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PREFACE

It is well known that the homology functor frbm the
category of free abelian chain complexes and homotopy
classes of maps to that of graded abelian groups is full
and dense and reflects isomorphisms. Thus such a complex
is determined to within Tomotopy equivalence (although not
~ a unigque homotopy equivalence) by its homology. The homo-
-topy classes of maps between two such coﬁplexes should
therefore be expressible in terms of the homology groups,
and such an expression is in fact provided by the Kiinneth
Sformula for Hom,.sdmeﬁimeé called 'the homotopy.classifiw
cation theorem',

In {15] Kelly showed that the functor assigning to a
short exact sequence of free sbelian chain complexes'iﬁs
long exact homology sequence is again full and dense and
reflects isomorphisms. Partial information about the
kernel of this functor was found in [16]: but not enough
{0 -provide a homotoPy classification theorem for this case.

Since a short exact seqguence of free abelian chain
- complexes may be considered as a free abelian chain complex
with & filtration of length 2 the guestion arises whether
the above results admit approniate generalizations for

complexes with a filtration of finite length n .
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The main purpose of this thesis is to exhibit for
such filtered complexes a functor which is full and dense
and reflects isomorphisms, and to provide a homotopy class-
1fication theorem for this case. We do not entirely
‘restriet ourselves to free abelian complexes, buﬁ then
we must -content ourselves with an analogue of the Klnneth
spectral sequence instead of the short exact sequence.

Because of the degree of compliéation of the
-situations to be studied, conceptual methods are necessary.
- These are developed 'in Chapter 2; where we study the
existence of such classifying functors, homotopy classi-
fication theorems, and analogues of the Kliinneth spectral
sequence, in a. very general context of triangulated
categories. The necessary background material abcﬂﬁ
graded categories, differential graded categories and
- triangulated categories is included in Chapter 1.

In Chapter 3 we apply the abstract theory to
filtrations of length 1 and 2, going beyond the work of
Ke;ly in the latter case by providing a homotopy classi-
fication theorem. The case of a general n is treated
in Chapter L, and constitutes the most technically
difficult part of the thesis., The central problem here

is to determine the projectives in the image category




(whose objects are in fact diagrams as considered by

Wall in [19]), and this requires e long technical srgument.
Our reasons for including the case n = 2 (besides the
trivial case n = 1) in the earlier chapter were in part

a desire to make the essence of the argument clear in a case
deep enough to be of interest but simple enough to be
treated without the long technical considerations of
Chapter L4; and in part that the determination of the pro-
‘jectives in the range category in the general case reguires
"as a starting point the determination in this case.

The work done in this thesis is entirely original
except for some of the sections of Chapter 1 where known
but not easily available results are summarized in the fomp
in which we need them.

- My especial thanks to Professor G.M, Kelly who first
~aroused my interest‘in categorical and homological algebra;
the value of his continued help_and encouragement is im-
possible to overestimate. Many thanks also to Mrs. T.Kovacs

for her speed, accuracy and patience in typing the manuscript.

Ross H., Street,
University of Bydney,

September, 1968.
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CHAPTER I. -~ PRELIMINARIES

81. DG~categories and graded categories.

In this section we recall the definitions of DG-category,
functor -and natural transformatibn; graded categories and addigive
categories are dealt with-as special cases. Functor categorigs
are then considered. :

A DG=category 64' consigts of the following data:

(i) -a class‘whose elements are called objects of cﬁ%;
(i1) - for.each pair A, A' of objects of @Q, a complex
LA,A';§¢]-;H£A¢A31 of abelian groups;
(iii) - for each triple. A,_A?,LA""'of'objects of cﬁ%,.a chajin
map [A',A"] & [A,AY] %-[A,A"]- called composition, the image éf

g ®F Ybeing written ‘gf for -f.e‘[A;Aflp;.g-E {A'ﬁAH]q H

such “‘that the a£Xiom 8¢ .

DG1l. <composition is associative; and

DG2, . for each object A ~of~t¢%,“there is. an element .
1, € [A,A]5' Which'behaves_as:an identity under

composition;

are satisfied,

The differential of the complex [A,A'] will be denoted by

.D for all objects A,A' ., The condition that the composition’

map as a graded abelian group map should be a chain map is
equivalent to:

-Dpé.rq.(gf)- = (Dég)f + (—1)qg(DPf)

for all £ € [A,A'jp, g ¢ [A',A"]q .




An element f ¢ [A,A‘]p will be called a protomorphism of

degree p . If D f = 0 so that f € ZP[A,A‘] then f will be

called a morphism of degree p . Morphismsof degree zero will simply

be called morghisms,

A mofphism f:A > A' of degree p will be called an isomorgg;sm

of degree v (simply an isomorphism when p = 0) if there exists a

protomorphism. g:A' —» A of degree -p (necessarily a morphism of
degree -p) with gf = 1, and fg= 1.+ . ;
Suppose A s @ are DG—catégOPieS, A DG-functor T: «A’* (%

consigts of the following data:
(i} a function which assigns to each object A of cﬁQ an
object TA of @;
) A
(ii) for each pair A;A' of objects of aé¥ a chain map
T:[A,A';d%1-+[TA,TA';@J;
such that the axioms: ,
Fl. for all A e, T (1,) =1p, ;
P, T £} = T g. T f for all protomorphisms f,g of
p+q(g ) & Tp P 2 ’
degree p;q respectively;

are satisfied,

"Suppose T,S:d@»}&% are DG-functors. A DG-natural trans-
- formastion «:T - S is a fami i :
‘ - a family (GA)Aq}} of morphisms

aA:TA-+ SA of &ﬁ such that:

NT. for all protomorphisms f:A - A' of any degree 7p ,
(xA'tTf = Sf.a

A
When no confusion is possible we will write "functor™ and

"natural transformation' in place of "DG~functor' and ¥DG-natural

transformation” respectively.




To save repetition we define graded categories as follows.

A graded category J% is a DG-category such that each complex

[A;A'] has zerc differential. A graded functor is just a DG- -

functor between graded categories, and a graded natural transforg}—

ation is just a DG-natural transformation between graded functo;c‘s.

An additive categorv dﬁ% is a graded category such that

¥

[4,4'], =0 for p £0 for all A,A' e . An sdditive functor

is a graded functor between additive categories, and an additivei'

natural transformation is a graded natural transformation ‘betweeﬁ;&i

additive functors.
The dual .-ﬁg("ﬁ 0f the DG-category JQ’( is the DG-category
defined as follows: e
(i). the objects are the same as Jg\";
(1) [a,a'50ke] = (a7, 850405
(111) composition [A°, A" ng’*‘] ® [a,a VGQQ’] ~ [A,A" A, ]
is given by g ® f e (—l)qug, ‘Wwhere

r € [A A,Jﬁ\'] s & € [A" Al lﬁc‘]

"'The. tensor product ;)4@ @ uf the DG-categorles ._){5' is

the DG-category defined as follows:
(i)  the objects are pairs  (4,B) where A EaA’ and B E(%
(11) [(a,B),(A',B ),cﬂr@a&;] = [a,8" %) B8 ;08];
(iii) composition
LB, (s Al rel (a8, (8t A
¢ o= [ahaAl @ [BLEYB] @ [4,4 504 e (8,85 ]
LA, B), (4,8 ;b @ B 1= [ 4,40 J@[B B"; i ]




is given by ps
g ®@k@f®h w (-1)° gf @ kh,

where e [a,n ;(;ﬁl;]p, g € [A’,A";Jg(]q
h e [B,B';éﬁ]f, k ¢ [B',B";é%]sn

~
The DG-category Céﬁ of complexes over the additive categoryﬁ%

is defined as follows: _

(i) the objects are complexes A OVer L (the differentiai

gt |

(i1) the complex: [4,B;6D 1 = [2,B] is given by
[ 4, B] = HZ (8B, ;a@) r

of degree -1);

and if £ = (f,) €z€ [A9B] ) then
B L (_1\P A,
| (Dpf‘) dp+r » = 1)°f, .97
(1ii) composition is given by
(g)() = (g,%)

The graded category Gar , where JQA is an additive sategory,

is the full sub-DG-category of CJ&
Ao,

with objects those complexes

A over iQ with differential d

REMARK: DG-categories are categories over the closed category

ol
©%Y

, where é%* is the (additive) category of abelian groups and
group homomorphisms, and so the general considerations of [3] apply.

FPunctors and natural transformations are Gg;—functors and, CJL—

- natural transformations. Graded categories are a?—categorles.

Let dﬁ% be a DG-category. The .DG«-functor Homu%.‘-,ér-@;ér-a G%/

is given as Tollows:

(1) Homﬁ( (A,A') = [a,A%504);
(11) Hom, : (8,8),(8",8') ;A el = [a', 054 [B,8 ;4]




[[A,B, A, [ar,B; /uﬂ G»J"] is the chain map with
Hom 4 (£,)h = ( _1)P(a ) gpe
‘where T e [AY,A; u‘g(] , g ¢ [B,B (JQ[] and he -[A,B;J%]T
' From a DG-category ‘A( we obtain graded categories
i-ZJ&* H.:A’ with the same objects as J{%’ , with [A,A" ZA’] =
CALA,AY; LA'], [A,A"; Hg’—‘}(] H{A,a' VA’], and with compesitions
“ipduced by the composition of UA{.

Suppose T,S:A» @ gre-- DG~functors. A proto-naturgl

Vtrangformetion T - S of degree n 1is a family (ocA)A&}%: of

‘protomorphisms o, :TA » SA of ﬁegree' n in *E ; such thats

A
PNT.  for all ObjeCtS a,a' of At the diagram
[, 27 3] s [TASTA] ;81
A 4130
8 [1,ag,,@>]
[SAsSA ;B 1 [TA;,SA ; 8 ]

[%913 EB ]
commutes 1in G,@, .
The diagram of ~PNT evaluated at £ & [A, A ;JHP gives

the equation: aAi.Tf = (—1)PnSf. OtA .

1f A, B are DG-categories then we define the

- "DE-catsgory" [QA(-B !%] as follows:

(i) the objects are DG-functors from ‘/"Q so 5 ;

(11) the complex [T,S;[A-,]] = [T,8] 1is .given by
'[_T,S]n = the class of proto-natural transformations frggm
T 't_o '8 of degree n , and if « E[T,S]n then -

D& € {._T,s-]n_l 45 defined by - (Dna) A Dn(oc A) :




(iii) composition is given by (ﬁa)A Bpoy *
The following calculation shows that Dna as given in
(ii) is an element of [T’S]nrl :

(Doc)A,.Tf = D(a,. ). Tf

p(a, ;. Pf)=(-1)"a,,.DIF

#

]

(-1)PPp(st. &y )= (1) nch, . TDf

- (-1)PP(st. ) - (1) (1) P sne. o

_a\pn o .
(-1) (DSf.ocA DSf.oaA)

U

(-1)P7(-1) P8¢, D(a,)

K

()P Vg, (D) ,

H

for £ ¢ [A,A';u&ﬂp . Blements of Z [T,8] will be called
‘natural transformations of degree n 1n acéordance with our
previous convention, 7
-From=this3wé-observe-thatzthe "eategory! of DG-categoﬁ%es
and DG-functors is closed. 'We have the natural 1somorphlsm:
(AoB b1 A0 B,C1] . :
1t must be remarked that &}% A1 is only a legltlmate“
'_DG—category when oé¥ is small, but we talk of it in any case,

For DG-categories uﬁk &3 the evaluatlon functor

h}% B1 - is definea for each A e as follows:

(1) E,T =Ta for T e [, 8]

(i) EA i[T,S] -+ [TA,SA] is the.chain map given by

EA? =Q, .

That this is a DG-functor is a simple consequence of the

definitions.




82, Proto-split exact sequences.

For any DG-category bé% we examine seguences in Zodé"é

~which are-direct sum situations at the proto-level; such seguen-

ces will be called proto-split exact sequences (pses) . The
deviation class of’'a pses 1is defined. The DG-categories with
which we shall be dealing satisfy the "extension axiom" which
ensures the existence of a- pses with any given deviation.
DG-functors are shown to preserve pses and their deviatior}éo
A'theoreﬁ on mgps of pses .ié proven,

Let éébe the additive category defined as Tfollows:

(1) the objects are -1, 0 and 1 ;

(11)  [-1,0]

[~1,1] = [1,0] = [0,-1][,~1] = O ;

[-13-11=[0,0] = [1,1] = Z*"; and

il
B

[0,1]

S (4id) all. composites not involving identities are zero.
If J4' is any :DG-catégory then the DG-category [éf,d4j
will be denoted by S eqof . The objects are diagrams :
LS S W IR AY din ZOQ£¥ with pi = 0 ; such objects will

be called sequences in.@ﬁk . A pair (p,i) of protomorphisms

pt A-A'; I ; A" > A of degree zero such that

pi = Ty s pi = 1, and ip + ip = 1,
19

 will be called a splitting of the sequence A —3 5 —B pw g

A sequence in ug¥ which has a splitting will be called a EPOED“

© . split exact sequence (pses) -in @¢¥; the full sub-DG-category

of - 8 eqU£¥ with objects the pses in pé% will be denoted bg

PSG_S A »
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If (P,i) dis a splitting of the sequence at—35 5 P, opu
then ‘ ' o - v
d‘ = p. Di = -DPG i

will be called the deviation of the splitting ($,I) .

Notice that O = D(lA) = i.Dp + Di.p , so

Dp = -6.p , DI = 1.6 and DF = O .
'S0 4 ¢ Z_l[A",A'} . Suppose (pji') 1is another splitting of
the sequence; then p' = 5 + yp , i' = 1 - iy for some protq;
 morphism y:A" 5 A" of degfée zero. Conversely, (P+yp,i-iy)
is a splitting for all protomorphisms y:A" - A' of degree
. zero; the deviation of this Splitting is
¢' = (p+yp)(DIi-iDy) = 6 - Dy . . We shall call

A=1[¢) e H [a",a'] the deviation class of the seguence;

it has the following properties réadily deduced from the above:
(a) 4 is independent of the splitting of the pses ;
(b) if &' € 4 then there is a'Spiit£ihg of the pses
with J' as its deviation; '
(¢} 4 = 0 if and only if the sequence comes from a dinect
sum situsation in ZOJQ’.

I aﬁ¥ is a graded catehory thenm 4 = 0 so all pses insf%

come from direct sum situations.

A DG-catégory ng will be said to have the extension ax}omfi
if the following condition is satisfied: o
EA. for any morphism ¢:A" - A' of degree -1 there exists

a 7pses A'w~*£ A“—*R A" ‘in.gég with deviation clas§.[§].




EXANMPLES
(a) If & is an adaitive category, the pses in Coll
are, to within isomorphism, sequences AL A B v

where A = A' @ A" , with differential of A given by the

AL g

0 dA”> for some & € z_,[a";a'] , and with

i= (é) , p = (0,1) . Then ((1,0),(&’)) is a splitting with
deviation ¢ ; and so the deviation class is [d‘]'. Ir o@l
-has finite direct sums then Co@ has the extengion axiom,

(b) The sequence R Gy W Jﬁr’o is a pses
with deviation class A if and only if A3 A-B v inu&(
1ls a pses with deviation class -4 ; for
- i#(Dp)* = (Dp)ei = -p.DI . IF c}Q( has the extension axiom then

50 does J‘{W . _ (p

20
(c) The sequence (a',B' )( 1,3) (AvB) (A",B") in

A@&% is pses with deviation class (A,I’) if and only if

a3 A B A, B! 4 g 9 B%" in uéc, ﬁ: resPe'ctively are

Ps es .with deviation classes A,T respectively., Ir ﬂQ( R {Ea
have the extension axiom then go does A@ %

(d) Suppose a:A B E ¢ is a sequence in PsesJ@

. 9 H
3 a % av,

s i 11
B 4 B % B, o L oo % oo oinA, i= (i',1,1i"),

p = (p'spsp") are morphisms of P sesJﬁ’.. Let Z'Ev{ s K K"

where 4, B, C are the pses A'

-' ' -

denote the sequences A' 2 B 3 o s A 5 8 8 ¢ ]
)

At i, g P_> on 1nuA( Clearly if o 1is a pses in

Pses A with deviation class [61,6,6"] then K',K,K" are
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care pses in A with deviation classes [&'],[¢],[6"]

respectively. The following converse is also true,

FEroposition 1. If o (as above) is & sequence in

Ps;esGﬁ% such that K',KY are pses in Jg'wwith splittings

(ﬁ?,i'),(ﬁ”,i”) respectively, then there exists a splitting

(p,I) of K .such that ((5',p,0"),(1',1,1")) is a splitting
of o

Proof. At the proto-level we may suppose A = A' & 4",
() 4o an (90,
1

5

B=B'® B ¢c=¢" @cn, SO< A befjmes Al

it r D g
0 in/s P =\, o for some

f28 such that p'f + gi" = 0. Let h=-H'gf" , k = ~1'gi" ,

similarly B, C. Then i =

i
i
=

. o /P! h 1! k w
and put p = KO s/ s i= o 1w/ « Then we have

SP'f+ hi" =0, p'k 4+ gi" = 0 > ith+ £p" + I'g + kp" = 0,
so (p,i) is a splitting of X . Morecover, (3',5,p") ,
(i'gi,i") are protomorphisms of degree gzero in PESGSQﬁ}g

and so provide a splitting of o . //

Suppose T:cﬁkad% - 1s a DG~-funetor and A' 3 £ Al

 is & sequence in L#*\With splitting (p,iI) and deviation g
corresponding to this splitting, Then Tp.Ti = l', Tp,Ti = 1 ,
CTL.TP + Ti.TH = 1 and T.DTI = TH.TDI = T(5.DI) = 16 . so
(Tp,Ti) is a splitting of the sequence TA' L opy T TAY

in 8 with deviation T¢ . Tn other words, DG-functors

breserve. pses , their splittings, and their deviation classes,

i ; ; .
Theorem 2. Suppose Ara' 54 B e Pses¢¢¥ with

deviation class [&] and B :B! 4 5  pre Seqaﬂf such
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that the seguence

[1;31 .[19Q] $'
0 [ A",B' ] [47,B] > [A7,B"] - O ‘

is exact with I:H[A",B"] - H[A",B'] the connecting map of

the exact gqmglqgjuﬁriapgle.

.Then:

{2)" the sequence

o ol 5oqan $anEle[anE] -0

- ig_ exact, where wu(h) = {0,3ihp,0)  and  v(£',f,fY) = (£1,£") ;

(b) if £'oe Z [4',B'] , £ ¢ 7 [A",B"] then the-

| ekistence of 'f such that (f',f,£") ¢ 2z [4,B] is equivalent

“to the_condition_n

T[]y = (D) eT L

. , v 1
_ Proof. ‘Let A',A" denote the sequences A" i A' 5 0,
1 T (19150) (Oppsl) Al
‘0., -A" L A". respectively. - Then . A’ A e

is a pses in Pses}f% ami,Lguglé'pﬁng,LNUBJELNUB]u

_But- [~,B] preserves pses ,. So the sequence

. . . |
Q“*ﬁAﬂ’B]fli* [§9§iji* [a',B'] =0 . .

“ig.exact, where uw' (k) = (0,kp,gk) .and v '(£!,f,£") = £' .

It follows-that the rows and columns of the~commutative-diag;amﬁ~

] - !
DA £ S R F 9 | g

0 —3[A%,B'] ——> [AB']——> [AlL,B'}—>0
(1,31 e 1

. 5 .

0 =4, 8] —2%> [4,8 ]—— [a',B']—>0
[1,q] V b d

©oL o, B] e [AM,BY s

il
J

0 0

..........;.vo

O = O
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are exact, where u"(k) = (ki,Jjk,0) and v"(f'f,f") = £" ,

vi

Since w = u'[1,3] = u'{p,1] and v = o/ ‘the result

(a) follows. The connecting map of the homology triangle

of the first row of the last disgram is [d,1], :

H(A',B'] - H[A",B'] . Thus the connectihg map of the
homology triangle of the sequence of (a) is 4 = ([§,l]$9?j;-
in evaluated form A([£"],[£"]) - P([f“])+(—l)n+l[f'§] .
where f' e Zn[A‘,B'] » £ ¢ Z [A",B"] . Let

niZ[AT,B'] @ Z[AY,B'] - H[A',B'] @ H[A",B"] be the canonical
epimorphism,r The result (b) follows from the exact |
seguence:

Z[{}??] —_-ET-J-; Z[A!’Br ] @ Z[A",B"] _éﬂ ﬂ[An’Bi] .

(see [1] Cn. IV 83 p.59) . //
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83. Complete graded categories.

_Weakly_stable and stable DG-categories are defined i;
this section; most categories with which we deal in this work
will be stable. Attention is then turned specifically to
graded categories - although most of the ensuing results
hold for ©DG-categories. Stable functors and stabie natunal
transformations are defined and each graded category is shown
to admit a canonical stable extension., The definitions of
graded adjoint and tensoféd (cotensored) graded categories
are recalled. Complete (cocomplete) graded categories are
defined and connections with cotensored (tensored) gfaded
categories are found., A fTunctor category is shown to'be co-
.complete if its range category is cocomplete; in this case

moreover, adjoints are found for the evaluation functors.

