Abstract substitution in enriched categories

Brian Day and Ross Street

Macquarie University
New South Wales 2109
AUSTRALIA

March 2002

Abstract

Enriched categories equipped with an abstract substitution process are defined in this paper, and called substitudes. They generalize both monoidal enriched categories and operads, and are a little more general than multicategories. They can bear braidings and symmetries. There are two convolution processes with distinctly different properties.

Introduction

Substitudes slightly generalize multicategories in the sense of Lambek (see [Lk] and [H]). In [DS2] we called them lax procomonoidal categories as one of many related structures. Our purpose here is to centre attention on substitudes in the enriched context and to further study two convolution constructions which we now call standard and non-standard. The standard convolution reduces to the original one defined by the first author in [D0] when the substitudes are (pro)monoidal where it was pointed out that the monoids are the (pro)monoidal functors; this generalizes to the present setting. The non-standard convolution was inspired by [BDK] as was our treatment here of the "annihilator algebra".

Substitudes generalize both monoidal categories and operads. It is therefore natural to define braided and symmetric substitutes which generalize braided and symmetric monoidal categories in the sense of [EK] (and [JS1]) and the symmetric operads of Peter May [M]. We define commutative monoids in braided substitudes and Lie algebras in additive braided substitudes. Each substitute can be symmetrized in a simple way that has no analogue for monoidal categories.

We deal throughout with enriched categories for which the basic reference is Kelly’s book [Ky].

§1. Substitudes

Let \mathcal{V} denote a symmetric closed monoidal category which is both complete and cocomplete. We often write as if \mathcal{V} were strictly associative and unital.

A \mathcal{V}-substitute is a \mathcal{V}-category \mathcal{A} together with:

- for each integer $n \geq 0$, a \mathcal{V}-functor
\[P_n: \mathcal{A}^{\text{op}} \otimes \ldots \otimes \mathcal{A}^{\text{op}} \otimes \mathcal{A} \longrightarrow \mathcal{V} \]

whose value at \((A_1, \ldots, A_n, A)\) is denoted by \(P_n(A_1, \ldots, A_n; A)\);

- for each partition\(^1\) \(\xi: m_1 + \ldots + m_n = m\), a \(\mathcal{V}\)-natural family of morphisms
 \[\mu_\xi : P_n(A_1; A) \otimes P_m(A_1; A_1) \otimes \ldots \otimes P_m(A_n; A_n) \longrightarrow P_\xi(A_1; A) \]

in \(\mathcal{V}\), called substitution, where we use the shorthand
 \[P_k(X_1; X) = P_k(X_1, \ldots, X_k; X) \]
 \[P_\xi(X_1; X) = P_m(X_1, \ldots, X_1m_1, \ldots, X_1n_1, \ldots, X_{nm_n}; X) \]; and

- a \(\mathcal{V}\)-natural family of morphisms
 \[\eta : A(A, B) \longrightarrow P_1(A; B) \]

in \(\mathcal{V}\), called the unit;

subject to the commutativity of the following three diagrams involving the partitions \(\xi\):
\(m_1 + \ldots + m_1n_1 + \ldots + m_r1 + \ldots + m_rn_r = m\), \(\zeta_1: m_1 + \ldots + m_1n_1 = m_1\), \(\zeta: n_1 + \ldots + n_r = n\), \(\zeta_2: m_1 + \ldots + m_r = m\), \(1_n: 1 + \ldots + 1 = n\) and \(!: m = m\), and making use of a slight extension of the shorthand.

A \(\mathcal{V}\)-substitute is what was called a "lax procomonoidal \(\mathcal{V}\)-category" in [DS2]; it (or, more pedantically, a small one) is precisely a lax monoid in \((\mathcal{V}\text{-Mod})^{\text{op}}\). A premonoidal \(\mathcal{V}\)-category in the sense of [D1], later called promonoidal, is essentially a substitute in which the morphisms \(\mu_\xi\) are universal (that is, express their codomains as coends over \(A_1, \ldots, A_n\) of their domains) and the morphisms \(\eta\) are invertible.

