique et Théorie des Faisceux").

As qnother example, take G to be a group regarded as a category
with one object and with arrows the elements. Then [G.,S] is the category
of sets on which .G-acts. The functor T: [G,S].— S assigns the set of fﬁamf
Fofﬂfi to each set on which G-acts. An abelian group A in [G,S] s
precisely an abé]ian.group A tbgether with a group homomorphism
G — Hom(A,A); thét is, A is a ZG-module where ZG 1is the group-ring

of G. There is an isomorphism
H'Y([6,S1:A) = H'(63A)

where the right-hand_side is'the usual cohomology of G with coefficients

A (see Mac Lane's "Homology").
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