The DG-category oA will be called weakly stable if

there exist:
L. = "Suspension" functor L:dA’a‘f%' with a left
and right inverse to within isomorphism (that is, there

-1z 1,2 1); and

exists L-T such that LL 1, L™
L2, a natural isomorphism 1:1 51 of degree 1 .

- Weakly stable DG-categories are those in which each objeat
has an isomorph of any given degree. .The pair (L,7 ) is
eséentially unique; if (IL,7) also satisfies L1, L2 then
there exists a natural isomorphism @:L - L {(namely f?Z?l)
such that 7 = 6] . The symbols L,7 will be used in all

weakly stable categories.




14
The DG—_category Jﬂ( will be called stable if it is
weakly stable and if there is some choice of the pair
(L, 7) such that I has an inverse (that is a functor

-1 1 1

L with ILL ~ =1 and L 7L = 1).

EXAMPLES.
(a) For any additive category g&. , the DG-category
cd  is stable. The suspension functor E:CH cR
is defined by: ' '
(i) LA is the complex with

LA A
(LA)n = A 4 end 477 = a7

(i1) the chain map L:[A,B] - [LA,LB] evaluated at

f = (fr) e [4,B], 1is given by:
n
(Lf)r = (=~1) f.1 .

The inverse L"':L is given on objects by:
~1 _ L A A
(L77A) = A  ; and d = -a” .

The natural isomorphism Z:l - L of degree 1 is given

L ip € [A,5(La), 1] = [A,4] is 1, - If & nas

zero differential then so does LA ; it follows that G&

[ 13

by

is also stable.

(t) 1r A, B are weakly stable [respectively stable}

then so are HJS\’,‘A—* s .:,é{ @@ and [j‘f{,(}é}f 1; the pairg
(L,7) are given (in obvious notation) by (HL,HZ ), "

(L#,72%),(L @ L, {®@l),{,L],[1,2]) respectively.
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Suppose o£¥ is a weakly stable DG-category., For any

Object A and integer m we write L™ for ILL...LA

(m applications of L) when m > 0 and for L_lL—l.e.L?lA
(-m applications of 'L_l) when m < O.. The isomorphisms
1 1

I™L21, L7 21 and 1:1 o1 give, for each integerp
m , a natural isomorphism ] :1 - L™ of degree m .

" Thus there is a natural isomorphism:
(278,170 504 2 27 a,00 54 .

The remainder of this section desls only with graded
categories; all script letters will be understocd to denote
graded categories,

Ir ()Q', 0% are sitable a functor T:A aﬁ vfill be
called stable if TL = LT and T/ = T . If S,T:H4 -f
are stable functors, a natural transformation o:T - S of
degree n will be called stable if dL ¥ Lo« Let
[&Q‘, (B]L -denote the sub-graded-"category" of - [A,;B] with
objects the stable functors and morphisms of degree n the
natural transformations of degree ﬁ . |

Let cﬁQL denote the stable graded category defined as
follows:

(i} the class of objects of (%%L is the disjoint uniqn
of copies of the class of objects of éa(, one copy for .
- €ach integer -~ let the object in the m-th copy corre-

sponding to A be denoted by L H

(11) [17a, P4 ; 4P = 14,008,
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PP . 41} n
(iii) the composite of f ¢ [L A,L A']qx [A,A’]Q+m_n
n L P 57 — 1 ] . 3 .
and g e |LTA', LA ]r = [&',A ]Hn__p is just gf
1" — m P
€ (4,4 ]q.+r+m—p = [L7A,L An]q-f-r .

A may be regarded as a full sub-graded-category of (/éfL -
by identifying A and 1°a .

Now we shall show that JQL is stable. Define
E c-}&\'L - 94:9 on objects by LmA - Lm+lA . For

m+1

m n
¢ [LA,L A']q = [A*A}]quwn s LT ¢ [T A, Ly ]

= [A,A'JQ+m_n is defined to be the element (-1)%fr ,

Clearly L is a functor with inverse L_l- given by
Hi=
LA e L *4 on objects. Let 7, € (L, m+lA]l
= [A,A]O be the identity of A . It is readily checked

that 7 = ) 1= L is a natural isomorphism of degree 1.

B o Theorem 3., If ﬁ is_stable then restriction gives éan

isomorphism:

[ A" B), = 1A4.8]

of graded categories (the restriction functor has an inve_;c'se).

Proof. For each functor T:A -*@ “define
TL:,-}%(L —-> by:
(1) ™A = 1P
(11) af £ e [17a,17a']  then The = Mo, P e

[1%7a, 1™ TA’]q )

) L . ’
Clearly s a functor and TLL LT™ on objects; but

glso, if f is as in (ii), we have:




LT -
So TL is
For ea
define aL
L

n( 2%, 17
(-1)27. ¢ "re. 7™ 77 (by naturality of ] )
(-1)¢ Zn+1. £, 7 -(m+1)

7™t e, 7 ()

Lr |

stable.

ch natural transformation o:T - 8§ of degree

= (U™ e, 7T e [1M7a,1%4], -

Then, for £ as in (ii), we have:

L L : nr,n -n g0 -~m
aLnA!"T f = ("'l) Z oCCAI°Z |Z qucZ )
nr o, n ' -m
= (-1 7 Va0 TR ]
= (-1)T(Q+m'n)(-1)nrf:“.Sf.aA.2 -
(by the naturslity of o)
= (<177 se, 77 (1™ M, 1T
- (_1)rqSLf. O‘Lm .
LA
Thus aL = (aLm )ZTL - SL is a natural transformation of
LA
--degree 1r ., Moreover, we have:
L L
4 = O
LLmA Lm+1A

_ r , b+l ~{m+1)
_ (_1)m+ r Z + °aAf Z i+

Il

il

e

_(_l)l" 2 .aimAa Z -1

(by the naturality of 7 ).
A

17

r
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So aL is stable. If T = =1 80 that r =0,

5, «
then o = 1; also (6&)L 6LaL . Thus we have an

"extension" functor T o TL; o aL which is clearly a
left inverse to restriction; using the fact that Q is a
natural transformation of degree 1 it is also readily
checked that ¥~ = F » yL =y for stable F, vy . 8o ex-

tension and restriction are mutually inverse isomorphisms,//

The graded functor S: B @O _wé\r will be called &
‘graded ad301nt of the graded functor T ¥ x Qabﬁk ﬁg if

there is a natural isomorphisms
[5(B,0),4;4] = [B,7(C,4); B 1;

we shall write SuqlT . Graded adjoints are unique to
within natural isomorphisms.

- We do not distinguish between 2{ and the graded group

with Z in degree zero and O 1in other degrees. Denote by

3%; the category with one object 1 and {1,1; ;é 1= zzg
For any graded category pﬁ¢ we do not distinguish between
L£$ and oﬁ%@

Taking ég/; ?io in the definition of graded adjoint
gives an important special case. . _

ifr Hoqu oﬂ* @Lﬁk - G%%- has a graded adjoint then we
shall say Jé( is tensored; we shall write Ten& G‘%’Q(}cﬂg(r‘%oé(
for the graded adjoint and put Tenua(XiAJ =X @A,
Tenm?(x,f) =x®7f . We shall Say'aﬁk is cotensored if

(ﬁ&* is tensored.




. 19
For any graded category ¢ﬁ¥ we shall write @ﬁ%b for

the additive category with the same objects as oﬁ% and
morphisms the morphisms of oé%’of degree zero,

1r 7: KA is an additive functor then we shall |
. denote the limit of T (if it exists) by a pair (M,u)
where M ecﬁ% and 4 1is a family (“K)Kejz of morphisms
pp € [M,TK; &7 . A graded functor T: A sed  is essentially
“an additive functor T: \f{ @ﬁ% if; j{ﬂ is additive; by g
1imit of T: A A will ve meant a limit or T:F( - yé}“ ;

dually for colimits.

Theorem L. Suppose we have the following:

(a) =2 small additive category Jf ;

(b) a2 _weakly stable graded catepory J4’;
(¢) a functor T:H o with 1imit (M,u) ;

(d) an obgec A of u¢$
Then ([A,M],{1,4]) is the limit of [A,T 13 f{ - G%

Proof, Let u,: L5 ‘A Dbe an 1somorphlsm of degrea

- N “in : C T = -

r fo?_each integer <r . Buppose h,v (VK)KG}? are
such that all diagrams:

_ K [A,TK]
™~ \Hv;_% L1,7x]

. [A,TK']

ccommute in U&%f)d; clearly [A,M],[1,y] satisfy this
condition, Take x € N, , then vK(x):A.% TK is of degree
r , and L A - TK given by yK(X) - ou, is of degree zero.

Since vK,(x).uP = Tk.vK(x).ur we obtain a unique map
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£(x):LA -~ M such that vK('x) = uK.f(x),u;}'. Define
2N - [A,M] by g(x) = f(x).u;]“ . Then g 1is unique

such that the diagrams:

. vK

g | /[l,#KJ

[A,M]

commuate., The result follows. //

~Theorem 5. A tensored graded category is weakly st%ple.

Proof. Suppose A is tensored. Put L =L & - s

1t - L_lZ ® =- 3 and take iA e [ALHZ ® Al

. b : ]
= [ Z® ALZ®& A]; to be ZZ@)]_A_. Then 1L L =

Y

L7 o WZ&-) = (U «LZ)@-2Z @-=1, and
i = (1 A) is a natural isomorphism of degree 1 . //

A will be called complete [finitely complete] if

'dﬁgfo is complete [finitely complete] and A is weakly
stable. Dually define cocomplete (as we saw earlier d‘fé'

is weakly stable if and only if .»,;4* is).

,Thecﬁr;em 6. A cocomplete gfaded catégory is te_nsoredg.,
Proof. Suppose c.)ﬁ‘ is a cocomplete graded. categor'y.:}'
Then cﬂ¢o is a cocomplete additive category and so
tensored. For X € G%, s A EA’ define
X@A-= I*?ZXr ® LA where ® and £ on the right pertain

to gﬁ\'o .« But then we have isomorphisms:
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(Rp (858154 nidy)

(X5 [L78,17 2" ;AJO;% )

(X (154,17 ! ; a_ﬁfo) ;fgf)

[X,[4,A" ;A];G%,]n

[k !
RN L |

It
By

(X, @ LA, 17" ;A )

2
M

e

(2 X, @ 8, 177" 5A4)

b

(X @4 T4 ;A]o

i

[X & Ay Al 3;1&(111 ’
giving an isomorphism:
[x,[a,a";A40; ij; 1z [X@A At A
natural in A' . By the general theory of adjunction
~ (¢ - may be defined on morp._hislms of any degree uniquely

in such a way that we obtain a functor TenA:G%f @A(—)

. with Ten (X,A) = X% A and the above isomorphism is

natural in X,A,A' . So A is tensored.‘//

Theorem 7. If # ZLS small and A is cocomplete

[finitely cocompletel then [}'Lwé(] is cocomplete [f‘lnltely

coco_plete] and collm:l.ts are formed evaluationwise.

Proof. Suppose % is an addltlve category and
has %«colimits and is weakly stable. We show that each ©
functor T:%-e [jﬂ/’,j%“] has a colimit. For each H ‘_e#
select a colimit (MH,LL_’H) of E T..JZ{—WQ( For each
f e [H H'; ﬁr{‘] all the diagrams:
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' ! f
(TK)H ——KM (TK)H‘ ﬁ{_!.li_._‘; MH'

_(i‘k)H l (Tk)H,J /{H'

(TK* YH M)—fa (TK",)H'

commute. Since  (MH,pu H) is a colimit the dual of
Theorem 4 gives the existence of a unigue Mf e[MH,MH';Jan

such that the disgrams:

H
(TK)H SRS Y: PUY

(TK) £ l l Mf

Fy
(TRK)H'—=2=> MH'
commute, ¥From the uniqueness it follows that M:f{-Aaﬁ% is
a functor and from the commutativity it follows that
Hge _*TK > M is a natural transformation. We show that
3
(M,¢) , where u = (B _) » is the colimit of T . The
I ‘
- commuting condition holds since it holds on evaluation at
. % o - : ;
each H . Suppose {TK —<> N|K ¢ ] satisries the
commuting condition. Evaluating at H we obtain a family
satisfying the commuting condition for a colimit of E,T f
So there exists a unique &y € [MH,NH]  such that the
triangles:
Px,H
(TK)H -———=2=3 MH

MMH

NH

all commute. The proof is completed on showing that

x = (@H)SM -+ N is a natural transformation. But for

£ € [H,H']n we have:
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Nfa = Nf.v (definition of aH)

H#K, B K,H

vK’H,,(TK)f (naturality of vK)

= aH,.#K,H,.(TK)f {(definition of aﬂj)

= - * i i i i M .
Qpyr o ME ER,H (definition of Nf)
Since (MH,u_ H) is a colimit the dual of Theorem U
3
gives~-Nf.aH = aH.-Mf; 50 o 1is natursl.
We have already seen that [j¥ ,ﬁ@] is weakly stable

if JQ’ iS-//

Theoprem 8., If }% is_small then there is a natural

isomorphism: _
([, 51 Lo, s ML I el )] 2 [a,mmdd .

Proof, Define F:[[H,—];[A,F—]) - [AgFH] by

r(a) =oay(l,) « That I is natural is trivial, For
f €.[A,FH}n' define Qn(f)ﬂ,;[HgH'] = [AyFH'] of Qegree n
tdZ%he composite: |

(H,H'] -—E‘%'[FH,FH']Lﬁi;l?[A¢FH'] .
- Then -Qn(f)-:—(Qn(f)H{):[Hg-] - [A,F~]" 18 a natural trans-
Tormation of degree =n . So we have
f:{a,mH] - [ H,-1,04,7~ 1L Moreover
ann(f) = Qn(f)H(lﬁ) = {f,1].F1 = f s0i'%® =1 ; and for

G as gbove and h € [H,H'}m, the degree n naturality

of @ gives aH*(h) = GH'.[l,h] f(lH)

i

(-1)"11, Fnl.a (1))

H

(-1)™{1,Fnl.0_(a)
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= [Fn(Oﬂ)sl]'Fh

i

o (r(a)g: (B)

80 SEF:ln//

- 4 ‘ f .
the evaluation functor EH:[ﬁf,JQ]-+&Q s where H €f¥ s

has an adjoint JH:JQA-[ﬁq ,JQJ whose value on the object
A eoﬁ& is given by: :
(1)  (JgA)E' = [B,E'] @A for H'ef ;

(D pa(a 5] - [, 1@ 4, [LE] @ A] is the

msp corresponding, under the itensor adjunction, to the map

((g',5"] ® [H,H']) @ & ~ [H,E"] ® A induced by compositibn
w | ":

Eroof., By Theorem 6, d4’ is tensored, 8O JHA‘ as in
the theorem is defined, Then the followlng isomorphism are
natural in ¥ @ .

[T8,F] = [[Hi=] ® A LF]

Il
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{[H,~1,[4,F-]] (from the tensor ad junction) o

1t

[A,¥H2] (by Theorem 8)0//

A graded category 5? will be called a graded model if:
GMl, it is small; '
GM2, for all objects X,Y, either [X,Y] = O or

n(X,fEZi for some integer n(X,Y);

XY} = L
GM3. for [X,Y],[Y,21,[X,2] # O composition
[v,2] @[%,¥Y] - [X,2] is zero unless n(X,2) =

n{%,Y) + n(Y,2) in which case it is given by
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L& lesl from ZFZ@Z to 7Z in dimension -n(X,Z).
In a graded model we shall write X - Y for the distinguishe..
map 1 € 7/ = [X’Y]-n(x 'Y) ir [x,Y] £#0; ir [X,Y] =0
. ? F al
then X —» Y will denote the zero mgp. I G:j eg i_s
a graded functor we shall write GX -» GY for &{X - Y) .~

Theorem 10, If ﬁ is_a graded model and is

o=t e o ot e

stable then the evaluation functor Exz[jt ,zg] - ﬁ s where

e

X ejL s has an adjoint _J_”X:g—> [ ,ﬁ 1 whose value on -

the object B € @ is giwven by:

G (,BY=1"8 i [x,¥] #0,

= 0O otherwise;

(ii) (JXB)Y - (JXB)Y‘ is the isomorphism

1m
L1 T™ PR of degree n if
[XgY]m,[Y,Y'}n,[XQY‘]m+n # 0 , it is zero otherwise,

proof. Define TI:lg.B,cl » [B,ex]l vy T (o) = ap .
Clearly I is natural in G . For f ¢ [B,cx], define
(2 £}y to be zero if [X,¥] = 0 and (~1)™ times the
composite (JXB)Y :.LmB‘ﬁz;m B-5 gx—say if [X;Y]m £ 0.
Then an:JXB - G 1is natural of degree n . So we have

R:[B,6x] -~ [J.B,6] . It is simply checked that I' ,® are

X
mutually inverse isomorphisms.//




P3)

8i,. Abelian graded categories.

The purpose of this section is to define abelian graded
categories and show that the familiar homological algebra
may be done in them. Exactness, projectivity and graded
groups Extn[B,B‘] are defined for an abelian graded
category. A graded functor category is shown to be abelian
if the range category is; if the rangé category iS"moreovér
cocomplete and projectively perfect then the funetor category
:is,showﬁ to. be also, and the nature.of.the.projectives is
-..g8lven... In particular we look at the funetor category-oﬁwj
triangles. over a graded category. -

- A graded category ﬁg“'willube called gbelisn if it iﬁl
”finitely'cgmplete and eocomplete,. every monomorphism is a';
- kernel and every epimorphism is a cokernel..;So-ég--is
.abelian if and only if 439 is abeliaﬁ and 68-‘is.weakly
stable... -

Suppose 58_ is abelian., A seguence B' ﬁ+ B &, B ;n
'd?_,.where degf = degg n, will be called gxact if ghe
ﬁ;sequenoe.-L B' s Z B-_m_—g L™ P is exact in é?o . An 

objeet P will be ealled projective in. é% Af it is pro—‘

. jeetive in ég . 'From the isomorphisms [P,L'B'] 2

L [P,B_l.,[P,L DB*"] £ 17 ®,B"] we see that T, B2, Bt
~exact in and ' P 'projective in % .impiy that the
sequence [P,B' ]m———a-[P B]-Eii%la[P B"] .is exact in Gé} .
For . B, B' € i%,, the graded abelian group Ext [B B'; &% J

_is defined by: .
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n . Zg B n -, ﬁ
Ext {B,B"; f g, = Bxt(B,L7 B'; O),

It 1s readily checked that exactness of the sequence

0 - B! £ B § B+ 0 in ﬁg with degf_m,degg:n

Jimplies exactness of a long sequence:

Ext[g,1] r gxt{f,1]
»oa — BXE [B” Cl] ——s Ext [B,C] —————
Extf{g,1]

Ext [B',0] 2, mxt™ Ev,0] 5 ...

in Gij s natural in such short exact sequences and in G s
&

where deg Ext{g;1] = +n , deg Ext[f,1] = +m and

Theorem 1l. If (,EQ is an abelian category themnG@

igs an agbelian graded category, P € G@ is projective if

and only if each PP is projective in OEQ , and if each

Br has a projective resolution in o@’ then:

Ext [B,B';6R1 = I mxt (BBl i) - /)

Theorem 12, If is a small graded category and £

- is an sbelian graded category then [ﬁ[ ,5] is an abelian

graded category with the sequence F' - F — F' exact if

and only if the seguences F'H —» FH —» #'H gre exact in éf

for a1l H ¢ J .

Proof. By Theorem 7 and its dual [H,HB] is
finitely complete and cocomplete. Suppose o:F' - F is s
monomorphism; then ker o = 0 , so, by Theorem T

ker ocH = 0 , so Oy is a monomorphism. Let pB:F - F' be
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the cokernel of o in [ﬁf,d@], then a. = ker(coker BH) |
since By = coker O by Theorem 5 and every monomorphism:
in f’B is the kernel of its cokernel. So by Theorem 5 |
again, a = ker(coker B) . So every monomorphism is co-
normal, and dually every epimorphism is normal. The exaci_é-—
ness clause follows from Theorem 5 and the definition of :

exacthess in a graded agbelian category. //

A graded abelian category &3 will be called projecti_vely

perfect if BO is projectively perfect (= has enough pros

Jectives). A projective resolution of an object of 68 Will

mean a projective resolution of it in /,80 .

is g cocomplete projectively perfect gbelian graded categpry

then [ﬂ,t@] is-a cocomplete projectively perfect abelian

graded categof,y, ‘The projectives of [ﬁ,g] are the

objects of the form X JHP(H) , where P(H) 1is projectj;ve
He#
in {B s and their retracts.

Proof. ' We apply Theorem 3.1 of [5] Ch.II 83 p 17 to

Tg —— EH:([,?{,B]OJSO), H e,ﬁ/; the fami%y
{JH}, H eﬁ being cointegrable by Theorem 7; the ‘a—djunc_‘i_‘zions
existing by Theorem 9, By Theorem 12 the class }E# is the
class of exact sequences of [ﬂ,ég]o ; and the statement;

that this is a projective class is exactly the statement that
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[wgf, 5] is projectively perfect; moreover the projectives

of [ﬂ ﬁ] are as stated, by the theorem of [5]. “ 1/

of .objects and Qﬁ is a projectively perfect stable abellan

graded category then [55 ﬁ 1 is projectively perfect.