An oplax monoidal \(\mathcal{V}\)-category is a \(\mathcal{V}\)-substitute for which each of the \(\mathcal{V}\)-functors

\(^1\)The summands in our partitions are allowed to be zero and in non-monotone order.
$P_n(A_1,\ldots,A_n;\cdot):\mathcal{A}\to\mathcal{V}$

is representable. This agrees with the terminology of [DS2] and amounts to a lax monoid in $(\mathcal{V}\text{-}\text{Cat})^{op}$. If we denote the representing object of the above displayed \mathcal{V}-functor by $\otimes(A_1,\ldots,A_n)\in\mathcal{A}$ then we obtain functors

$$\otimes_n: \mathcal{A}\otimes\cdots\otimes\mathcal{A}\to\mathcal{A}$$

and isomorphisms

$$P_n(A_1,\ldots,A_n;A)\cong\mathcal{A}(\otimes_n(A_1,\ldots,A_n),A)$$

\mathcal{V}-natural in all the variables A_1,\ldots,A_n and A. Notice that, by the Yoneda Lemma, the substitution μ_ξ induces a cosubstitution

$$\delta_\xi: \otimes_m(A_1\bullet,\ldots,A_n\bullet)\to\otimes_n(\otimes(A_{11},\ldots,A_{1m_1}),\ldots,\otimes(A_{1n},\ldots,A_{nm_n}))$$

and the unit η induces a counit $\epsilon: \otimes(A)\to A$ satisfying the appropriate three conditions. A monoidal \mathcal{V}-category is essentially an oplax monoidal \mathcal{V}-category in which all the δ_ξ and ϵ are invertible.

A lax monoidal \mathcal{V}-category is a lax monoid in $\mathcal{V}\text{-}\text{Cat}$. This means that a lax monoid structure on a \mathcal{V}-category \mathcal{A} amounts precisely to an oplax monoidal structure on \mathcal{A}^{op}. A monoidal \mathcal{V}-category is also essentially a lax monoidal \mathcal{V}-category in which all the μ_ξ and η are invertible.

A lax monoidal \mathcal{V}-category X is called cocomplete when it is cocomplete as a \mathcal{V}-category and each of the functors \otimes_n preserves colimits in each of the n variables.

Suppose \mathcal{A} and X are \mathcal{V}-substitudes. A \mathcal{V}-functor $F: \mathcal{A}\to X$ is called a substitute morphism when it is equipped with, for each integer $n\geq 0$, a family of morphisms

$$\phi_n: P_n(A_1,\ldots,A_n;A)\to P_n(FA_1,\ldots,FA_n;FA),$$

\mathcal{V}-natural in all the variables A_1,\ldots,A_n and A, satisfying the conditions

$$\phi_m\circ\mu_\xi = \mu_\xi\circ\left(\phi_n\otimes\bigotimes_{r=1}^{n}\phi_{m_r}\right)$$

and

$$\phi_1\circ\eta = \eta\circ F_{A,B}$$

of compatibility with substitution and unit. The morphisms ϕ_n induce their mates

$$\rho_n: \int^{\mathcal{A}} P_n(A_1,\ldots,A_n;A)\otimes X(FA,X)\to P_n(FA_1,\ldots,FA_n;X).$$

The substitute morphism F is called strong when each ρ_n is invertible. Oplax monoidal \mathcal{V}-category morphisms are substitute morphisms; we identify ϕ_n with the morphism induced (Yoneda) between the representing multiple tensor products. Lax
monoidal \(\mathcal{V}\)-category morphisms are defined dually.

A morphism between two \(\mathcal{V}\)-substitute structures on the same \(\mathcal{V}\)-category \(\mathcal{A}\) is a substitute morphism structure on the identity \(\mathcal{V}\)-functor of \(\mathcal{A}\). Similarly one defines morphisms of (op)lax monoidal structures on \(\mathcal{A}\).

Suppose \(F\) and \(G : \mathcal{A} \to X\) are substitute morphisms. A substitute transformation \(\theta : F \to G\) is a natural transformation such that the following commutes.

\[
\begin{align*}
P_n(A_1, \ldots, A_n; A) &\xrightarrow{\phi_n} P_n(FA_1, \ldots, FA_n; FA) \\
P_n(GA_1, \ldots, GA_n; GA) &\xrightarrow{\phi_n} P_n(FA_1, \ldots, FA_n; GA)
\end{align*}
\]

Write \(\text{Std}(\mathcal{A}, X)\) for the category of substitute morphisms and transformations.