The projectives of [f ,ﬁ] - are _the objects of the form "

%?XP(X) , where P(X) 4is projective in ﬁ% , and their
Xe ] —_—
retractsn .
. Proof. Again we apply the theorem of [5]Ch.II 83 v 17
4
'EO JX W—{EK . d

has a finite class of objects so {JX}
is cointegrable since [j,ﬁ] is finitely coc‘omplete. The

£ -

adjunctions exist this time by Theorem lO.//

Let denote the graded model with three objects

©3

X',%,X%, and [ X',x]=[%,x"]=L[x",x17 = [X',XT =

%,x1= [x",x"] =Z , [x',x"] = [X,X'] = [X",X] = 0.
Ir ﬁj is a graded category then Wé. will denote the

graded category | j 5] by Tgl 63 An object of

Tgl @ is a trlanfrle,

"O‘; bt b

g : B —— B ——s B! - —— B

in 6 where deg b = -1, deg b' = deg " = 0 and
b"b = b'B" = bb' = 0., If V: C‘ﬂ'G$ c °—c' ig
another triangle, then a morphism g -~y of degree n ig
a triple (¢',f,f") of morphisms f':B' - C', £f:B *>C ,

f'eB" 2 C" of degree n such that
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those triangles x:X'—> X _“—E-

30
P = £, e'f = £%b' and ef" = (-1) f'b .

The evaluation functors E!' = B E = E , B" = R

X“F .X; X“
have adjoints J° = Jyrs J = Tys J" = in, given by:
' 1
JB:B—eow-us B 00— B
JB 3 O———)B‘-—%l B— 0
—1

g8 :L s L 05 BLL 17YB

~
when fo is stable. .
i ? '

If -’B ig abelian a trianle 6:B’#--:[-)~> B LW B"—-—B ‘B’

€ Tgl M will be called exact over @ when the sequence

bw ‘b! it . ’
B'-—"»s B -, B¢ b~ B! b—> B is exact in 6@.

Theorem 15, If (B is stable abelian snd projectively

perfect then so is ng_(% . ‘The projectives in Tgl&\) a?e
? :
> XM -3 %' guch that:

(a) x is_exact;

(b)) X',X,X" are projective; and

(e) ~one (and hence all) of ker x', ker(Jx), ker x*

is projective,

Ir 633 has finite projective dimension then (c) may be

relaxed.
Proof. By Theorem 14 the projectives are retracts of '
objects of the form J'P@® JQ ® J'R with P,Q,R projective;

but such objccts are isomorphic to objects of this form. -So
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if  x 1s projective then (a),(b),(c) are satisfied.
SBuppose x satisfies (a),(b),(c). ILet P = ker x' ,
Q = ker(Zx) s R =ker x" . From the exact sequences:

0 —+L_1R X' 5P o0

0 - P » X -+ @ - 0
c - G =X X% - R 50

and (b) we obtain isomorphisms X' = L—lRfﬁ P,

~

X2P@®Q, X" 2 0@ R under which the three exact

sequences above become:

&) (0,1)

0
1R--—->L RP —- P00, &c.

o O

Thus x',x,x" become the composites:
-1

: 1
(0,1) () 0,1 7 4 Q)
P& Q— Q— QO R, ®R — RZ— L R— L R®@ P,

1
L on b |
R& P —= P—P®@®Q respectively. S0

.
x=J'P@® Jg @ J'R  and hence is projective., To prove the
- last sentence of the theorem, take x, P, @, R as before
except for condition (c) . Then the sequence:

05 Ro X' » X o X o LX' o v0w o L™ & LK - LY

1™t R L0

is exact. Choose n such that 3n is greater than the
projective dimension of &%o . By the theorem of [14] Ch,VIT

86 p 181, the projective dimension of R

R being <« 3n
and all the L'X', L'X, L'X" Tbeing projective implies R

rojective.
proJ //



Remark. The foregoing results all hold when we replace

f
abelian categories by additive categories with finite limits
and colimits, and a projective class of objects (see [ 5]

Ch.I 82 p5).
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85. Triangulated graded categories.

In this section we define Verdier triangulated gradie__‘d.
categories and list some of their properties. The protof;
split exact sequences of a weakly stable DG-category a]g:{“
which has the extension sxiom are shown to give a Verdie}g
triangulation on HQ‘E’}.

Suppose (;4' is a weakly stable graded category. A .
class 9 of objects of Tglcﬁl’ will be called a Iriangu-
lation of 0&4; ifs “

70, all isomorphs in Tgl,,ﬁ’ Of_ cbjects in 57 are also
in g . |

The triangulation <7 will be called a Puppe trisngulation

if the following axioms are satisfied:

T1. if Ac—:c}g( then 0o Savocd ;

T2, ir A'-E5 A2, a8 oate c/ then so does
A2 Av_ 8 %1 A

T3,  if: a'e [A,A"",ﬁ%’] then there exists
PRI U A'e<7

o T T IO S S W U B CR LA N e < S ed
and f € [A’G;“A]m’ e [A”,C"';A}m are such that
£, a" = ¢'.f then there exists f'e [A',G‘;ayf}}m
such that (£',f,f") is a morphism of TglAy of

degree m. . _
Sometimes we shgll regard a triangulatiocon 57 as b@:_ing

a full sub-graded—-category of TglA".



Theorem 16 (Puppe). Suppose o/ is & Puppe triangu-

SIS mo o ms o

(a) ¢ a'85 4 8 4 % ae T oana o o4 then
(0,81 2o, e Jre, a2l 10,00 ana
[AY, C][a ’1]>[A.O]Lf_iW;[A‘ C][a 1] {A",C] are exact

triangles over G,g;.

(b) If (f£',7,F") is a map‘_ofc/ and any two of

£',0,f" are isomorphisms, then so is the third.

(c) (7 ig closed under finite direct sums in Tgl_u’@’-;

(@) If /7' is snother Puppe triangulstion of & with

. |
T'cJ  then 7' =

13 % ':
(e) Ir AP, a8, w8& At o/ then A' =0 is

equivalent to a' being an isomorphism.

i 1 | . j 5
(£) 1£ a2 -2 a2, A"€C_7 then there exist

H . a
=y

S
a aﬁ‘

A':A > A', 3¥:A" < A such that A > is &
direct sum situstion in Jﬁ%

Proof. {a) Suppose o—L5 am -85 p' is zero. By T,

0 =C N C -0 €c'7 . By T4 there exists g:C = A suc%a
that f.l = a'.g. So the first triangle of (a) in G% is
exact at [C,A%"] . Using T3 we obtain exactness at [C‘éﬁ_]
and [C,A'] . A similar argument gives exactness of the
gsecond triangle.

(b) By T35 it suffices to prove £',T% isbm

morphisms implies f is. Taking [C,-] of the diagram:
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VR SR B WL S A Y
L7hen £ £ Lt Le!
\J/ f i i
! i
- Pl W hd
L-lc" Cz;,gt C;\C__“gécn_.i-_;’m‘ ,

using (a), and applying the "five lemma%, we deduce that
[1,£]}:{C,A] - [C,C] dis an isomorphism of some degree and

a fortiori surjective, so fg = 1 for some g ,. Taking
[-sA] we similarly deduce hf =1 for some h . So f 1is
an isomorphism.

o £ a

(c¢) suppose A' 2, o B, oav_%, A,

' i t ' .
ot WS, c -, C“f—E—> ol ey have a direct sum in Tg,lr_lA’ .

Then we have a' @ ¢':AH C - A" @G C" , - and so by T3 there
. t 1
exists a trisngle B o A@ C 2. Fe AT® C' - B €C7 . By

T4 there exist f,g such that the following diagram

commutes: Al al" A a' WY
£ (3) &) £
v \ al@cv \f
B > A dE G :«A"@C”M—m—}vﬁ
& N
g (g) ’(f) 1 g
o C”_;‘ ot : C” o h.C,

This means we have a commutative diagram-

W 1 t
aleot—28C hon 21BC | angon B0 pige

(f,g) ! 1 i 1 i (£,2)

B s Af}_gc

. A”\{éC"_ =B

a'Ge’

Observe that in the proof of (b) we needsdonly that the
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triangles should have the properties in the conclusion of
(a), Thus (f,g) is an isomorphism. The result foliows
by TO,
| (d) Suppose A4 2 A al, AV s A e/ . By TB
for 7' there exists
| ot a2 %o JeT my

for {;7 there exists f' such that (£',1,1) is a map

from the first triangle to the second. Then, by (b), £

is an isomorphism. So by TO for 5?’ s the triangle

,  al a' a

AN A S A oAl

is in 0/ ',

(e) If A' =0 then, by (a), [.C,a'},[a',C]; " are igo-
morphisms for all € ; so a' is an isomorphism. Convefsely9
suppose a' 1s an isomorphism then, by (a),

[CsA'] = [A',C] = 0 for all C; so A' =0,

(f) By (a), for all C , the seguence:

vy (127} [1,a] .
0 Sfcat] 2 e, a1t 2R 0,8y o O
ig exact. Taking C = A" gives [A",a'] surjective, a@d
80 there exists a" such that a'a" = 1 . Then

[A,2"](1-8"a") = 0 , and taking C = A we find &' such
that al?a! = 1 - aflal . Then [A‘,a”](l—é'a“) - (l—a”é[')'a”

-

= a'a'a" = A", 0 = 0 . Taking € = A' we thus have

l-é'a”:O.//
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A triangulation 57' of a£¥ will be called a Verdier

triangulgtion if it is a Puppe triangulation satisfying the
further "octohedral sxiom¥:

Th. in the disgram:

‘ ST 1
excluding the dotted maps, if A' T a2, ae At
H el th o 1t ! d —7 :
. A.-«-—(E-——> C s O C—)- A, Af m—ci-«a-—)- C .Sj-.-n-—)- D.—5 A 6&

then there exist f,g as shown such that

t —
AM m—fm-) Dﬁ-u_mg.-) cH ‘—a-—(—}—-)- A e(_// and d.f = a, gd'

i
[&]

fa' = d'c", cg = a"d .
The octohedral axiom appearing in [6] Ch.I Bl p 21

dees not reguire ra' = d'c" ; cg = a®d .

(f a L3
Theorem 17. Suppose Oﬂ+ is a DG-category which is

Aor

weakly stable and has the extension axiom. Let g/f be t%@

class of isomorphsg in Tngdé‘ of triangles




38

il !
1 a a a
A ——— A ey A"'___.....-)

At over H/ s+ such that there

exists a pses A __j__, A_:_p._, A" in A with deviation

class a gnd [i] = a", {p] = a' . Then (/ is a Verdier

trianguiation of H A .

Proof., Axiom TO is satisfied. Each O 5 A' }> Al

is a pses in Ji’, 50 Tl is satisfied. We now prove
TZ2. Suppose A' oA Buav s pses in‘-}’g%' with
splitting (p,1) giving deviation ¢ . Then

i. Z"l € Z_l[LA’,A] and so by the extensio-n axiom there
exists a pses A _ia B -4, 1A' with splitting (3,3)

giving deviation 1. Z_l . We seek an homotopy equivalence

f such that the diagram:

i 1.6 Li
Alg=> A g __f_’_ p—— _fifx" ~ PLA T :LJ?
1 11 £l -1 -1
M ) ¥ i N
A' A 4_~_.__XB;E:_ = =TA' » LA
g d

(excluding the dotted maps) is commutative to within
homotopy (i.e. induces a commutative diagram in Hcg@ 5

with f inducing an isomorphism). Fi’rst recall from

82 that
[ . ~ N . Y, "'l
Bl = l.d‘ 9 DJ = J“_l"l ?
" ~ . -1
Dp = <d.p 5 qul.z e Q o
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Df = 3,0 - DI.L8
= jié - 31 77N
= 0 ;

qf = -174;

fp = jip - J {6p

. . =14 . ~ -
(-1 7777 B)+ 57.08
i+ 3Z.0p -D3.7 D
j-0(3lp)

It remains to show that £ 1is an homotopy equivalence.

Let g = pa_ + Then

Dg = p.Dg
= ~pi Z—lq
= 0

gf = pa(ii-37¢)
= p3
=1

fg =1 p g
= (3 ~p(3{BNa
= 1-3a-D(3283) - 3{8.08
= 1-73a¢-D(3/83) + 308177
= 1 -D(J753)

Thus i——l A"ZL»:L LA' z“lA s belng isomorphic to a

triangle of o/ , is in <7 So T2 holds.
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Suppose a' ¢ [A,A";HoA] = H[A,4"] . Then

-1 _ _
7 7a'e H ,[AL 1A”]; choose ¢ ¢ 1 It , 80

§ e Z_;[AL A"} . S8ince bﬁ¥ has extensions, there exists

a pses L_lA” 2, AP La in cﬁQ’With deviation ¢
-1

% ) [ :
Tor some splitting. So L_lA“ [;l Al [pl A.Z° a,LA”657 .

Now applying T2 we seé that T3 holds., Theorem 2(b)
and T2 dmply T4 .
It remains to prove - T5 , which we shall do in the

presence off T2 . Suppose A mi+ A"mwg+ Lat o,

A—ds oS ov , 0 -5 p By 1At are pses with splittings
(p,1),(q,3),(r,k) giving deviations 6, 5 Og s 5D -
respectively, with 6, = j&, + Ds . The three triangles
of T5 come from T2 and the notation &' = [i] , |

ThIe) s e = L6 s et =4l , o = [al, @' = [K],

~1 - . . 5
d = Z [I"] . Put v = ar + gsr, and ¢ = kjp + kp-ksp .

a

il

Then Dy =0 , Dp =0 , vk = g , ¢¢i = kj , r¢ = p and

Y¢ = 0. 8o from the commutative diagram:

At 50 4 ¢
i_‘jj_ kl l|

a2 op LEN G
|
LA! s TA 30

and Proposition 1, it follows that A”«mg D ~Lsg" s a
pses in aék with devistion class [i&c] by Theorem 2(b).

Moreovwer,



i1

%
=
1

= é“c(q“f' + gsr)

1

Dg.* + Dg.sr

R

=Q.DP - G.Ds.r

= 'é_.c?D‘.r- Qe (6‘D—j§A).r
= Q. J(S‘A.,r
= 6‘Al" .

put f = [¢], g = [y} . Axiom T5 follows.
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CHAPTER 2. -~ GENERALITIES

§1, A general classificetion theorem.

Suppose A is a graded category with a Puppe trlangu-—
lation (7 (B is a stable abellan graded category, an&
T:A_;@ is a graded functor. In this se_ctl‘on we deve:‘l%pp
a type of homologicsl algebra in the category (,A’ and dex}ive
a classification theorem for the functor T , If dé}t in a
sense has enough projectives then the projectives with Whlch
we deal are shown to be those objects A with dimTA = 1

as defined in [16] .

An object X ¢ A will be called T-—pro:jectlve if TX

is projedtive in @ and the map
2 (X, 4547 - [Tx,74; 8 ]
is an isomorphism for all A sg/&T .
a” a! &

A trianglé oAy A~ pM L2 5 AT over

will be called T=simple if o EJ and the sequence

0 > Pp' — 13 Tal TA___la_, TAY = O
is exact in @
' gl a' a :
Theorem 18, If osa'—2s x-S pv B ptel/

i ?
with X Dzprojective, and y:G'——— ¢ 2o 0" =5 !

is T-simple, then any " € [A",C“]n extends to

(£',£,51") €'[a',‘)’]n . If also (g',g,f") € [a,‘y}n then

there exist s',s € [X,C':ln such that

gt - ' = g'a", g-f = cls .
Proof. Since TX is projective and Tc' is an epi-

morphism, T(f%a'):TX - TC" 1ifts to h:TX = PC with
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T(f"a') = Te'.h. Since T:[X,C] -[TX,TC] is an isomorph-

ism, h

1l

Tf for some £, and f'.a' = ¢'.f. By T4 we

obtain (f',f,f") e [a,?]n as required. :
If (£',£,0) € [o,9],, then ¢'f =0 and f'a=0 {

By Theorem 16 (a) it follows that f = c's and f' = s'a"

for some s,s8' .
é //

An object A euﬁ%' will be said to be [T-dgvelopablg
r; :
if there exists a T-simple triangle a: A'—3 X -2 4.2’

with X T-projective; o will be called a T-development

of A .

1
Suppose aiA'—2s ¥ -2

» A2 A' dis a T-developmgpf
of A . Define graded abelian groups MT[A,C], M%[A;C] Py

the exact sequence: ]
[4':Cl— Ma[a,C) - 0.,

[a,l
0 - MT{AsG]""“’[Xyc]'_"'? i

-, .
% % FE * X' is a T-development of J ;

Suppose oA
define Mn[%,C], Mi[A,C] correspondingly. For f ¢ [2,E),

there exists (g',g,f) € [a,a]m by Theorem 18. Thenthe -

square: %ol [2,1] S [50.0]
(e1] | ICEY
[x,c] > [47,¢]
{asl]

commutes. $So maps

MT[f,l]zMT[K,C]u—e N[ 4,C1
M%[f,l]:M%[K,G] — M%{A,C]

are induced, These maps are independent of the choice of



g';g . TFor suppose f{(h',h,f) ¢ [a,&]m . By Theorem 18
there exist s,s' such that h'-g’ z"S'ag h-g = as . If
(-1)mn

(“1)mnu(g+58) = (~1Y"ug = rg,1lu; so [MT f,1] is in~

il

ue (X,C], and [2,1]u=ua =0 then [h,1]u

dependent of the choice of glg . If v e [A',C], ‘then
', v = (=1)™vn' = (-=1)™(vg'+vs'a) = {g',1]v +[a,1]t
for some t ; 80 M%[f,l] is independent of the choice Qg
g',e. _

It follows that M'[A,G], M*[A;C] are independent Qf
the T- development of A to within isomorphism. Letng
denote the full sub-graded-category of v£¥ with objects ghe
T~developable objects ofcﬁﬁ Then we have graded funct@ps

iy 1+ Ay @A oy |
determined uniguely up to natural isomorphism.

Theorem_19. The sequence:

5 13) v .
0 - M,; rmd HomaA BN MT - O

is exact in [J%; @kAQ, G%J with deg U = -1 and

deg' V= O where, if 4 e g, C cft and

1

At 8, x -8, A%, A" is a T-development.of A , then
. - - t
UA,G is induced by {x,0} and VA_G by [a',C]

Proof. In the notation of the theorem, Theorem 16(s)

gives the exact sequence:

fa,1] [x,1] [a'2]  [a,1]
[x,c1-—> [a',c] —= [a,c)—> [x,¢] —> [a',c] .

‘The result now follows from the definitions of MT[A,C]'

and M’;[Agc] a
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For amny object A 6«£¥ and non-negative intocger r
we define inductively what will be meant by T-dim A ¢ ¥ .
Pirstly, T-dim A = ¢ will mean A 1is T-projective.

For r >0 , T-dim A ¢ * will meén there exists a

& al X

" T-development A' .5 X s A_—5 A" of A with

T-dim A' ¢ -1 . We write T-dim A = r if T-dim A D

‘but T-3im A £ »-1 .

W MT[Asc] = [TAyTCE&S] 3

A,C7

WA90:

These isomorphisms are natural in A with ©-dim A < 1

Bxt[TA,TC; B 1.

i

M,"I’[ABG]

and in C . Moreover, T = WV .

Proof, Suppose T-dim A < 1 o Then there exists a

13
T-development X' B, x 2 a £.Xx' with X' T-pro-.
jective, The exact sequence O -+ TX'~—EEﬁ Y TA - ¢

gives thz exact lover row of the commutative diagrams

. [a,1] =
0 = 18,01 = [X,6] —=[x',0]— 1;[4,0] » O

v v

0 -{7ta,T¢l——_[TX,7C] | TX "' TC ]-—Ext
Trxl1] (1a,1]

1
[7a,72'] = 0,
3
3
Since X,%' are T-projectives, the columns are isomorph-
P .
‘isms; so we obtain isomorphisms W,W  as required.//

Corotlsry 21. If T-dim A < 1 there is a short

exact seguence




R T
0 - Extl[TA,TC;g] -[4,C; 4] S{Ta,TCifd 1 » 0

of graded abelian groups, where deg R = -1. The seguence

is natural in A with T-dim A <1, and in C /7

Corollary 22. If f ¢ [A'sA;Ji]p s & € [A,Czég]q

where T-dim A,A' <« 1 and TFf = 0, Tg = 0 , then gf = 0.

Proof, Since Tf = 0 there exists ¢ ¢ Extl[TA',ﬂA]p+l
with R¢ = £ Dby Corollary 21. By the naturality of R ,

the following square commutes up to a factor of (--l)q .

R
Extl[TA',TA]rﬂuﬁ [A',A]

Ext[1,Te] lf - l.[lsg]
‘Extl[TAJ,TCJ.ﬂfﬁ [a',cl .

But Tg = 0 , so evaluating the square at ¢ we obtain

the result,//

Now we investigate how our definitions compsare with
those of [16] 83 p 850. If y@‘:.ﬂéf for some DG-category
zf with the triangulation of Theorem 17, then,clearly_'
T-dim A < r dimplies 'dimTA < r 1in the sense of Kelly.

But even in our general situation we can prove a theorem

corresponding to Theorem 3 of [16] ; Corollary 22 is a.

particular case.

r+1 ?

ot . € [A., A, 4] be such that TFf. = O .
i + D i




Ly

E T""dlm AO S- r then frfr_la ° .f = O @

Proof, For r =0, T:[AA ] o[TA,,TA;] is an
isomorphism and a fortiori injective. We prove the theorem
by induction, Suppose the theorem true for r-1 where

r- 0., If T-dim AO < r then there is a T-development

W8y a’ X . . . 0
> -y AO > A with T-dim A’ < r-1 . Now Tfo =

and X is T—projectives so the map - [X,fo]:[X,AO] - [X?gl]

. is zero. But the following diagram commutes:

(A58, ] — [A4.]1— [%A,]

P,
(-1) "[1,£,] { [1,2,] t Oi
§ ' ' :
[A'sﬂlﬂ"*“* [Agspy 1 [X,4,]
b
with exact rows., 8o there exists g € [Af,Al] with

po+l
p0+1
[19f0}(l) = [Xyl](g)§ that is, fO = (-1) £x .
p.+1 ,
Ley f£! = (-1) © £.8 € [4,4,)

1 ° Thel’l Tf fo= O

P tPotl 1

since Tfy; = 0. But T-dim A" < r-1 implies

o
frfr—l. L] °f2f l'-' O L] SO

fr r 1:: s f2flf0 = frfr—l. .. fzle
= O'X
=0 .
/7
1" ¥ :
Lemma 2. If o:A'—%s 4 -2 a5 A" is T-simple

and T:fav,a'] = [Ta",TA'] is injective, then

a=J'A" @ Ja".




b
Proof. The following diagram commutes:

[at,a'] A [TA",TA" ]

[a',1] I l['_[‘a’,l]
T

AAT
[AgA.! :I —_—— [TAgTA? ] o

Now Ta' 1s an epimorphism so [Ta';1] 1s injective;

alsc T,,,: 1is injective. 8o f[a',A’ is injective.
AMA J

But fa',A']Ja = aa' = 0., 80 a = 0. The result now

follows from Theorem l6(f).//

, Lemma 250 I X® A is T-projective then so is X .

Proof. Since T is a graded functor T(X @ A)=TX ® TL
and T:[X @ 4,0] » [T(X® 4),0] is | |

T® T:lX,c]l ® [4,0]—=[Tx,TC)l ® [T4,TC] . So X & A
T-projective implies TX projective and T:[X,C] - [TX,TC]

an isomorphism,/y

The meaning given to dimX = 0 in [16] is that
T:{X,4] » [TX,T74] should be injective for all A4 .
Combining Lemmae 24 and'25 we have the following:

Theorem 26. If X 1is T-developable then it is

T-projective if and only if T:[X,A] - [TX,Tal]l is 1njecu1ve

for all AEA’ /)

The object A = A €4 will be called T-resolubld

if, for each integer n > O , there exists a T—develoPmeP:

a, a'n X
Am& Xn" %An—m%%%yl of %1'




Remark. Suppose A = AO is

Note that T-dim A< r for some integer r > O

certainly implies that A .is T-resoluble. If A is

T-resoluble and T-dim A is not less than any positive

‘integer r then we write  T—-dim A = oo e

T-rescluble, and choose
a a'
n

X
_TudevelopmentamLAm+lmu 2 X éw.Aﬁf——ﬁu.An+l' for .each

n > O': ‘Eor,uG.e¢A¥ this gives a Massey exgot--couple:

e et T

' [ x, l] N
- A, 1381———[4_,C]

[agl&‘ A',l]

(X0l

We.shall:examine the. spectral sequence-of this exact couple

for-amspecial“case-later.




§2. Homological functors.

The notion of an homological functor is defined here,jf
An analogue of the dimension theorem of homological algebra
(see [1] Ch.vI 82 p.111, or [18] Ch.VII 86 p.181) is proved.
Suppose the trlangulatlon of A comes from a DG-—category
[5 with A Hé (see Theorem 17). Then T.A—» B gives a
functor T :HPseSZZ - Tgl@ « In this situation Tl—prmn-
Jectivity, Tl—developa‘olllty and Tl—dlmen81on are examlngad

Suppose uél’ 47 08 are as in Bl, A graded functor

T:,,é]lm @ will be called homological if

HFl., T is stable;

1

it Ll
HF2, if A" B4 B v % 4o then the
triangie Tg'™ Ta' Ta

TA' — , " TA s TAT > TA' is exact

over @

if 7
For o:A'~2 o4 2, Av_ @ st oo/ we shall write Tu

. Ta" Ta' Ta
for the triangle T TA - s TA"s TA' over (B

H
It will be tacitly assumed in this section that
T:.}Q(_) ﬂ?) is an homological functor and J is a Verdier
triangulation.
A morphism £ of /4’ will be called a T-—eplmorphlsm

when Tf is an epimorphism in (B

; a” a' 0] (_7
Lemmg 22 (a). Suppose a:A'-—"o BRI Uy

Then o 1is T-gimple <= a' is a T-epimorphism

&= Tag = 0.

(b) A is T-developable<=> there exists a T-epimorphism
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€t X - A with X T-projective.

Proof. (a) is trivial and (b) follows from (a)
and TB.//‘

- .
Lemma 28. If A'- 2, x 8, %, ,t)

Ct' 5 v —— A-—Xé c!t are T-developments of A fhen

X®mC' = Ye o' .
Proof. Since X is T~projective,
T(ya') = Ty.Ta' = 0.Ta' = O implies ya' = O similarly

xc' = 0. Applyving T5 to the three triangles

- -1 - . -1 -
LJ'X;L___‘?_._,LlA,_%A'.ML_?_,leg
L1 X:z~—+ ct.C Ly [ | L ,

0

- () ~1 -

v O o 21 gee Q)R

- * |
of j ~Wwe obtain a triangle: A' > X @ ¢! - v X%, 2t inf;’n

But xc¢' = 0, so0 the result follows from Theorem l6(f),//

Lemma 29, Suppogse X is T-projective and A is

T-resoluble., Then T—dim A = T-dim X® A .

Proof. For r = O this follows from Lemma 25.

Suppose r >0 . 8ince A is T-resoluble there is &

. 4
T-development A'-—2, v .8 >A~—3-7-+A' of A with A

T-resoluble. By T1 and Theorem 16(c),

(9 iga’ (0y) |
A —S = X @® Y~ X@® A —— A' is then a T-development
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of X A. 50 X{;E\. A is T;resbluble.

If T--dim A ¢ r then we may _suppose Tedim A’ P
and so by thsz above,’, T--dim X & Ag_r .

We prove that f—_dim X @ A ¢ v implies T-dim A ¢ r
by induction, If T-dim XD A <_ r then there exists a
T-development C - Z - X@ A »C of X@EA with
Te-dim C g fml— and so O is T-resoluble. By Lemma 28 wo
have X@ YD C 2 2(®) A' . By the above T-dim X® Y@ C
¢ r=l, so T-=dim Z(@ A' < »L . But 2z is T-projective
and A' is T-resoluble, 80 ’by jnduetion T=dim A' § 1.
Thus T-dim A ¢ ¥ <7/

Theorem 30 (Dimension), Suppose A' -+ X - A - Al is

a T-development of A with A' I-resolubles If A 1is

T-projective then so is A'; otherwise

(T-dim A') = (T-dim &) -1,

Proof, If A is T~projective then X = A' @ A by
Lemma 2Y; but X is T-projective so A' 1s T-projective:
Suppose T—dim A =1 5 0 , Then there exists a T=develop~
ment C' Y » A C' of A with T-dim G' =r-1 . By
Lemma 28, X@ C' 2 Y@® A' . By Lemma 29 T-dim X @& C'= =1
and so T-dim Y@ A' = p-1 .'5 Aﬁgai;n by Lemma 29, this implies
T-aim A' = -1 ., |

. . . X” X‘ y = ' ‘
Theorem 31. Suppose x:X' ——»yx —> X'—— X 18

SR EEREE




(a) im Tx" = TC for some C GUAY 5 .92

(D) @ has finite projective diménsion.

Then X"',X,X" T—projective imply TX 'is"br‘ojééti’ir‘e 1n
Tgl&% o |

Proof. Under hypothesis (b) the result foilows £rom
Theorem 15.

.Suppose (a) hclds. The sequence.

[Xﬂyl] [Xsl] '
[X,0] ———— [X',C}——=[X",C]

is exact by Theorem 16(a), and X',X,X" are T-projective;

so the sequence

[Tx",1] [Tx,1] _
- [TX',TC] > [TXY,TC] .

[TX,TC]

is exact, But Tx" factors TX'— s TC —ns TX ‘With e
epimorphic, m monomorphic. Then

mee,Tx = Tx".Tx = T(x"x) = 0,
so e, Tx = 0. That is e ¢ ker[Tx,1] = im[Tx",1] , so
e=¢". Tx'"=¢e'.m,e for some e' . Thus e'm =1 and

TC is a retract of TX . So im Tx" = kerTx' is projective

in.&% » The result again follows by Theorem 9.//

o it '
Theorem 32, If m:p'—2, p_P , pu B, pr |

ik t .
B:B' b: B b > B”ﬁm24 B‘e'-Tglﬁg with =z projective in

Tgl &% and B exach over &5 , then the triangle

[P“,‘B']-—-E—-) [%’ﬁ]m\f_} [P',Bi] @ [Pﬁ',Bn]__}’L) [P",Bi] .

is exact over G%% , where u(g) = (0;b"gp';0) ,




(£, E,8") = (£1,£%) and w(f', ") = [1,b]r" - ps1]f" .

Proof. 1If the triangle is exaelwith = replaced by
ps0 then it is exaect for =n replaced by o@® o . So it
suffices to prove the result for replaced by J'P, JP,
J'P with P projective. | |

For J'P the triangle becomes O —+[P,B‘]-}-—->[P,B" 1] -0,
which is exact.

For JP the triangle becomes

© [1,b"] [15B"] [1,b]
[P,B']~~—~4>[P,B]—~*—+>[P,B”]——w—afP,B']‘ which is exact
since g 1is exact and P is projective.

For J"P the triangle becomes
25 ofen) B Ty o p,my 0L 2 pey

which is exact.//

Suppose ; is a s’ﬁable DG~category with the extension
axiom, A=H{; and. T:LA/ﬁgg is as before, -Then
Psesg is stable with the extension axiom. Let
,A/]-' = HPsesg with Verdier triangulation gl obtained from-
the DG-structure of Psesé (see Theorem 17). Also let
6?31 = Tglp;i . Ir : f 4is a morphism of degree m in é we
shall write Tf for T[f] . |

Define Tl:(Al - 631 as follows:

(i) if ﬁzA'._Eﬁ AP, A% is pses in L with
deviation class A , then T1§ is the tfiangle

Ti TA

Pyt , Ta TP, rav T4 qpr
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(ii) 4if (f',f,£") is a morphism of some degree in
Pses;f, then Tl(f‘,f,f”) = (7£!,Tr,Tr")  (recall
Theorem 2(Db)). |
"Then Tl is an homological functor (recall

Proposition 1).

et ocad el ~

(a) If X 'is Tl—projective then X',X,X" are

T—projective;

(p) If X',X" are T-projective and 71X  is projective

ig-&%l (see Theorem 31), then X is Tl—projective.

Proof. Let * Dbe the deviation class of X , let

' it '
x" = [m], x' = [e] , x:X' o X -5 X0, X' . For

C EC}Q s dC 657 by T1, and clearly TJC = JTC . Hence

we have a commuting sguare:

Tl 1
[x5JCl—=n [T7x, JTC] .

{ |

[X7,C J—s [TX", TC]

in which the vertical maps are isomorphisms and we have
identified JC and the pses giving JC as its triangle
in éj .

(g) 1If X is Tl—projective then Tl' in the square is
an isomorphism, so T:[X",C} - [TX",TC] is an isomorphism;
also Tl§ is projective, so by Theorem 15, TX" is pro-

jective. Henece X" is T-projective. By T2 it now follows




=
-

that X',X are also MT-projective.
(b) By Theorem 2(a), taking the homology triangle, we

have the exact triangle:
H[X",A‘] - H[X;A] N H[X' 9A‘] @ H[X”’A"] - H[Xi!gA!]

for A:A' 5 A o5 A" ¢ Psesjg . If Tlx is projective,

Theorem 32 gives the exact triangle:

[TX",TA'] » [TTX,T7A) - [TX',TA'] @ [TX",TA"] o [TX",TA']

Also (T Pt

Xipt? XA’TX‘A‘CD.TX"A") is s map from the first

triangle to the second, If X',X" are T-projective then

TX,,A,,TX,A,(:)TX"Aii are isomorphisms. By the 'five lemma'
1

TgA is an 1somorphlsm,//

ledevelopable if and only if A',A,A" are T-developable.

Proof, If A 1is Tl—developable there exists a
Tl-prOJective X (= X',X,X" T-projective by Theorem 33)
and ¢ = (¢',6,6") e 2 [X,4] with [e] = 7l_epimorphism
(¢=> [ €'],{€l,[e"] T-epimorphisms). So A',A,A" are
T—dévelopable (see Lemma 27(b)).

Suppose A'sA,A" are T-developable. Choose T-epi-
morphisms [n'] e vly',a'],in] € H[Y,A] 9[ﬂ“3 € H[Y“,A“]
with Y',¥,¥" Teprojective. Let Y¥',Y,Y" be the pses
gimwia Yl O, O = Y.m}% Y, L“IY"*a ¥ ¥ where the
latter has deviation class Z -1 . We have (n',in',0)

(0smem) 5 (60" L »7n™)  in 2 [Y',41s B [Y,A1, 2Z,[Y",4]

6

o




respectively where ¢ is the devation of A for some

splitting. Let X be the pses ¥'@¥® y* . Clearly

Y', Y are Tl—projective, Since H[}’”,g] = Hfy",Cv]
for all C it follows that Y" 1s Tl-projective.

Hence X 1is Tl—projective. Let

~

6.1'

n

(n',é'??"z ):Y? @ L“lY" - AY

e= (N, MY Y@ T >4, €= (pn,n"): Y@ Y" = A"

Since Tn',Tn,TN" are epimorphisms it follows that
. ' ) 1
Te' ,Te,Te" are epimorphisms. 8o [et,e,6"] dis a T =
1 .
epimorphism. By Lemma 27(b), A is T —developable. (This

proof is modelled on the last two paragraphs of [1-6],),//

e ) If each of the objects of LA' _1_§

: L.
T-developable then each of the objects of A is

Tl—developable.//

“A11 the conditions so far placed on Tt 154’-"&% _
AN -
slso then hold for Tl:déil 48 : not so condition (b)

of the followed theorem.

(a) each object of A is T-developable (and hence

T-resoluble): and

(v) )S:X’ -+ X - X" eaé(l is Tl-—projective if and onlv

if  X',X,X" are T-projective.

£ A3AY » A > A" dis g pses in 5 then

P ~

Tl-dim A= max('l‘—-dim A'y T—-dim A, T-4im AM).




Proof. It is clear that Tl~dim A ¢ r implies
T-dim A',A,A" ¢ » . We prove the converse by induction.
For v = 0 +this is just condition (b) . Suppose r > O
and true for r-1 . Suppose T-dim A',8,4" ¢ r . Then
A',;A,A" are T-developable, so by Theorem 34, A 1is o
develcopable. $So there exists a rTl—development
C - X 4 § -+ G of A This gives T-developments
' 5> X' > A » C' ete., of A',A,A" . Using (a) we may
apply the Dimension Théorem 30 to obtain
T~dim C',C,C" < r-1 . By induction this means
Tl—-dim g < r=1 , and so Tl—dim g} <r 7/
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83. A spectral segugncc.

Suppose ;ﬁ is a weakly stable DG-category with the
extension axiom, oékz Hﬁz is the induced triangulated
araded category (see iTheorem 17}, &% is an gbelian
graded category, and T:¢A¥—>é5 is any functor. Under
these conditions we find a spectral seguence generalising
the characteriéation theorem (Corollary 21) of 81 .

First we recall some facts on spectral sequences (see [4] ).

A filtration of an sbelian group complex I 1is a
sequence - & = (@P)P€§f of subcomplexes & of I'
such that épwl < @p for each p . Let m denote the
family of monomorphisms @p I , and e the family of
canonicsl epimorphisms T,ﬁ'ﬂ/@p ; we also have mono-
morphisms @ ;3 ~ &y and epimorphisms r/ép_l - r/¢P .

- The filtration ¢ of T will be called complete if

(r,m) is the direct limit of the directed system

e e e @P_‘l -@p — @P“i‘l ]
and (I';e) 1is the inverse limit of the directed system
o 8 0 =4 I‘/@p—l—ir/ép'—)r/@p_th..o L]

A filtration ¢ of T gives rise to a spectral
o r
sequence (EQ , &) . We shall be interested only in the

second term E2 = Eg which is the bigraded group given by:

2 1 1
= ker d T /im d_-
Bha rdyy /Amdgsy g

1. e
where dpq : Hp+q(®p/¢p_l) 4-Hp+qu(ép_l/®p_2) is the mui




induced by the differential in I .
Let ¢, ¢' Tbe filtrations of 7, I'' « A mep ¢

of filtrations is a chain map ¢:I' » I'' such that

t

p & %y

for all p . Such a map functorially induces a bigraded

2 - Ezq . The following proposition

&b &
is proven in [4] .

group mép E2¢ : B

Proposition 37. Let &, &' be complete filtrations

of _the complexes I, ' and ¢:I - 7'  a map of

2 - E2, ig an isomorphism then

filtrations. If E2¢:E

@ &
s0 is H¢:H11 -3 HI" o//

positive integer N , then there exists a complex FA c
?

of sbelian groups with a complete filtration $p o such
X 3

that:
(a) Hr, o = H[A,C3A); and
= -p -
() Elpq © Ext [TA,TG,&%}Q .

Moregver, if also A',C' e , with T-dim A' ¢ N' for

some positive integer N' , and f:A' - A, 5:C - C' are

morphisms of Q£¥ then there exists a map of filtrations

¢:FA,C - TA',C‘ such that:

(¢) the map Hy corresponds to the map H[f,g]

under the isomorphisms of (a); and

(a) the map E2¢ corresponds to the map

Ext[Tf,Teg] under the isomorphisms of (b) .

GG




i v

., X o A, With

Proofs, Choose pses Anq n

X, T-projective and the sequence

Tun Tvn
0 - TAn+lmu——» TXn i v e TAn -~ 0

exact for each n such that O ¢ n ¢ N where A = A

and AN = XN . This is possible since T-dim A ¢ N .

Set Xn =0 for ne¢«¢ 0O and n> N,
i = e} :
Define T FA,G v
r,= 1 [Xr’c]n+r; .and

I'_:_:O
af = D «+ fu v,17 .
Let @ De the filtraticn of p given by:

@ = I [X_,C] ;
pn rep-n v’ e ?

it is complete since X, = 0 for r < 0. Now cap/@p_l

is the complex with n-th component [X ’C]p and

r-n _
diffevential [uv,1] . From the short exact sequences

- [v,1] [u,l]
0> [a_,0) = Ix_,6) —la_ ;.01 >0

we obtain the long exact sequence

[Vo9l] [uv,1] [uv,1]
0 +{£,8] —— [XgsC] mnl [ Xg 58] ——a{KpsC] o -

of complexes. 8o [v_»1] induces an isomorphism

(e /e, 1) = [40], for n=p,

0 otherwise.
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So [vo,l] induces an isomorphisn

2
E
ba

e

HP[A,C] for q=0,
= 0 otherwise.
Let & De the filtrstion of the complex [A,C] by

degrees; that is

2

= 0 for ns> p ;
it is clearly complete,  Then [vo,l]:[A,C] I is a
mzp of filtrations; by the above EQ[VO,lI is an iso-
morphism. So by Proposition 37 we have (a) .

Let & be the filtration of I given by:

g'T)jpnz rf;p[xr’c]n+r ;
it is complete since Xr =0 for r> N, Then d;q is
i h logies
the map Hq[X_p,G] - HQ[X—p+l’C] induced on homologie
by the chain map [uv,1] . But X s -X—p+l are

T-projective; so under the appropriate isomorphisms T ,

1
dpq becomes [T(uv),l]:[TX_p,TC]q - [TX ,Tc]q . But

~p+1

the sequence
T (uv) T{uv) v,
s o —F TXZ‘“"—"—'—) TXl ¥ TXO - TA - O

.is a projective resolution of TA . So we have the iso-
morphism of (b) .

We now prove the mapping part of the theorem. Let
objects and maps pertaining to A',C' be denoted by the

same symbols as the corresponding ones for A,C only
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Tl

dashed. Define fr’ kr for » > 0 by induction as
follows. Firstly fo = f . Duppose fr is defined. The

triangles Al 5 X', A; - A'

v+ 1 T A —* Xr ~ Ar > A

r+l 7 el T+l
are T-simple, and X; is T-projective. So by Theorem 18,
[f.]:A, - A, can be extended to a map ([£,,,1s8s [£.]) of

triangles. Hence the square

| ~ ]
Ar ’Ar+1

[£,] e,
e

—_— A
+1

commutes in:}Q‘. By Theorem 2 there exists X ¢

zo[x;,xr] such that the diagram

1 H

t Y 1 Vp '
Ar+1 Xr > Ar
fr+1 l kpl_ fyi
u, ¥ v,
Aria > X > A
T T

commutes., Let [k,gl:I = I'" %be the chain map given by

[ksg]n = rfo{krsglnﬁr . That ¢ = {k,g] is a map of

filtrations satisfying (c), (&) is now readily checked.//

Corollary 39. If £:C - C' is a morphism of

such that Tf:TC —» TC' is an isomorphism, then

H{1,r]:H[A,0) - B[A,c'] is an isomorphism for all A with

finite Tudimension4//

Gorollary LO. If each object of .4 has finite

T-dimension then T:d%w+65 reflects isomorphisms.//




ol
Compare these results with [1] Ch.XVII 84 p.371

and [2]83 p. 286,

REMARK., In Theorem 38 the condition T-dim A ¢ N was

used to ensure that @A G is a complete filtration of
g
TAVC . If A is T-resoluble and the Xr can be chosen
2
with [Xr’g]n+r = 0 for r large enough then QA,C is

a complete filtration of - PA C ; in particular cases this
5 :

can be en sured by conditions alternative to X, = 0 for

r large enough.
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§u. Right inverses; splittings.

The purpose of this section is to find conditions
under which the characterization seguence of Corollary 21
splits.

In the situation of the last section suppose T 1is

T
homological, a% is the full sub-graded—category of &%
with objects those of 6% with projective dimension < i,
and oggglis the full sub-graded-—-category of'jér with
objects those A of (,A" with TA e ZBH: e Then T

e A i
regtricts to give Tgrzdﬁk - &3 .

category §{ with the following properties:

BTi. sach P ¢ %{ is a projective object of &% H

BT2. 1if B 1is a projective object of &g then there

exists P ¢ g%, with P 2 B in &% ; and

BT3. there is a graded functor IN:&%-+ ZC: such that

TN g{—+&% is the inclusiomn.

I+ -
Then T&':UQ“»HA>&8 has a right inverse V up to

isomorphism, Moreover, if il is a class of objects of

containing all the NP , and éz, is closed under extensions,

) -
~ then o/ contains all the VB, B¢ IB .
- #
Proof. For any B ¢ 63 we may choose (by BT2) =

short exact sequence
S €
O»Y—i\'-a-—)}{——-—:»B—rO

in &%0 with X, Y 63{_, such that Y =0 ir B 1is

projective,and X = B, € = lB it B 68% + Then
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Nk € ZO[NY,NX]; S0 we may choose a pses
NX -ty VB ——Pss LY
in ;: , and a splitting (p,1), such that the pses has
deviation M. /™% with this splitting; if B e 1

.

choose 1 = 1 VB = NX . For any new B ¢ &?ﬁ- which

NB 7
comes into consideration, fix such choices for all time.
Take B' ¢ @Zﬁt and let the choices per‘ﬁaining to B' e
denoted as for B only dashed. Suppose g € [B,B']
then there exist h ¢ [X,X']. s k € [v,¥"] ~ such that

he = k'k and ge = ¢'h . Let f € Zn[VB,VB"]:CL be the
unique map such that i'.Nh = f.i, p'.f = LNk.p and
p'.fei = 0 . Suppose that h'k - K'k', g€ = €'h*;:then
h'e h = k'u, k'-k = wc for some u € [X,Y']n . Let f'
be the unigue map obtained from h';k' as £ was from
nk. Let s=731'.0.8ap ¢ [VB,vB'] ,; then

~

Ds = pi'e Z.Nup +(-1)™t. [ wu.np
= i'.Nc'. Nu.D +(-=—1)n+2':{'° [ oNuoNiC.l-}p
= i, N(k'w).p + it IN(uK).p
= 1'.8(h'-h)p + i'.IN(k'-k).p.i.D
= (f'-F).i. b o+ It.p'.(£'-f).1p
= (£'=f).i. p +(I'plei'pt). (£1-1).1.p
= (£'~f). (ip + ip)
= flerf

so [£'] = [£] . Define Vg = [f] ¢ H [VB,VB'] . Thus

we have an extension V: {Bﬁ -+<)4‘ of %»—151& Zé - Hf -—-UA(
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which is readily seen to bhe a functor.
1 i D
For 3B ¢ &% we have the pses NY{ —— NB & LNY

-1

with deviation class [NK. Z _] . But T 4is homeological,

so the segquence

TNx Ti Tp LTNx

™Y -— > TNX ———s TVB —— LINY ——— LTNX
is exact. By BT3, TNk = x . But « is a monomorphism,
- so0 the seguence
0-—)Y—}E—>X T—l_—>TVB—>O

is exact. Thus there is an isomorphism AR:TVB = B unigue
with the property KB,Ti = ¢ » The calculation

A Tvg. Ti — AB‘.Tf. Ti

Bt
' = RBT.Ti'.h
- e'.h
= B.€
= gaABo. Tl
g.AB since Ti is an epi-
morphism. Thus A is a natural isomorphism TV =1 Y

" shows that ‘AB,.TVg

Corollary 42. Suppose the conditions_of the thgorem

hold, and further

BTh4., for all A eL}%’, TA  has projective dimension

< 1. Then the short exact seguence of Corollary 21 splits
giving an isomorphism:

: , ~ ; 1
B A,C505 ] 2 (74,7038 1@ Ext[Ta,1C; [ ]

when T-dim A < 1.

Proof. For P e‘%{ , NP is T-projective, and for




2
B e i , T-dim VB < 1. So T-dim VIC < 1. By

Corollary 21, T:H[A,VTA] - [TA,TVTA] ,

T:H[{VIC,C] -» [TVIC,TC] are surjective, so there exist

. -1
o ¢ H[A,VIA] , 7 ¢ H[VIC,C) with To = Apy » T7 = Aqg

Define R:[Ta,7c] - H[A,c] by Rf = 7.Vf.0" ; then

TRE T, TVE, T

il

-1
?\Tcn Tvt. KTA

u

f Dby the naturality of A * /)

68
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CHAPTER 3. — THE EXACT HOMOLOGY TRIANGLE

81, The homology functor.

Suppose &9_ is an abelian category with enough
projectives,‘éf is the DG~ecategory CJQ ,Lﬁ%’is the
Verdier triangulated graded category H;E:(see Theorem 17),
53 is the stable abelian graded category (h@, and
T:JA(—»&g is the homology functor. The general theory of
the last chapter is shown to give familiar results (see
[1] Ch XVII) in this case.

Let (0¥ denote the full sub-DG-category of [, with
objects the projective complexes over JQ . Then ZiP is
stable and satisfies the extension axiom, sc:uékp = Hsz
is Verdier triangulated (see Theorem 17). Let
77 A {3 e the restriction of T to AP L 1t s
well-known that TP is homological.

An objeet X of oﬁ& will be called 'CE—projective

when each X, B X, Z X, HX is projective in K (such
complexes are used in [1] Ch,XVII). From [5] Ch.IV pp

58-35 we deduce that X is CE-projective if and only i¥

it is chain isomorphic to a complex C(® P (the direct sum
as complexes) where C is a contractible projective

complex and P 1is a projéctive complex with zero differential,

Theorem L3. A complex is T-projective if and only if

complexes) where C 1s contractible and P 18 projective




0

with zero differentisgl. For proiective complexes

TP—projectivity, T—projectivity and CE-projectivity are

Bguivalent conditions.

Proof. Suppose X 1is Tw-projective. Let P = HX .
Since O — BX 3 72X £, P 5 0 is exact, 2X % BX®P .
We can suppose ZX = BX@® P , that the seguence

. T | = 5t
0w 7% 2, %7, BX » O is O-+BX®P_(__J:_,_’;L.,) x 1, BX » 0,

and that X has differential (i',i")(é)n = 1i'n . But
T:H[X,P] » [HX,HP] is an isgomorphism, and is induced by
[i",1] , so there exists a chain map p:X - F with

pi" = 1 ; since p 1is a chain map pi'n =0, 80 pi' = 0,
n being epimorphic. So i 1is a retract, and wé may put
Xx=0@P, 1" = (), p=(0,1) . Then pi' = 0 dimplies

i' has the form <1'0>;BX LC@P ; and p(i',i") =0
A0
implies p is of the form (%,o):c@P - BX . Bo

il i'n
- . . fa) 0 B o'fo
X = C@®P then has differential (0 )(”o ) = ( 5 o)'
S0 X 1is the direct sum of the complex C , With differential

i;no , and P with zero differential. So

i:)@l (77090) :
0 BX®P - CHP s BL 50 1s exact; SO

it n

0 BX ~-2,0 %, 8 50 is exact. Thus HC = 0 . But

¢ is T-projective, so T:H[C,C] - [HC,HC] is an iso~
morphism, Thus H[C,C] = 0 and C 1is contractible.

If X in the above is projective then C 1is projective




and only TP—projectivity is needed in the argument. Then
C®» P is CE-projective. For projective complexes we thug
have: T-projectivity = TPwprojectivity == CHR-projectivity.
| Suppose X = C(y P with C, P as in the theorem.

Then HC = O and H[C,A] = O for all complexes A , SO

C is T-projective. Also, P = HP is projective, so to
prove X 1s T-projective it remains t0o prove

T:H[P,A] » [P,HA] is an isomorphism for all A . The
sequences O - ZA.uia A-aga BA - 0

0 » BA -3 ZA"Qﬁ HA —» O are exact. Take

£:P » HA; since P is projective and ( 1is epimorphic,
f = (.f' for some f' . Let g = 1.f' ; then -
dg = ijng = ijpif' = 0, snd Tg =f . So T,, is sur-
jective. Suppose Tg = 0 for some g ¢ Z[P,A} . Then
(.22 = 0 , s0 2g = juk for some k:P - BA . But P 1is
projective and 7 is epimorphic, so kX = n.h for some
h:iP 5 A. Then g = i.%2g = ijk = ijpk = d¢h , so g Z0.
Hence TPA is injective, and so an isomorphism.

| Taking X projective in the last paragraph (i.e. C

projective) we see that CE-projectivity = T—projectivityy/

A sequence A' = A - A" in 7 é will be called

CE~exact 1f each of the sequences A£ ~» A o A; R
ZIlA‘ - ZnA - ZnA" is exact in a@~ o If 0 - A' - A5 A" 5 O

is (E-exact then two applications of the "three-by-three

diagram lemma" (see {17] Ch.II 85 p 49) yield that each of




the sequences O - B A' - B A B A" 5 0,
n n n
0 HA - HAHA 50 is exact.
7 n n

A chain map f ¢ ZO[ABA'] will be called a

CE—~epimorphism 1f each an, an is an epimorphism of
i;_ . If f 4is a CBE-epimorphism, by the "short five
lemma®, each fn,an is an epimorphism of QQ .

From [5] Ch.IV 8% p 34 we find that CE-projective
complexes and CE-exact sequences form a projective class
in ZOZfo We write CE-dim A ¢ r for A eéf when there
exists a CE-exact sequence

0 X - X 3 e o 0o X, X - A0
b r 1 0

~1
with each X, OE-projective. The obvious mearmings -are given
to CE~-dim A = r , CE-dim A = « ; the latter is true for

all A .

Theorem UL, KEach cbject of{j%P is TP—developableq

Proof. If A is a projective complex then.there
exists a CE-exact sequence O = A' =X - A -0 of
projective complexes with X CE~-projective; the sequenco
being pses since A 1is projective. Thus we have a
1-simple triangle . A' » X > A~ A" ; and X is

1
T -projective by Theorem MB,//

Now combine Theorems 28 and uLl.

Corollary 45. The projective complex X 1s

OE-projective if and only if H:H[X,A] - [HX,HA] 1is

injective for all projective complexes A .

//
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Theorem 46. If A 1is a projective complex then

T-dim A < T -dim A = CE-dim A .

Proof, From Theorem L3 and the fact that a T -
simple trisngle is T-simple the inequality follows. We
prove that‘ TPwdim A< T & CE~dim A< T by induction
on r . Theorem 43 gives the result for r = O .
Suppose r > ¢ and the result true for r -1 . Let
0+ A" »X -5 A~ 0 De Ch-exact with X CE-projective.
This gives a TPmdevelOPment AY 5 X A= AY of A
1r 7°-dim & < * then Theorem 30 gives T -dim A' < T-L
since A' is TP-resoluble bty Theorem 41 so
CE-dim A' < r-1 Dby indﬁction; so CE-~dim A < r. " If
CE-dim A ¢ r then OE-dim A' ¢ =1 , s0 T -dim A' ¢ r-1

by induction; soO TP-dim Agr < //

e e el r]

If the projective dimension of é@_ is 1

then there is a short exact sequence

0 - Bxt [Ha,HC;6 R )5 B[ 4,030 ] B rma,Hc;e8] » 0O

of graded abelian groups where deg R = -1 , natural in

complexes A,C with A projective. Moreover, the

sequence splits.

Proof. If A is projective, CE-dim A < 1 =since
the projective dimension of i; is 1 , and so T-dim A < 1
by Theorem 46. Corollary 21 now gives the short exact

s_ec:mence° In Theorem L1 take 8%, to be.the class of




T
projective objects of &2 ; and N 40 be ths ineiusion

é% = G£L~erzcﬁi restricted to ?{. Then BT1,2,3,4 are

satisfied so Corollary L2 applies.//

A1l the theory of the last chapter can now be

interpreted in this context.
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82. The exact homology triangle functor.

Let K? e the graded category HPS@S@ZP in the
notation of the last section. The objects of &7 are
just short exact sequences of projective complexes over

o

iﬁ_. Let 1 Dbe the full sub-graded-category of Tglﬁ%
with objects the exact triangles over &5. Then Tl:

'Al - Tgl'@ induces K:(fp - g . We shall not distinguish
between X and %j - E§.+ Tgl&% . In this section we show
how the thecry of the.last chapter may be applied to K D§
Indeed, more information is found concerning this functor
than is given by Theorem 5 of [15] 85 p 746; we find its
kernel and show that it has a right inverse (up to
isomorphism}.

Theorem 48, The exaclt seguence X

0 - X' X 5 X" 50 of projective complexes 18 K-projective

if snd only if X',X,X" are CE-projective.

Proof. By Theorem 34, X',X,X" are CE~projective
if and only if they are T —projective. Let x be the
triangie of :7 obtained from X ; then Ty = K§ + TRach
B e-ﬁg is a complex over«gh with zero differential and
so B € A, and TB = B . So (a) of Theorem 31 is
satisfied. Suppose X',X, X" are prprojective; then
they are T-projective, and so Theorem 31 gives Tx
projective, BSo KX 1is projective. Also K = T,

Applying Theorem 33(b) we thus have X X-projective.
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The converse follows from Theorem 33(a).//

Combining Corollary 35 and Theorem 4)t, Wwe have:

Theorem_ L9, Each object of %’J is K-—developabley/

Combining Theorem %6 and 46, we have:

Theorem 50. If A:0 - A' - A - A" » O 1is an object

projective dimension < kK .

Proof, An object £ € Tgl% ig exact if and.only if
the object

.. - 1P lpe LRt o IPB o ITBY - LR L L
of G@)O has zero homology (where g is B' > B~ B" » B').
From the exact homology ‘triangle it follows that, 1if
00—~ v = X = B -0 is a short exact sequence in
Tgl E}% and X is exact then B 1s exact if and only if

v is exact. Take @ € Tgl‘% and choose an exact segquence

O—*'}’-—bxk_l—)...ﬁxl-; X‘oaﬁao

in Tgl@ with each Xi projective. The projective
dimension of 0% is k , so the objects C',C,C" in ¥
are projective. But by the above, since Xoyxlgooayxk_l
are exact {see Theorem 15), B is exact if and only if y-i-

is exact;that is, (again by Theorem 15} if and only if y"




77
is projective; that is, if and only if B has projective

dimension ¢ k “//

Theorem 52, Suppose the projective dimension of &

is 1. The functor K: §7 E bhas a rient inverse up %o

isomorphism. If A;C ¢ BQ then there is a natursal short

exact seguence:

0 - Extl[KAPKC;Tng%] E H{ggC;Seqé]E [KJ},KQ;Tglﬁ%)] - O

with deg R = -1 , which gplits.

Proof., In the notation of Ch.2 8L we have, by Lemma

51, @l’ﬁ_=g; also @ JA(Pl =Aplﬁz since CL‘P is

homological, and TPlﬁ' =K. -

it

Let R be the class of triangles x over l% of the
form J'P& JQ ® J"R , with P,Q,R projective. By
Theorem 15, BTl and 2 of Theorem L1 are satisfied. Define
N: &5{4 ZPses ﬁP as follows,

(i) Ny 1is the short exact sequence

u v

0O 5 X' X —as X" 5 0

where X!

It

LﬂlR@ P, X" =Qg®R with zero differentials,

and X =L 'R@P®a®R with differential given by

the L x 4 matrix with 'Z“l in the top right corner and
zeros elsewhere; u is the coprojection into, and v the
projection from the direct sum X = X' @ X" ; they are

chain maps.
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(ii) ©Suppose also ¥ e-§7 . A morphism wix—»¥

of degree 1n 1s a triple

k! T k"

CoHGHYED.

Define Nw to be the morphism
1

- A t

Co o) 10

10

of seguences, of degree n .

O-l‘\\.; kff

0

<% (ow))
g k”} A0 h

o

i

O OH

A simple calculation shows that N 1is a functor, and
KN is the identity of & , so BI3 is satisfied. But
&j:bﬁkPl =0£§Plﬁ: s6 BTYL of Corollary L2 is satisfied.

Theorem L1 and Corollary L2 now give the result.//

The short exact sequence of Thecrem 52 hclds when
G 1is replaced by any exact sequence of complexes over
&Q . The adjustment of the argument needed to give this

result is left to the reader.
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CHAPTER h. - FILTERED COMPLEXES

Throughout this chapter é@,'will denote =& @fbgeetively
perfect abelian category,-zj will denote the DG-category

CJQ s and ﬁ%‘ will denote the graded category l}jQ .

81. The graded functop Kn:§§1_+§‘n o

The aim of this section is to define a functor on
complexes over ‘XQ with filtrations of length n-1 . The
vslue of this functor on a complex A wWith filtration ¥
-is to be the collection of homology triangles of the short

exact sequences

’1’;\
0 - ;qA/FpA - FrA/FpA - FPA/FqA - 0

{p < g <-r). Before this definition can bte made precise
it is necessary to define a category which will receive

such g functor.

Let Eﬂi&lcf denote the sub-DG-category of égaﬁf

(= the tensor product of n-l copies ofj;f) with objects

with A _ a sub-

those (n-1)-tuples A = (Ap) o1

O<pen

complex of A for 1< p<n, andif A'= (A‘p)ofpfn

is another such object then [A,A‘;Fltnﬁz] is the sub~

. t . 1 —_
complex of [A,a'; @] with elements f = (£)g o o

in dimension m such that fp restricted to Apnl coin-

ol * As a notational convenience we put

A, = 0 for Ace Fltn;f o

qides with ©
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There is a DG-functor Fltng —>é given by
A s An—l’ ft_ﬂh}fn—-l . It is easily seen that Fltng
may be given suspension and hence made stable unigquely in
such a way that this DG@-functor is stable. Moreover,
Flt ;;’ has the extension axiom. Let @ denote the
n n
Verdier trisngulated (see Theorem 17) graded category

HFltnﬁ .
Let o (n > 2) be the graded model (see Ch.1 83)
defined as follows:
(i) the objects are pairs (u,v) of integers sabis-
fying the condition O < v < u<nj
(ii) 4if (u,v),(u',v') are two such pairs, then
[(u,v),(ulv)] = 7 ir v< v <u<w ,

LM i vt <ven <u,

0 otherwise.

il

Notice that for n = 3 we obtain §3 as in Ch.1 %L:

Each gn may be drawn on a MBbius band; for each example

we give gg :

5 6 416~ .70 4 ., 10
b AN AT AT
6l 757 4 /.60\ 71\
NN AN g ‘ 7
63 717 ~50 Yo 72
\EB/ -%LLO/ \51_/7/ \62/
72/ \330/ \-\““ul/ \_\52/7 \;\63
\-—%20// \\31/ \\_-1142/ \553/":“7
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where we have put uv - u'v' if [(u@v);(u'yvf)] ==ZZ

-1 . _ .
and uv —»uv if [(u,v),(u',v')] =1L lZZ ; the other

maps are obtained by compoéiﬁion, with the rule that
composgites uv - wv —» wu , WV ﬁVWu -:i uv ,
wu m:i uv - WV are zero. |
Consider the following data: -
(a) .objects G(u,v) of ﬁg‘:for OgVvVeucn;
(b) morphisms G(u,v) - G(utl,v) of degree O inrﬁg
for 0<v<u<n-1; ' ﬁ
(c) morphisms G(u,v) - G(u,v+l) of degree O 1in &%
for O< v+ 1 <u<mn; - '
(4) morphisms G{(n-1,v) - &(v,0) of degree -1 inag
| for O< v<en-1,;
subject to the axioms:
{e) the composites
- @(v,v-1) - G{v+l,v-1) = G(v+l,v) for 0 < v< b1,
-G(n-1,n~2) o ¢(n-2,0) » G(n-1,0) ,
G(n-1,0) - G(n-1,1) - &{1,0) ,
are all zero; |

(£) the squares

6{u,v) - G(u+l,v)
Voo
G(u,v+l) —» G(u+l,v+l) for Ocv+lcucn-1 ,

G{n-1,v) = G(v,0)

\/ W
G(n-1,v+1)-G(v+1,0) for 0O < v < n-2

all commute.
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I G  dis an jn-diagram in 53 then we have
(a),e..,(f) as above. Conversely, with such data we

obtain an ﬁnﬂdiagram G in B by defining

G(u,v) » G{u',v') for O0<veu<n,; O0g vie u'« n
to be:
(g) the composite
a(u,v) = G(url,v) = ... - G(u',v) = G(u',vel)= oo Gluyv'}
for O < v ¢ V' <u<w <n;
(n) +he composite
a(u,v) - G(n-1,v) = G(v,0) - G(v,v') - a(u',v")

1 1

for 0 < VvV < Vv <1 < U< nh,
(i) =zero otherwise.
We introduce the notation G(u,v) = 0 for 0 < U< V< 0.

Then (e),(f) together are equivalent tos:
(f) the first square of (f) commutes for
0 < v+l <u< n-l;
and the second sguare of (f) commutes for O < v < n-2 .

From (f') we deduce the commutativity of the diagram:

a(u,v) > G(usl,v) 7 .. — G(u',v)

Y

Gu,v+1) — Glutl,v+l) = oo = g(ut;v+l)

¢
y

!
l

e—.nu({__—

alu,v') — G{u+ti,v') - ... ~ a(u',v')
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<n, 0O<u<u <mn, and of the diagram

a(u,v) — &(n~-1,v) -—— G(v;0) —— G(v,v')
v \) b 1}
a(u,u') —— G(n-1,u') — G(u',0) —— G(u',v")

for 0 < vgW«<n-l, O0<u,v <n. BOows have alter-
native decompositions of the maps of (g),{(h) .

We must show that the composite G{(r,s) = G(t,=) —
alv,w) ‘is &(r,s) — G{v,w) . Four separate cases must be
disntinguished, and in each case the result follows from a |

commutative diagram.

(1) o cs<u<re¢ ten, Ocug W< tgven:

- —

a{r,s) - G(t,8) — G(t,0)
(it

\/ L .
G(v,s) 2 G(v,w)

(ii) O‘<s<u<r§_t<n,O<W<u<_v<t<n:

G’(rys) —_— G'(t,S)l —_— G-('t,,‘u_)
G(i,,v) T _G(t{*‘v)

) |
S(net ) mmmmmmmmnemmm=  G(n1,7)




8Lk

s

(iti) 0D cucs<ct<cren, O<cu<cw<teven:

&(r,s) —» ¢(s,0) — &(s,u) — &(t,u)

(iv) 0<u<s<t<r<<n, O0<wecuc<v<t<n:

ot -—

e({r,s8)w—s G{5,0)—> a(s,u)— G{t;u)

J b
G(s,v)—s G(t,v)

\ b

¢(0,0)— G(v,0)
~
a(v,w) .
Let Tgln(% denote the graded category [fn’ (B 1e
" Let 'g_l denote the full sub-graded-category of Tgln{g -
M L
vhich has objects those functors G: ‘ﬁn 4[8 with each of
the triangles
G{v,u) = G{w,u) - G{w,v) » G(v,u) for 0 ¢ W <V < W < &,
exact over J‘% (see Ch.1 §L1.)o Let J(u ¥) denote the
2
a2djoint of the evgluation functor & :Tgl Ba@ (5‘66
(u,v) n
Theorem 10).
We now come to the definition of the graded functor
Kn: @n _}gn o Take any object A of Pn ; then

&

KnA = G ch -)-i% ‘is the functor determined by the following
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definitions:
()  G(u,v) = H(A,/4,) for 0 < V<uU<n;
(b) G&(u,v) - G{u+l,v) is the morphism of degree O
induced on homologies by the chalin map
Aﬁ/Av N Au+1/Av coming from the inclusion A, < A s
for 0 < V< ucx n-1 :
(¢) @G(a,v) » G(u,v+l) is the morphism of degree O
induced on homologies by the chain map

AU/AV‘A Au/Av+1 coming from the inclusion A_ ¢ A >

for 0 < vl < u<n;
(a) a{n-1,v) - G(v,0) is the morphism of degree -l
in the homology triangle of the short exact sequence

O>a »A oA /A 50, for 0<¢venl.

That the sbove definitions do determine a functor &
follows from the above since:
(e) each of the composites
F 0 ' ~1
Av/Av“1 - AV+1/AV—1 - AV+1/AV or < Vv < 1

-1s zero, and the diagram

'O—-)An_2-+A - A /An_2—90

n-1 n=-1
0 - An_l'_"::'Aﬂ_l - 0

{ \
0 —»Ap» A o »A /40

commutes with exact rows;
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(f) each of the squares

Au/Av s A A

u+1l TV

_Au/Aw_I————-—-> Au+1/Av+l for 0 < v+l ¢ u < n~-1

commutes, and each of the dlagrams

0 - Av ———t Al’l-*l——"} An—l/ AV - O

| ! b

- — 0 -2
0 - Av+1'9 An-—l = Ahel/Av+lq 0 for O<ven

commutes with exact rows.

G is defined on morphisms of degree O0,-1 as in (&),
(h), (1) .

For O < U< V<We<«<n we have a commutative dlagram:

0 - AV o An__l-——-—a» An—l/ Av - O
0 - Av S Aw —_— AW/AV - 0

P |
SN NSV
with exact rows. From (g), (h) it now follows that the
homology triangle of the bottom row of this diagram is:
a(v,u) ~» a(w,u) -c(w,v) = G(v,u) .
So G:KnAEEn.
Take any morphism f:A - A' of degrese p of Fltn;:9

and put G = K A, G' = KnA' . For 0‘5 v<u<n let




87

fu v be the morphism of degree p defined by the
2

commutative diggram:

0 —~ﬁ.?v > Au A-Au/Av ——y O
S L
¢ \ \L
oAt oAt 1 '
O - > A v ¥ A u -— A u/A. v—-—*—} O °

We prove that ¢ = Kn[f];G - @' given by:

G(uév) - Hfusv ?

is a natural transformation of degree p ; it is clear
that £ e B [4,A") dmplies £, e B [A/A, &' /A" ]
and hence %u,v) = 0. By (g),(h) it suffices %o’ show
that ¢ commutes with morﬁhisms of the type (b),(c), and
cormutes with morphisms of degree -1 of the type (d) when
p is even and anticommutes when p 1is odd. The first
part is clear and the second part follows from the

commutative diagrams:

e B B R g
| ,
! fv fn—l ! fn-l 5V
k4 b4 \if
[} H 1 f -
0 a—wAV———)An_l_-—-—-——)An_l/A 7 O for 0 < v<n-l,

with exact rows and the egaation:

1
A gt

a” .T .

- _1YP
n-1 - (-1) fn—l'

Hence we have defined Kn: 911 - En ; it is clearly a

functor since H is. We shall not distinguish between
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K
. I P
Kn and the composite Ejn £§n o Tgln§% uniess confu81oq

is likely.
P
Let Fltn gj denote the full sub-DG-category of

Fltrléi with objec’s those A = (Ap)0<p<n with Ap/Ap—l

)
projective for 0 < p < n . Clearly Fltﬁng is stable
P P
and has the extension axiom. Put %Dn = HFltﬁ~6§ ; by

Theorem 17 this 1s Verdier triangulated.
If A' - A — A" is a pses in Fltnaj with
deviation ¢ = (5r) for some splitting.then each
! ¥ it t 2 s ;zj
A u,/A v Au/Av -+ A u/A , isa pses in & with
deviation ¢ (see definition of K on morphisms)}

U,V
for the induced splitting. It follows that Knigjn *‘Egn

is homological.

P

Let K ° be the restriction of K, 0 &OnP ; then

KnP is also hbmological,

Note that, for A € &DHP , each Au/Av (for

.0 < v <u<mn) is projective,
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B2. K -dimension.

Tttt

‘In order to apply the theory of Ch.2 to the functor
Kﬂ' we investigate which filtered complexes A have
Knndim A=1r for a given r > 0. To do this it 1s
necessary to have an intrinsic characterisation of the
projectives in the graded category Tglnﬁa o The proof
of the lemma gilving this characterisation is postponed
until a later section,

We now prove a resuli corresponding to Theorem 2.

Lemma 53%. Lf AepnP 3 Ge@n and Ateg‘)i—l ’

Che %Dnrl are given by:

? = L] B — “
A= AL /A, 0" =0, for O<rcmel;

then the seguence

, ua v : . .
0 - [A‘9C"§F3~"3n»-lﬁ| - [A’G;Fltrﬁ] 8<§<,£_AI'/AI‘—1’CI’/GP-—-15§]—"O

g J
A g~ A /A _?_>cr _r,c

r+l T+ 1 and v(f)r =1

r+1 ryr—2 °

The connecting map A of the homology triangle of thisg

short exact seguence is given byt

A(h)r - ﬂ"r(hr+1t’r)_(—l)P[t”rhlﬁlr]

' ' is th
for he O<§§%LAT/AT“1,CP/GP#1] , Where ¢' ~ is the

deviation of the pses A — A, 4 = Ar+l/A1 for some

splitting, A“r is the connecting map of the homology




triangle of the short exstd sequence:

W
P |
1Cppnl — [470

O - [A'r’cr] - [4 r r+1/cr] ~ 0

r

! is thq i i - ) 3t -
t'. Ais. the epimorphism AT+1/A1 - AT+1/AT , and t" is

the monomorphism Gl K Gr .

Proof. Since A_ . = AT+1/A1 is epimorphic and

r+1
Cr - Gr+l is monomorphic, u 1is injective., Also
G, - C,,, induces the zero map Cr/cr—l - Gr+l/cr s S0
vu = O . Suppose [ ¢ [A,C] with each fr+l,r =0 .
s — . [] :
For O ¢ r < n-1, fr+1 then induces g Ar+l - Gr ’
!

. " . Lt

whence f_ 1s the composite A, -~ AT+1§T“~§' Gr . But
= 0 . N -

f1 , 80 the composite Al - Ar+1 ¥ Gr is gzero,

' - ° 3 - r
and g', induces gr°Ar+l/A1 -+ C, . This gives g with

u(g) = £ .

We now prove that v is surjective. Suppose we have
h, € [AT/AT_I,GP/Crﬂl] for O0< r<mn. Let £, =5h .

Given fr—l (with r > 1), there exists £, such that

the disgram:

Ar—l__né Ar A'r/Ar-‘-l

' h

T e

fr—l r

w W ¥
— (] e
Gr-l Gr Cr/cr-i-l

commutes, since Ar/Ar—l is projective., Choose such a

sequence f = (fr) inductively. Then h, = v(f)r .
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It remains to prove the formula for 4 . Take
h, e Z(A/A, 150/ 4] for O<cremn. Choose £
such that v(f)_ =h . Let ($ _,1I) bYe a splitting of
r P TTr

i P
r r . s t
Ay == Ap g —> AT+1/A1 with deviation ¢ P Now

h, b, € ZP[A'P,CP+1/CP] , and from the commutative diagran:

ir fr+1
AP+I/A1 > Apyl = Opy1
e r+1 %‘Cr l/Gr
I‘-+l
o - 1
we have Wr(fr+llr) = h, %, . Thus we may choose
" : . _ . .-
k, €4 r( M ') with j k= D(fr+11) . Then:
(Df)r+l = D(fr+l( r r rpr))
- 3 " -4
,Jrkrp * D(t +1 1pr)

s 21YPiw 3
=k p, + ( 1) tr+lh1D(pr)
= 3,(k - (-1)Pern,6)p,
.. ~ — - 1 -
since D(pr) = 6D, (see Ch.1 B2) . Thus
- - Py t
K, (-1)Ftin 81 € a(n)

and the result follows.//

The proof of the following lemma will be left until

a later sectlon.




Lemma_54. The following conditions on _an object G

or Tglp@ are equivalent:

(a) ; @ is projective in T_gln@ H

(p) &= g7 u )P(u,v) where each P(u,v) is
Ocveucn 7V '

projective in 6% 5

(¢) each triangle

g(v,u) o G(w,u) - &(w,v) - G{v,u)

is projective in Tglf% for 0< U< VY<W<n,

Lemma 55. If ¥ 1is_a projective object of Tgln@

and G is an object of {5 then the triangle

[F',G";El_l] S(meEl S = [F(r,r—l)gt‘r(r‘sr’-—l);@]E[FLG";E}&]

O<ren

is_exact over G& s Where F'(x,y) = F(x+l,y+1),

G"(x,y) = G(x,y) for O < ¥ < x < n-1 and the maps of

F',G" come from those of F,G, u(cc)(X ) is the composite
. 9 -

F(x,y) = F(xe,3+1) EEI) 6(x,5), v(a), = O(p,pmy) + 204

W(Y)(x,y) is the sum of the map

Y
Pael,y+1) » P(xel,x) —2s G(x+1,x) - G(x,¥)

and (-1)f of the map

Yy
F(x+l,y+1) - P(y+l,y) —2= a(y+l,y) = H(x,¥y) .
Proof, It is readily checked that wu,v,w as given
above are well-defined., If the triangle is exact with F

replaced by U,V then it is exact with - F replaced by




U@V . BSo, by Lemma 54, it suffices to prove the result
for F = J(ﬂ,y)P s Where P 1is projective in 03 . Note

that
F(rys) = P for y< S<Xx<r,

= L lP for s <y P< X,

= 0 otherwise.

(a) Suppose y > 0., 1In this case the triangle becomes:

[PSG(X‘lsy“l)] - [P,G(x,¥)] *‘[PSG(sz”l)}Q[PsLG(y9Y”l)] -
| [P,6(x-1,5-1)1,

But P 1is projective and the triangle:

G(x=1,5-1)2G(x,5)-6(x,x-1) @ L&(y,y-1)-G(x~1,y-1)

is exaciv since the rows of the commutative diagram:

G(x~L,¥) = G(x,y) = G(x,x-1) = G{x-1,y)

¢ | & & \L

G(x-1,¥) qLG(Ysyml)ﬁLG(X"l9y“l)ﬁG(X“lsy)
are exact triangles (see [19]), so we have the result.
(b) Suppose y = 0, In this case¢ the triangle becomes:

[r,6(n~1,x-1)] » [P,6(x,0)] » [P, G(x,x-1) B[P,6(n-30)] - -
[P,a(n~1,x~1)] .

As in (a) we have P projective and a Mayer-Vietoris
exact triangle:

G(n-l,x~-1) - G(x,0) - &(x,x-1) @ G(n~1,0) - a(n-1,x-1) ,
50 again the result follows.//

For 0< v < u<n we now define a DG-functor

T(ugv):;f‘q Fltn;j which induces the adjoints &32 ﬂ-%)h




%0 the evaluation functor given by Ar—eAu/Av and
f?_>fu9v o :
For C e,@f . let (0) e';f be the complex determined
by the graded object L TC @ C and the differential
e 77t T o
Let ~(f) e [v(0),y(c')] denote
O 6{. o ’ p O X )
for [ ¢ [090‘]p - Then y:;f—+;f is a DG-functor.
For O < v<u<n and Ce ;f we define

P(u V)G € Flpﬁﬁjg If v =0 then:

(I‘(U.SO}G)I‘ =0 for 1l<r<u,
=C for ug<r< g
If v > O thent

O for 1<r<vV,

i

(f(u,v)c)r

L™lc for v <T U,
= y(C) for ugr<no
B - i i i
mach F(ugv) becomes a DG-functor if We‘deflne P(u,v)
by replacing C Dy £ in the above, for any protomorphism
£ of any degree.
Notice that Knl"(ugv) = J(‘_'_sv)H . -

Let 6uyvz[r(u’v)o,A;Fltn;Z] - [C,Au/Av;;j] be the

i =
u,v(*) fu,v for

chlp (noting that C = (r(u’v)c)u/(r(uiv)ojv) ,

DG-natural transformation given by @&
£ e [T
()

Lemmg 56. For 0 < v<u<mn and A€ Fltﬂ?&f the

C.Al e'[G;Au/AV] has a right

chain map 0 = 6, *LI, o



chain inverse which is a left homctopy inverse.

Proof, If v = 0 then & 1is clearly an isomorphism;

so we suppose v > O . Let (P,I) be a splitting of the

pses Av . Au p>rAu/Av with deviation & o Deflne
w:{C,A,/A,] = [F(u’V)G,A] as follows. For f ¢ [G,Au/Av]m

let g' = (-1)"rl e [1770,a,], and g = (ig,If) ¢

[y(G),Au]m; thens

w(f)r =0 for lg¢rc< ¥V,
-1 g‘
=1L ¢ N Av_ﬁ Ar for v¢ P< U
= y(c).,g_ﬁ A A for ugr<n.
From the calculation: L‘ld 7-1
. o m, . g '
D, = d(ig',Ir) - (-1)"(ig',1f) ( o d )

(azg'~ (-1)™Mg'm e, (i) - (1) 17

((-1)™i5.pf. [, DI. £ + . DE - 16%)

Ik

((-1)™i6.Df. 7 , 3.DE)

it follows that « 1is a chain map. From the commutative

diagram: 1 |
PRRS wﬁqu.y(c) uﬁSiEz_q.c
g' g f
| } !
‘% T Au D —"*‘—"Au/AV s

it follows that 6w = 1 .

Define ﬁ:[f(u’v)C,AJ - [P(u,v)C’A] of degree 1 as

follows. If h € [r(u V)C,Ajm then h = (ihv,k) for
?
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some k € [CyAu]m with pk = h . Let s!' = (-1)" pk Z G

U,V

-1 . '
L G’Av]m+1 and s = {is',0) ¢ [y(G),A]m+l . Then:

o (Dn)

1t

1*3

I

Df(h)u+m(Dh)u

It follows that

For O < mu

[Anrl/Aunl’05;f] be the DG-natural isomorphism given by

#

7 ﬁ-go(f) = T

ats

i1,V

n~1;

= 0 for 1 <<r< v,

1 st

L ¢ —— Av — Ar for v < r<u,

I

S
v(C) —— A, -4, Tor ugr<n,

(—l)mﬁf , g = (ig!',if) . Then:

= Ds

p((-1)"ipk] ,0)

((-1)"1.D(pK).  , iPk)
((~-1)"i(~dpk +P.Dk)7 , k - If)
(—g'+ (~1)™iP.Dk.  , k = If) , and
o(4eDh,; Dk=(~1)"ih ™M)
((-2)™ 15 (Dx-(-1)"n 171 ,0)
(in ~(-1)"ip. Dk, 1 ,0) 5 so0
(ib,k) - (g',1f)

hu - g .

: - wl .
o: 1 W //

] .
< n let 6 u’O.[AJT(uQO)G,Fltnéz] -

e PFor O< v< u<n let
u-1

ko ! _.1 .
g LA;r(uﬁv)C;FltﬂC:] -5 [Au_l/Av_l, L c,éﬁ be the




s
_ tpansfo; . . .
DG-natural transformation given by 0 u,v(f) fuml,v—l

The following lemma can be proven similarly to

Lemma 56.

- # 1o
£hgin map s LA 1NQUces
chain map 6 a,v [f,r(ufv)c] - [Au_l/Av_l,L cl induces

an isomorphism on homologies.//

Theorem 58, For X ¢ §3nP the following conditions

are eguivalent:

(a) X is K -projective;

(p) X is Kn?—projective;

(¢) each Xu/Xv ig CH-projective for 0O < v < u< n.
proof., (a) = (D) is trivial.

(b),:9 (c} . Suppose X 1is KnP-projective and

P

n X is projective in Tg;n&g s and

0<v<u<n., Then K
56 by Lemma 5l (Kn?X)(u,v) = H(Xu/Xv) is projective. For

P
€ o =T =
any C ;f set TIC (V+190)c and JHC J(v+190)HC

if u = n=i, {C =171 and JHC = LHC

(u+19v+l)LC J(u+l,v+l)

if w < n-1 . Then ¢*:[Knx,JHo] ~ [H(X /X ),HC] is an

isomorphism, where ¢¢(a) = a(u v); and the diagram:
¥

K
H X,/¢ —>— [ X, JHC]
HO* i?$
v ,
H[Xu/Xv,C] *~g——+ [H(XU/XV),HC]

commutes. By Lemma 57 HO%# is an isomorphism, and X,
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is an isomorphism since X 1s KnP—projective. So
H:H[Xu/Xv,C] - [H(Xu/Xv)gHC] is an isomorphism. Thus

Xﬁ/Xv is H?mprojective. So by Theorem 43, Xu/xv is
CE-projective.

(¢) = (a) . For n =2 the result follows from Theorem 43.
We prove the result by induction on n . Suppose n > 2

and that (¢) = (a) for n-1 ., Take X € %Dﬁp satisfying

(¢)e For O<ux< v< w<nyo_>xv/xu—>xw/xu_>xw/xv->g
is a short exact sequence of CE-projective complexes. Thus,

by Theorem 43, the triangles: _

H(Xv/Xu) - H(XW/Xu) - H(XW/XV) - H(Xv/Xu) 5
are projective, So, by Lemma 54, KX is projective in
Tgln&g o _Suppose Aez@arl, By Lemma 53 we have a short
exact seguences:

0 = H if 2
s [x1,4"] - [X,4] - 0<r<n[Xr/Xr_lgAr/Ar_l:| -0,

giving an exact triangle:

H[X‘,A‘f] ~ H[X,A] » Z H[Xr/Xr_l,AI/Ar_l] - H{xt,at] .
O<r<n
By Lemma 55 we have an exact triangle:

XK AT]S(K XK Als £ [H(R /X, g),H(a /A, 5)] -
o<

[Kn—l

] it
[k, X'sK ;&%) ¢

n-1.
From the descriptions of the maps in Lemmae 53 and 55 we

see that (Knrl’Kn’ZH) gives a morphism of the first triangie

into the second. By induction X' is K _,-projective since
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it satisfies (c), So this K _; and ZH are isomorphisms,
By the "five-lemma™ 1t now follows that |
K tH[X,A) - [KnngnA] is an isomorphisms So X is K -

préjective.//

Bl

S e s s e ot e e s

hence KnPwresoluble).

Proof. For each Au/ﬂ.V (0< veucx n) choose a

CE-projective Yu,v and a CE-epimorphism nu,v;Yu,v_}Au/ﬁv .
By Lemma 56 there exists nu,v:T(u,v)Yu,v - A with
6. (m..) =n . Put X = X r , and let

7 Y
Wy VIR, VS TV O¢veuen (u,v) u,v

€:X —» A be the unique map determined by the ﬁﬁ,v . Then
. 3

each eu’véxg/xv - Au/ﬂv is a CE-cpimorphism and Xu/Xv

is CE-projective. By Theorem 58, X 1s Kn?—projectiven
Llso € 1is a anepimorphism, So A is Knpﬂdevelopable

by Lemma 27(b).//

o R e et et ik T e e

Theorem 60. For A € gjn? 2

Proof.  Using Theorem 58 we see that a Kn?adevelopment

of A is a Kn—development, and so0 Kﬁfdim A< n?udim A .

We now prove inductively that
KnP—dimA < r=> GE—dixru‘au/ﬁ;.v g r for O srv < u<n, For
r = O we have the result by Theorem 58, Suppose the result

true for r-l where r > 0 , and take. A 65359 . By




ECO

o)
Theorem 59 there is a Kmfudevelopmant C~»X~> A= C oF

A. Tor (< V<ucg n this gives an HP—development

ou/o D R A,J_/&__\__ s cu/cV of Au/ﬂv . By Theorem 30,

- P
v u b

. B . - ) . . -
Kﬂ =~Gim L < T <D nh?~d1m C < r-1 (using Theorem 59). 3y

pasy

induction K “edim G ¢ r-l <> CB-dim G,/Cp ¢ »=1 foF

0<7v<u<n. By Theorem 30, CF-dim C /C, < r-1

&=> CTE-dim AU/AV < v (using Thsorems Iy and h6).//

Main_ Theoren. If the projective_dimension of £§ i9
1 ithen KQP: @ﬁp - En ig Tull and dense: the kernel ‘%
of 'Kn? ia given by a naturail igomorphism:

. 1
1[4,0:K ] = Ext [KHA,KHC;Tgln@] .

Yrocf. Bach object of Z; has CE-dimension < 1 and
so each object of .ﬁP has Kn?-dimension < 1 by
Theorem H0. S0 Kn? is full with ;ﬁf as above by Corollary
21, It remains to prove that Kn? is dense,

Suppose G G-Egn_c Tg;nég has enough projectives

(Thsorem 15) so there exists a short exact seguence

5o £y B o G- O with ¥ projective. By Lemma 5L
211 the triangles F(v,u) = Pw,u) » F(w,v) — F(v,u)

(O < u < v< W< n) are projectlve, But the corresponding
triangles of G are exact. By Theorem 51 this implies
that the triangles of F' are projective. 50 7 is

projective by Lemna 51, By Lemma 54 we may suppose




Fo= 3 J(u )P" (u,v), 2= 2 J(u V)P(ugv) with P'(u,v),
g

pv
P{u,v} projectives in f/g, with the summations over
O0<v<u<n. P {uv,P(u,v) may be regarded as complexes

over o®\ with gzero differentials, and so are CE-projectives.

Now put o
' =27 P =2 7T P v) .
Q ( 9V)P (u,v), Q (L‘L,V) (uy )
»

Then Q',Q are Knlmpfejective by Theorems 43 and 58; more-

m th tions =
over, from the equatiois J(u_9~\r)H an(upv) , We have
Fo=KR , F=KQ. So Kn:H[Q‘gQ} - [P*,®] is an iso-

-1 P .
morphism, TLet 4 =K K . But FLt, é has the extensior
axiom so there exists a pses Q -+ A - LQ' with deviation

-1 . . . s
A7 - Now K 1is homological and K 1is a monomorphism

. K .
so the segquence 0~ F'— F - KnA ~ O 1is exact; hence

G:KﬂA!//
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§3. Three—diagrams in p dimensions.

The remainder of this chapter is aimed at proving
Lemma 54. The results of this section will be needed in the
proof.

Recall the definition of the additive category
(Ch.1 82)., A functor F:f’ a& is a short sequence in o@
We will say F 1is exact when the sequence
0 - F(-i) - F(0) » P(1) » 0 is exact.

Proposition 61. If F:ﬁi > is exact with F(-1),7(1)

projective then F is projective in [?,,CQ] .

Proof. If P,Q are projectives in a@ then the short
sequences P Ei P50, 04 —l> Q@ are easily checked to be
projectives in [%,.&] . But F is isomorphic to the direct

sum of such sequences, and so also is projective,//

Let %p denote the tensor product of p ( » 0)
copies of ? . Those x = (xls“.,;xp) € gp with no x,= O
will be called p-corners, for p > O ; the object of %O
is the O-corner.

— +’ 3 . . o
Let ti’ ti’ ti‘?p—l - ?p be the functors given by

t;(xl"“"xp-l) = (Xlggo.,Xi_l,—l, Xigaoa 3 & ) [

p-1
ti(xl’o- . ’Xp-l) = (Xlgn P gxi_lyog .X.i,o P ’Xp—l) ¥
+
ti(xl’ﬂi‘?SxP_l) -_ (Xlgon- ’Xiwl,l, Xi’ologxp_l) ?

for 1< 1<p « The maps -1 -+ 0, O -+ 1 give natural

. - +
transformations ’ci - ti, _ti -~ ti » Then
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F s (Ft; - Fty - Ft;) gives an isomorphism:

(1) [ o R 21450 4R -

A Tunctor F:?p e& will be called a p-—dimehsional

three-diagram in o@ .

The p-dimensional three-diagram F will be called

exact if for each i with 1 < 1 ¢ p the sequence:

(2) O Ft] ~ Pt » Ft] » 0,

is exaet in {§p-l’&] o

Proposition 62. (a) If F is an exact p-dimensional

three-diagram in oo with Fx projective for all p-corners

~

X , then F is projective in [?p,&] o
(b) If f:P > F' is a map of [4_4,]?,0&] s where

F,F' are exact and fX:Fx - F'X is an isomorphism

~

(respectively monomorphism; epimorphism) for all p-corners

X , then f:F - F' is an isomorphism (respectively mono-

o~

morphism: epimorphism).

Proof. (a) follows by a simple induction using Pro-
position 61 and (1); (b) follows by a simple induction

using the Yshort-five .’Lemmé." and (1) *//

For y ¢ ?P let

(3) S(g) = {}E‘X is a p~corner, X; = ¥, for vy £ 0} .

In particular, S(0) is the set of p-~corners.

We prove now, for y < ¥', x € S(y), x'e 5(y")




ioL

and x' < X , that:

-~ -

oy x ¢ 8(y') <= z'e 8(p .

Suppose x € S(y) and v A0, If yi Z 0 then

x{ =y; =% =y;5 if y; =0 then y< y' implies
1 s = § - - -

< % dimplies -1 < x: X =Yy, = 1,
and so x& = ¥; . This proves => . Buppose %' ¢ s(y)
and yi A0 . If i # 0 then X = ¥y = X} = yi ;  if

y; =0 then y < y' dimplies yi =1, and x' < x implies

<% <1, and s0 x4 yi . This proves <= .

lzy‘i:‘nx i

t
i
Suppose for each p-corner x an object D(x) of
is given; for example, D could be a p-dimensional three-

diagram, Define I D: %p + & by:

(5) (ZD)y = ;S‘J( )D(g,:) ;
' Xeo\y

(6) if y < y' then (ZD)y -» (ID)y' dis the matrix with
typical element D(x) - D(x') the identity
if x = x' , zero otherwise,
We shall prove that the seqguences:
0 - (ZD)t; - (ZD)ti - (ZD)t; - 0,
are all split exact, and so: '
(7) ZD is an exact p~dimensional three-diagram,
This follows from:

(8) S(tjg) is the disjoint union of S(tggf and

+ . .
S(tj;z) for y e %P"l .




To prove (8) we observe that X € S(tgy) implies X5 = -1,

and X ¢ S(t;X) implies Xy = +1, so S(tgz) and

S(tgz) are disjoint. 4Also, if X ¢ s(tjg) and

X /é S(tgg) then x is a corner and g # -1, so Xy = 1
and x € s(tgg) ; this proves S(t,y) is the union of
8(t;y) and S(tgg)

Thus we have

(9) (I)t; = ()] ® (2Dt
If F is a p-dimensionsl three-diagram then:

(10) Z(rty) = (ZP)t] , PtY) = (ZM)t] ,

and E(Fti) = (EF)ti .
A map f:F - JF which is the identity at the p-corners
Will be called a splitting of F ; if such an f exists
we will say P splits.

Prop081t10n 63. An exact p-dimension three—-diagram

which takes projective values at the p-corners splits.

Proof. Suppose O - A 3BR¢C o0 is exact, A,C are
projective and f:A —» A', g:C - C' are maps in any abelian
category. Let P be a left inverse of 1 . Then the

fdllowing diagram commutes:

i \B P _...}C
| (= e
rT 3.;.\.@0'

) RGN
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We now prove the proposition by induction on p . For

p = 1 the result follows from the above by taking

A' = A, C' =C, f=1 and g=1. Suppose p>1 and
the result true for p-1 . If F 1s an exact p-dim
three-diagram taking projective ﬁalues at the corrners then

-

, Ft7 are exact and take projective values at the
1 1

(p-1)=~corners, so by Proposition 62 are projective in

Bt

[ é%yﬁféQ] ; also, in this category, the sequence (2) is
exact with i = 1 . By induction there exist maps

o - - o +
£:Ft; - z(Ftl), g:Fty

the (p-l1)-corners. By the sbove there exists a commutative

- 2(Ft§) which are the identities at

diagram:

o +
Ftlf~—*+ Ftl-—~“~+ Ftl

i

f

h l g
W N +
(ZF) t;— (3F) ty—— (ZF) ty
(using (10)) . All the p-corners are images of (p-1)-

corners under ti and t; . From (1) with 1 =1 it

follows that f,hy,g determine a splitting of F “//

Proposition 64. Suppose D(x), D'(z) ape objects

of ,& for each p~corner x . Then (ZD,ED’;[§P,&]) is

isomorphic to the additive group of matrices

Z D(x) — Z D'(x) with elements D(x) - D'(x")
x¢5(0) z€s(Q)

zero whenever x' £ x ; the isomorphism is given by

O ]

~

P o= = £
(fg)
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Proof., Suppose f:ZD - ZD'; we show that £, is

~

such a matrix. If x' & X , where x,x' are corners,
Gt "1‘ ) —~ "~

then there exists a Jj such that Xy = -1, Xs =1 ;

so x ¢ s(t;o) and x'e s(tgq) . Thus D(x)—sD'(x")
induced by fO factors as:

~ T
D(x)» (20)430 = (D)0 Su(sD')0 » (2D')t1Q = D' (x') ;

but this is zero since the diagram:

(ZD) %59 —s (ZL)Q '(ED)’G;‘E
£ - | f l £
th WV Q¥ & tj~
- +
(ZD')th- ~ (ZD')Q0 ——— (zn‘)tjg
commites.

Suppose g{x,x'):D(x) -» D'(x') is a map of R ror
pairs x,x' of p-corr~rs with x' < x . For any ¥ 5,5pp

let £_:(ZD)y — (Zp')y %be the matrix Z2o(x)—>2 D' (x)
¥ xe3(y) xes(y)

with typical element D(x) - D'(x') equal to g(x,x') if
x' < x , and zero otherwise.

From (4) it Tollows that, for y < y' , the following sguare

commutes:
ZD(x) > ZJD('}rcg
xes(y) xes(y
f¥ fX'
Voo
Zp' (x) > 2D (%)
z€s(y) x€s(y")

where the rows are given by (6). Thus we have defined a

map f:3ZD = ZD'; and clearly fo = (g(%,g')) .

o
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Thus f}f>fo is surjective,
Suppose T = (fy):ED ~ ZD' is a map with £, = 0,
We show that fV = 0 for each y and hence prove frayfo

is injective, and so an isomorphism. Take y € g@p and

define y' Tby:
i = i —
yi = vy if vy, £ -1

= 0 if y, =-1.

Then 8S(y) < S(y') < 8(0) . The following diagrams commute:

(ZD)0 s (ZD)y’ (2p)y— (ZD)y"

0 } T il l £,
. vy g W VRS

(D")0— (ZD')y! (zp*)y-— (ZDY)y' .

By (6) the horizontal maps of the Tirst diagram are projections
(and so epimorphisms) and those of the second are copro-

jections (and so monomorphisms), Thus fy, = 0 , and then

~

f.. = 0 as reguired,
y 4 //

Theorem 6° If the following are givent

(a) two functors F.B °% _)o@\ which are exact and

projective at_the corners;

.u

0 , the fcollowing

~

(b) for each non-zero X € gﬁ s & map f Fx - B X
x'

such that, whenever 0O #£ x

-

square commutes

£
Fx A L P'x
Voo
Px’ > Pzt
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then there exists fO:FO - F'0 such that F = (fx):F - B’

iS_a‘magéof [éﬁfigi -

Proof. By Proposition 63 and the nature of the result

We may suppose F = ZD, F' = ZD'. Suppose x,x' are p-
corners with x' < X but not both x' = (~l,-1,...,-1)
and x = (1,1,..,,1) . 1If x' # (-1,-15...,~1) then
x%:l for some J , so lzxjngsl and ijl.
Similarly if x # (1,1,...,1) there_exists: j such that
'xj = xi = -1 . Thus there exists j such that Xy = xé R
Let sj: ép-l - %P be defined by:

B, (yls=--9y 1) = (ylynoogya ls syas'ﬂvsyp l) .

° 1 :
).st - F s; 1s a map of [gp—l"&] and sO

by Proposition 6l is completely determined by

£, 4 Z D(g) — ID'(z) .
S5 zES(s %) z€8(5350)

But x,x' € 8(sjQ) and x' < X , so we have a map

D(z) - D' (x') . 1If also X, = x‘k for some k £ j we show

that the resulting map D(x) - D'(x') induced by foxo 5

the same as the one induced by fs-O . Suppose J < k and
) J=
let Sjkf%—2 - % be defined by:

Jk(yliﬂcngy ) (y an_-nny lgxagyagoaogyk 29Xk’yk_lype ~ jTI)'"‘Z)'

From (b) it follows that f 50° fskO both induce

iy »F(SJKO) ~+ F'(5;k0), and this in turn induces

SjkQ
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D(x) - D'(x'), unique by Proposition 6l

Hence the fy determine a map D(x) - D(x') whenever

el

are corners with x' <

§,§' x but not both x'= (-l,—l,aa,—l)

. and 2‘{ - (lgl,oc.pl) . Let D(lglyuoo,l) - D' ("lp_lgano _9""1)
be any such map (for example, the zero map). Let

£y £ D(x) -~ Z D'(x) %be the matrix with typical

~ xe3(0Q) xes(0) 7

element D(x) - D'(x') as above when X,x' are corpners with

x' < x , and zero otherwise.
Let h = (hy)sF ~ F' be the unique map (Proposition 6l)

with hy = £, . By definition of £, the following disgranm

-~

commutes:
RO

~

£
2V l tQ

FIQ WF’tO s
£ or t; for any 1 . But the corresponding

> FtO
T

whenever + = t

diagram with h replacing f alsc commutes and fo = ho

and PO - FtQ is an epimorphism. So Tig = Byeg » ALL

~r

y € g%) with 'y # 0 have the form tx for some % and

some X . So hg = f& for y#0. These h = f:F -+ '

is a map as required.//
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Blie  Proof of Lemma 5.

The plan of proof is: (b) = (a) = (c) = (b) .
From Theorem 14, (b) => (a) is clear. The proof of
(a) = (¢} is routine, but that of (¢) = (b) is lengthy
and reguires the preceding theory.

Suppose G = J( )B with O < ¥y<X<n, and

Le¥
O<u<Kv<wW<n. We examine the triangle:

(1) G(vyu) - a(w,u) » G(w,v) - a(v,u) .

From the definition of jfn (see B1) and Theorem 10 we have:

1A
<

G(vsu) = B if y <uc<x

i

L™B ir u < T<v<x,
= 0 otherwise;
G(w,u) = B if y <u< x

= L_lB if uw<ey < W< X,

1A
&

= 0 otherwise;

G(w,v) = B if ¥ < V<XLW,

=115 ir v < ¥

1A
=
A
™

= 0 otherwise.

It 0 £ VvV<w<n then (1) becomes

BiXBo0- B,

§A
e
IA
o
A
e
A

If 0<y<u=<vex < W < n then (1) becomes
0 -+ B % B=-0.
£y <v<e<x<w<n then (1) becomes

21
1p s g o p b1l .

I u< v and O

1A
o

-
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If 0<u<y<v<w<excn then‘(l) becomes
ey PR R e
If 0<uw<v<y<w<x<n then (1) becomes
0st 321150,
Otherwise (1) is the zero triangle (this is left for the
reader to check), _
It follows that (1) is projective in gl ég if B is
projective in @ .
If G =G'@G" then the triangle (1) for G is the
direct sum of the triangle (1) for G' and the triangle

(1) for G“ . Thus, if G = 5 J
O« <Y<XL D

 P(x,y) projective in (B then G has the property (c) .

(X’y)P(X,y) with the

But a retract of a G with the property (c) also has the
property (c). So, from Theorem 1l we have (a) => (c)

We identify ﬂi « Let 8 = {(u,v)|v < u < ven} ,

or
8, = {(ufrn,v+rn)|03v<'u<n} . 821‘ ~ds { (ve+rn, u+(r—l)n)|0<v<u<n}.

Then Sn is the disjoint union of the Si and each Sn
has 3n(n-1) elements. For (u,v) ¢ j.n s put

23:"

Plu,v) = (wrrn,v+ran) e S

2pre]

2r—1(u v) = (v+rn,u+(r-1)n) e S, .

Thus we have isomorphism Lr:-S?l - SII;' for each r . Recall
the definition of j given in Ch.1l 8 3. We see that

jl‘ is the stable graded model given as follows:
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(i) the objects are pairs (u,v) of integers satisfying
the condition v < u < ven 3

(ii) if (u,v),(u',v') are two such pairs, then

[(u,v),(uivl)] = Lerif u'-n<virng v cutrncu!

L2r—;gfif v'<vtrngu’ cukrnevien
= 0 otherwise,
(iii) composition is that of g graded model (Ch.1 83);
(iv) L(u,v) = (ven,u) ana ZCugv)g[(u,v),(v+n,u)]1=zz
is L eZ .
. oo . L
By Theorem 3 we may identify TglnB and[fns@]L .
AL
For y<x<y+mn and B 603 ’ J(X’y)B € [511,&3]1;
is given as follows:
(i) for v<u<va+n .

(7 B) (u,v) = .LPB if there is a non-zero

(x,7)
morphism (x,y) - (u,v) of degree p in jﬁl‘ ,

= 0O otherwise,
(ii) for V<UL V41, 8PS+, (J(x,y)B) (a,v) - (J(X’y)B)(r,s)
is zero unless the composite (x,y) - (u,v) = (r,s) is
non-zero in which case it is Zq:LpB—aLp'FqB, where p isj the
degree of (x,¥) -» (u,¥) and q is the degree of
(uy,v) = (v,8) .
‘Suppose P(x,y) is an object of @ for 0<¥y<x<mn,

Define P(u,v) for v < u< v+ n by

PL¥(x,5) = IPp(x,y) .-
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(2) Let G = X J( )P(x,y) » Then from the above
O<y<x<n VFo¥

we see that:
(i) for v<u< v+ 1,

Glu,v) = S P(x,¥y)
U-N<y< V< XU

(ii) for wv<u<v+n, s<r<s+n and (u,v) - (r,s) of

degree q , G(u,v) - G(r,s) 1is the matrix with typical
element P(x,y) - P(x',y¥') equal to Z%(ny) ir
(x',7") = 1%x,y) , and zero otherwise.

(3) with G as above and v < u < v+n , P{u,v) is the

image of the map G(u,v) - G{m+v-1l,u-1) .

Proof. G(u,v) is given in (2)(i), and

E(n+v-1,u—l) = b P(x,y) » But u-my<vex<u and
V=l<y<eu—~1< X< D+ vl

v—l<ygu~l<x5n+v~l imply X =4, . ¥y =V . So from
(2)(i1), G(u,v) - G(n+v-1,u-1) is the matrix with all

elements zero except P(u,v) = P(u,v), which is the identity%/

Suppose G € Tgln_dg satisfies the condition (c) .

From the definition of :%nL it follows that:
(4) each triangle
a{v,u) -» a(w,u) - &(w,v) - a(v,n)
is projective in Tgl@ for un< ve<w<u+ n,
Let I(u,v;t,w) denote the image of G(u,v) ~ G(t,w)

if v<wecu< t<«<v+n, and 0 otherwise. In particular

we set P(u,v) = I(u,v;n+rv-l,u~l) , and note (since G is




stable), LP(u,v) = PL(u,v) . With this choice of
P(u,v) , let G be given by (2) .
(5) 1r yv<x<u<y+n and v<wWw<u<t<v+n then (x,y) - (u,v)'
induces a monomorphism |
I(x,¥5t,w) = I(u,v;t,w), and (u,v) - (t,w) ihduces an epi-
morphism I(x,y;u,v) - I(x,y;t,w) .
(6) if wvewexcucteven and v A x £ t, w# u then the
sequence:

O = I(x,vit,w) - I(u,v;t,w) - I(u,v;t,x) - 0,
is exact.

Proof. The following diagram commutes.

G(xy V) oy G, v) gt a(u,v)

/

I(x,v;t,w)-ﬂm+m~f>l(u,v;t,w)~—-———faI(u,v;tsx)

G(x,w) G(‘z{v,t)// /
- Ny Ny | |

G(t,w)=— a(t,w) > 6(t,x)

G(I;-!-V,W) /

(where we replace G(n+v,w) by O 4if v = w). A diagram

chase using the exactness of the sequences:

G(x,W) — c(t,w) —— G(%t,x)

G(X, V) = G(x,w) — G(n+v,w)

G{n+v,t) - a(t,w) —— G{n+v,w)
yields the result./y

From (6), using suspension, we have the following result.
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(7)  If y<vewcuctenty and u # yen,t Aven, y #w then

the sequence

0 - I{u,y5t,w) - I(u,vit,w) — T(u,vin+y,w) — 0

is exact./y

A morphism (u,v) - (t,w) of degree zero in fnl’
with u < t, v < W will De said to have length t-u+w-v .
The morphisms of length zero are identities., All morphisms
of length > n-1 are zero; for if (u,v) - (t,w) 4is of |
degree zero and is non-zero then V£W<ust<v+n; but if it
ﬁas length » n-l then tevinet-u+wtl<t , a contradiction. .
Morphisms of length 1 have the form (u,v) - (u+tl,v) or
(4, v) > (u,v+1) . A map of length Af<n~1) is a composite.
of A maps of length 1 ; if wveWeucteven then (u,v) ﬂ'(th)-
is the composite (u,v) - (Wi, v)= ,..~ (t,v) —=(t,v+1)- .é(é,w)p
Under suspension the morphism  (u,v) - (u,v+1) gives a |
morphism of type (u',v') - (u'+1l,v') . If (u,v) = (t,w)
is non-zere, of degree zero and length n-2 , then
t = mtv-l and w = u-l; for t<vin = t—U+W+D s B0
~2<W-u<0 , and W = u-l; then n-2 = teutw—v gives
't = mv-l . In this case then I(u,v;t,w) = P{u,v) .
(8) Suppose veW<ugt<v+n . Put A = t~u+w—v; P = n-A-2
and gq = u-w-~l , Then 0 <q9<Dp.
(9) In the situation of (8) suppose p > O and
£ = (X4s000,%p) € 2}p (see 83), Put:
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r = max{ilo < 1 Qo Xy = -1} 1f this set is non-empty,

it

O otherwise;

r' = min[i|0 < i« 4s%X,= 1} 1if this set is non~empty,

= gtl otherwise:

8 = max{i[q < i< DyX, = ~11 if this set is non-empty,
= q otherwise;

s' = min{ilq < 1c¢< DyX, = 1} if this set is non—-empty,
= p+1 othervise,

Then O <2< g, T<r'<atl, g< s<op, grl < s'<  p+l .

Bow put u'= u-r, v's vig-8, $'= t+p-s'+l and
w'= whg-r'+l . Notice that:
V= VHQ=S = VHU-W-les < u-l-s < u=r = u' ,

U= U-r < U<t < bestptl = teA-lines = vigestin = v'4n 5
b = P q

=
1

W+q-ri+l < Wrg-s'4ptl = u-lft'ut <t

1< B 414w = WpE A28t = utn-s'= wlantr'-s' < whn ,
So (u',v'), (t',w') ¢ A%QL . Also notice that:

7= u' = (p+l-s') + (t-u) + » > O, and
W' =v' = (wev) + 8 — p'4+l >0,

so the length A' of (u',v') = (t',w') is defined;

morecover:

At the u's wle v!

=P+ 2+ A~ s'tr « r't s
= n - s'+r - plisg
>Pn—-p-1-~qg~-1+g¢g

= A
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with equality if and only if x = O ,

~

(10) T2 T = (FyreeaE) o %P obtain 7, T', 5, 8,

~

—

u'sv', ', W' as r, r', s, s', ut, v', t', w' were

obtained from x. in (9); we will use similar notation for

R, ¥ etc. Clearly r < 8, 8 ¢ r+p, 8'¢ T'+p, ' < B' .

T ~

(11) If x < X then, from the definition in (9), we

'« r'y, 8« s, 58'< 8' , These inequalities

-

have r< r, T

-

together with those of (10) give the following inegualities:

vie Ve u'< Ul'c v+ n, w'e We t'c Tle w'+ n .

| ¥a)

(12) . In the situation of (8) we define a functor

F = Fu,V;t,W'éép - &30 e For p =0, F is given by
the object P(u,v) of ng » For p>0, P is given
as follows:

(i) Px = I(u',v';t',w') in the notation of (9);

(11) if x < X then Fx - FX 4is the map induced on
the images of the horizontal maps by the vertical maps
of the diagram:

Gluty,v!) —————— a(t',w')

) l

G(u',v') — s a(E, W),
{recall (11)) .
Since ¢ 1is - a functor, in order to check that F is

a functor we need only verify that: x < X with




e

(5, ;é%b) = 0 implies Fx —» Fx 1is zero. But in this

‘ecase there exists an 1 with X, = -1, P 1. 1If

i<q then r'¢icr (recall (9)), so u'< w' and

the sguare

(u'yv') ———— (')
l |
(@ v') ——— (B',w")

has both legs zero, so Fx - Fx is zero., If g < i

s 80 v'+n < ' and agsin the map is zero.

s'c i

IA

(13) 1f Px # 0 then » < r' and s < s' . For

e

r'-r = u'-w' and s'-s = mv'~t'; and Fx £ 0. implie

(14) - Suppose (u',v') o (u,v), (t,w) » (t',w!) are of

degrece zero in ;ﬂL , in the situation of (8), such that

the composite (u',v') - (u,v) - (t,w) - (t',w') is
non-zero., Put r =u - u', s = grv=v', s's prt-t'+l,r
= grW-w'+l, Al= t'-u'sw'—v', p'= n-A'=2; note that
rlepr =u'-w' > 0, and s'-s = mv'~t'> 0. Let

X = (X450.. 5% ) Dbe given by: |

Xx.= —-L for O« i

jA

r or g< i< s,

t

= 0 for r<i<r'or s<icsl,

= 1 for r'-1< i<gq or st=1 < 1<

then

S

¥

j&

£z

(u',v') » (t7,w') non-zero, that is, v'¢ wicu'c t'c n+v' .

&

Then Fx = I(u',v';t',w') . So we have found exactly the

non-zerc values taken by ¥ (see (13)).
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(15)  In the situation of (14), the number of x; Which

are zero is r'-r-lt+s'ws-l = g+w-w'-u+ru'+prt-tt—g-vevi= p',

which is independent of u, v, t, w . Define
LIS o

(i) for y = (y1,..,,yﬁ,),' F'y = Fz where g:(z1,.n,9§p)

is given Dby:

z, = -1 for O<i1<¢r or g« i< s,
= . for o i r!
yl_r < < 3
=¥ for s < 1 < s'

pl-st+1l+i

= 1 for r'-1<i¢q or s'-1<ic<p;

(ii) if y ¢ y' then 2z ¢ 2z' , where z' 1s obtained

from y'

~

as z was obtained from y in (i), and
F'y - F'y' 1is the map Fz - Fz' . _
From the definitions of By, vit,w and Fug,vg;tcwr it

_ L
;follows that F' = Fuigvl;tiwa

(16) In the notation of (8),(9),(10) suppose XX € é%P

are such that r =7, »'= 7', s = 8, s'= 5", Then

FXx = FX . We shall show that Fx and Fg are actually

~

linked in P by identity maps; more precisely, we shall

1 m -
show that there exist X = y s ¥ see+sy = 5 Such that
. | . X
Fyl = Fx for 0< i< m and either gl 1 < ¥

1 i-1

with Fy - Fy  the identity map, or y < ¥ with
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i i-1 . .
Fy - Fy the fentity map. We may as well suppose
Fx # 0 and that x has the form of the =x in (14) .
Since r»=r, s =8, r'=1r', s'= 8', X satisfies the
conditions:
Xx; =0 or -1 for O< i<r or g< i< s,

=0 for r< i< r' or s< i< gt

=0 or 1 for r'< i¢ g or s'< i< p;

-

Il

= ~1 provided r #0 ; X_,=1 provided r' £ g+l,

LK

= -1 provided s £ q Es,: 1 provided s' # p+l,

2l

S
Let ¥ = (¥ys+..,% ) Dbe given by:
yi = -1 for O< ic<r or g< i < 8,
= X. otherwise,

[

Then v ¢« X 5 ¥ « and the maps Fy - Fx , Fy - Fx are

"1 —

t b

the identities (see (12)) “ 1/

(17) . Suppose x is a p-corner and F is as in (12).

If q=0 then »r'=1=r+l; if g > O then x; =1
for r < i< q; so rt < r+l . If g =p then
s'= ptl = s+l; if g < p then ;=1 for s<igp,

so s' 2 s+1 . So
‘' ¢« r+l and s8' ¢ s+1 .,

If »'= r+1 and é': s+1 then t'= nmv'~l azand w'= u'-<lL
so Fx = P(w',v') . Otherwise the length of the map
(at,v') = (t',w') is

tep=s'+1=Ut Wit g-r '+ L~v—g+s = p+M(r+l-r' )+ (s+l~s') > n-2 ,
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50 we have:

if x 1is a p-cormer then Fx = P(u',v') 4if »r'= r+l

and s'= s+l, = 0 otherwise.
The corners x with r'= r+1 and s'= g+l are those
X with: xy ==L for O¢igr or ggigs,

= 1 for r<icqg or s<igc<p;
there are (g+l)(p=g+l) such corners. It follows now
from (14) that the non-zero Fx with X a corner are
exactly the P(u',v') where the map (u',v') -» (u,v) of
degree zero is Such that the composite

(ut,v') - (u,v) -~ (t,w) is non-zero; there are (qfl)(pmq}l)

such (u',v')'s’'.

(18) If wv<y<u<x<vin then I(u,v;xy) is

y
projective in &% .

- Proof, If ¥y = v then the triangle:
G(u,y) » G(x,y) - &(x,u) = &(u,¥),

is projective (see (L4)). 8o (see Theorem 15) I(u,y;X,¥y)

is projective. If v < y then we have an exact sequence:
0 = I(u,v;x,y) = I(u,y;x%,y) = I(u,y;mv,y) > O

by (7). But from the first part I(u,y;x,y) and

I(u,y;n+v,y) are projective, so I(u,v;x,y) 1is projective. ,,

(19) F= B, vit,w

" as defined in (12) is exact and takes

projective values.
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Proof. F takes projective values by (18), For
Agp’q‘ as in (8)¢ Suppose X"l goas ’xi-1 9Xi+1 Yoo PXD € %

and put x = (X1¢...,Xi_1,O,Xi+1,u..,XD) 5

X_':X e os 8K . -1 X, o 08 9k
(19 RPN Rt IR yp);

o~

1

x =(x X 1,x ses3Xp)
120009y gy g2t .

~

Obtain r,r',s,s',u',v',t',w' from x as in (9). Then

Fx = I(u',v';t',%')., Er shall show that the sequence:
(20) 0 - Fx - Fx - F§+ - 0

is exact. Bight exhaustive cases must be distinguished,

(i) r'< i < r, Here F§—= Fx = F§+ and
u'< w' s0 the map (u',v') - (t',w') is zero; hence
the sequence (20) is zero,

r' . ﬁere Fx = Fx and

(i1) O0< ig¢r, ig¢
F§+ = I{u',v';t' ,weqeivl) = 0 since u'=s u-r < Weg-i+l ;o
so (20) becomes 0 - FXe—s Fx -0 = 0.
(ii1)  r < 1 i Qs r's i . Here Fg = Fx and Fg =
I(u-i,v';t',w') = 0 since wu~-i < Wwig-r'+l =w'; so
(20) becomes 0-»0= Fg-—l+ Fx - 0.
(iv) r< i< e'~l. In this case (20) becomes:

0 = I(u,v';t',w') »I(u',v' ;6 ,w ) = I(u',v';tt,u") » 0

where u" = u~i = w+g-i+l, and this is exact by (6).
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(@)

(v) s'< i< s. Inthis case Fx = FX

since mv'¢ t' .

. . . - +
(vi}) q<1gss1i¢s' ., Here Fx = Fx and Fx =

I(u',v*;t+p—i+1,w') = 0 since v'+n ¢ t+p-i+l . So
(20) is as in (ii) .

. . . + -
(vii) s<ig¢p, s'¢ i+ Here Fx = Fx and Fx =

I(u',v+g=i3t",w') = O since ntvig-i ¢ t' . So (20)
is as in (iii).
(viii) s < i ¢ s'=1 . Here (20) becomes:
0 = I(u',v"st',w') » I(ut,viit',w') - I(u',viim+v",w') - O

‘where v" = v+g~i'= t+p-i+l-n , and this is exact by (7)9//

.

- (21) Let T(u,vit,w), F=TF

be obtained from
U, v3t,w

G as I(u,v;t,w), F = Fu,v;t,w were from G . If

v <« Ww<u< t< ven then:

T(usv-;t-’w) = L P(%¥) «
' ' W< X<U :
*t—n<§£v

If also V< W<t Vhn Veveluglc o,

gt et —

induced by the commuting square:

Gl{u,v) ——————r

\

G(u,v) —————

G(t,w)

3

G(T,w)
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is the matrix with typical element P(x,y) - P(X,y) the

identity if (x,y) = (X,¥) and zero otherwise (see (2)).

Fu,v;t,w =2 F

22 .
(22) . U, v;t,w

PI‘OOf. Take X - (X1 50088 g:x:p) iI’l ?p ° In the
notation of (9), if »r'c r then Fx = 0 ; moreover, if

x is a p-corner with x, = x; for xi #Z 0 {(i.e.x e8(x))

i
then r'< T , so Fx = 0 (see {17)); thus (ZF)x =0 .

1

Similarly both sides are zero at X if s8' <« 838, 8So we

may suppose T < r', s < s8' (equality is impossiblel).

Thens: _ :
Fx = I(ut,v';t',w') = = P(a,b) .
" : w!<a<u'
t'encb<v’

Suppose X € S8(x); then r < Ty r'< r'y, s ¢ 8§ s¢ s' .

Also Fx = 0 unless r'=r+l and s'= s+l . So:
PPz = _ Z P(u-T,v+q-5) = Fx .
PLTC T
s<s<s’

That the maps of F and ZF égree- is clear from (12)(ii),
(21) and 83 (6). ,,

(23) Por 0 < p < n-2 let H§ denote the following
proposition: A

there is a function f which assigns to each quadruplet
(ayv;t,w) of integers such that v <W< u¢ t< v+n and
net+u-w+v-2 < p- (such quadruplets we shall temporarily

call p-=suitable) = map
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£(u,vit,w) ¢ I(u,v;t,w) - I(u,vit,w)

of &30 , and if (u,vit,w) 1is p-suitable then the
follbwing conditions sare satisfiedﬁ
7l if t-utw-v = n-2 then f(u,v;t,w) is the
identity of P(u,v);
2. LE(a,vit,w) = £{vin,u;wrn,t);

73, the family g = (gx) of maps gx:Fu,v;t,W§ =~

= 5 — 1 T4t t
By, vst,ws 8iven by g = flut,vtstt,w') ,

-

where u',v',t',w' are obtained from X asS in

(9), when the domain and range are non-zero, 1s

a natural transt tion Y F . a
ansformatil g W, Vit W = B vyt,w

(2yh) I, is trué for 0 < p g -2

Proof. For p =0 take f 1o De the function which
‘assigns to each non-zero map (u,v) - (t,w) of degree zcro
and length n-2 +the identity map of P(u,v); #l, n2, a3
are then satisfied. 5o HO is true.

The proﬁf now proceeds inductively dn P « Suppose
T, q (0 < p ¢ n-2) is true; then [, I8 true for
0 < p'< p~1 o There exists f defined on (p-l)-suitable
quadruplets satisfying nl, n2, n3 . We must define £
ﬁow on those p~suitable guadruplets (u,vit,w) with

p = n-ttu-wiv-2 ., Suppose X = (x19,.°,xp) #0 , and
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obtain u',v!',t',w' as in (9). Then
p'= n~t'+ul-w'+v'-2 < p~1 . (see (9)), so we have
f(u',v';t',w'):F§—~;§§ whenever the domain and range
are non-zZero, where we omit provisionaily the u,vit,w
subscripts of F, F; if either the domain or range is
zero we have the zero map. Suppose 0 # X < X # 0 ; we

ghow that the diagram:

Px ——= Fx
bos
F% ————— F§ s

commutes, where f'= f(u',v‘;f'sw'), Fl= fut,v;t!,w')
in the notation of (10), If Fx =0 or Fx = 0 this
is clear; so we suppose Fx # O and Fx # O . Then
(u',v') = (&",w"), (0',v') » (F',w') are non-zero, and

so by (9), (u',v';t',w'),(d',v";t',w') are (p-l)-suitable.

We may suppose X is an in (1Y) and X is given similarly

with r,r', s,8' replaced by I, r', s, 8' sgince this

X, give the same square by (16). Let % be given by:

~

1]

ii =<l for O<ig¢r or g<igs,
= 0 for r< i< or s<ic<s',
= 1 for ¥'-1<i<gq or 8'-l<igpo.
Then 2 A0 and x< £ < Xx. If FX =TF% =0 then both
legs of the sguare are zero, and so it commutes, 3o wWe

may suppose either FZ # O or FXx # O, Then



(qr,¢') (£,%') dis non-zero; sO (G, ¢ ;€ ,W') =
(u',v';%',w') is (p~l)-suitable. Thus our square splits

up into the following two squares:

t t

px — 5 Tx P > FE
y \ l y
FRTE R s P T m PR

where #£' = £(u',¥';t',w') . In (14) we observed that the
diagrams P, F restricted to those g with z; = X
for =x, # 0 are just the diagrams Fug’v,;t;’w,’

F, . Moreover, X is such a g , SO

',Vt;t',W'
Fx » PR , Fx » F{ appear in these respective diagrams.
Since p'< p~l, ﬂﬁ, is true with the "f" taken to be the

restriction of the " of 1[I

. So by w3, the first
p-1 1

square commutes. Similarly, since X; = Ei for' Ei #£0
and  p'< p-l1 , the second square commutes. Thuis the
original square commutes.

This shéws that we are in the situation of Theorem 65.
For each (u,v;t,w) with Nttu-Wev—2 = D ,

vew<ug t ¢« v+n and 0 < v < u < n choose a map

—

. = P t !..tt W‘

g°Fu,v;tyw - Fu,v;t,w sueh that gg (ut,vt;tt,wh)

when x # QO and Foovetoud Z0 , and g, = 0 otherwise:
oVl &£ :

this choice is possible by (22) and Theorem 65.

Put £(u,v;t,w) = g5 »
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Using the eguation ILf(u,v;t,w) = £{v+n,u;wtn,t)
we thus obtain a map f(u,v;t,w) for all p-suitable
(u,v;t,w) . With this choice =nl, n2, n3 are satisfied.

So is true.
I /7

(25) Let £ beas in g _, . ZThen h = (h(u,v)):
¢—=G given by h(u ) = £{u,viu,v):6{u,v) - G(u,v) is
9

a shtable graded natural isomorpﬁism.

Proof, h is stable by #w2 , By w3 the dlagrams:

G{u,v) —— I{u,vit,w) —— a(t,w)

F(u,viu,v) l £(u,v;t,w) i f(t,W;tsW)ll
; ",

G(u,v) —————— T(u,vit,w) ——=+ G(t,w) ,

commute for (u,v) - (t,w) of degree zero; using stallity

this implies h is natural. By =nl, 3 £ gives

g:Fu,v;u,v - Fu,v;u,v ) and g§ =

Wwith 8y = h(u,v

if x 1is a corner. 3o h(u v) is an isomorphism by
3

Proposition 62(b). So h is an isomorphism.//

(26) In Lemma Sh, (o) == (D) « /)
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