In any monoidal bicategory it is possible to define a notion of "representation" of a lax comonoid in a lax monoid. Here we are concerned only with the case of a representation \(F : \mathcal{A} \to X\) of a \(\mathcal{V}\)-substitute \(\mathcal{A}\) in a cocomplete lax monoidal \(\mathcal{V}\)-category \(X\); it is a \(\mathcal{V}\)-functor \(F : \mathcal{A} \to X\) together with a \(\mathcal{V}\)-natural family of morphisms

\[
\phi_n : P_n(A_1, \ldots, A_n; A) \otimes \otimes (FA_1, \ldots, FA_n) \to FA
\]

in \(X\) such that the following two diagrams commute.

\[
\begin{align*}
P_n(A_1; A) \otimes P_m(A_1; A_1) \otimes \ldots \otimes P_m(A_n; A_n) &\otimes \otimes (FA_1, \ldots, (FA_n)) \\
1 \otimes \otimes (\phi_{m_1}, \ldots, \phi_{m_n}) &\downarrow \text{canon} \\
P_m(A_1; A) \otimes \otimes (FA_1, \ldots, FA_n) &\xrightarrow{\phi_m} FA \\
P_n(A_1; A) \otimes \otimes (FA_1) &\xrightarrow{\phi_n} FA
\end{align*}
\]

In the special case when \(X\) is monoidal, so that \(X\) is both a substitute and lax monoidal, a representation \(F : \mathcal{A} \to X\) is precisely a substitute morphism.

By way of example, we conclude this section with some remarks about operads. We
believe that it is more convenient to use the term *operad* for what is commonly called a "non-permutative operad": the original operads of [M] can then be called "symmetric operads". Accordingly, we define an operad \(T \) in \(V \) to be a \(V \)-substitute \(S_T \) whose underlying category is the \(V \)-category \(I \) with one object \(* \) and with hom \(I(*,*) \) equal to the unit \(I \) for tensor in \(V \). One writes \(T_n \) for the object \(P_n(*,\ldots,*;*) \) of \(V \). We call the substitute \(S_T \) the *suspension* of the operad \(T \). A \(T \)-algebra in a \(V \)-substitute is defined to be a substitute morphism \(A : S_T \to A \). On the other hand, we define a \(T \)-algebra in a lax monoidal category \(X \) to be a representation of \(S_T \) in \(X \).

In particular, there is an operad which we identify with the unit \(I \) in \(V \); we have \(I_n = I \). A *monoid* in a \(V \)-substitute or in a lax monoidal \(V \)-category is defined to be an \(I \)-algebra.

§2. Standard convolution

We write \([A, X]\) for the \(V \)-category of \(V \)-functors from a \(V \)-category \(A \) to a \(V \)-category \(X \) (see [Ky], for example).

Suppose \(A \) is a small \(V \)-substitute and \(X \) is a cocomplete lax monoidal \(V \)-category. For \(V \)-functors \(F_1, \ldots, F_n : A \to X \), we define a \(V \)-functor \(\otimes (F_1, \ldots, F_n) : A \to X \) by

\[
\otimes (F_1, \ldots, F_n) = \int_n^{A_1, \ldots, A_n} P_n(A_1, \ldots, A_n; -) \otimes \otimes_n (F_1 A_1, \ldots, F_n A_n).
\]

A substitution morphism \(\mu_\xi : \otimes \left(\bigotimes_{m_1} (F_{1*}), \ldots, \bigotimes_{m_n} (F_{n*}) \right) \to \bigotimes (F_{1*}, \ldots, F_{n*}) \) is defined by the composite

\[
\int_{A_1, \ldots, A_n} P_n(A_1, \ldots, A_n; -) \otimes \otimes_n \left(\int_{A_{1*}} P_{m_1}(A_{1*}; A_1) \otimes F_{1*} A_1, \ldots, \int_{A_{n*}} P_{m_n}(A_{n*}; A_n) \otimes F_{n*} A_n \right) = \overrightarrow{\mu_\xi} \int_{A_1, \ldots, A_n} P_n(A_1, \ldots, A_n; -) \otimes \otimes_m (F_{1*} A_{1*}, \ldots, F_{n*} A_{n*})
\]

in which the isomorphism comes from the cocontinuity in each variable of the \(V \)-functor \(\otimes \) of \(X \). A unit \(\eta : F_1 \to \otimes (F_1) \) is defined by the composite

\[
F_1 \cong \int_{A_1} A(A_1, -) \otimes F_1 A_1 \overrightarrow{\mu_\eta} \int_{A_1} P_1(A_1; -) \otimes \otimes_1 (F_1 A_1)
\]

in which the isomorphism is that of Yoneda's Lemma.
Proposition 2.1 \([\mathcal{A}, \mathcal{X}]\) becomes a cocomplete lax monoidal \(\mathcal{V}\)-category using the above substitution and unit.

We shall call this the standard convolution lax monoidal structure on \([\mathcal{A}, \mathcal{X}]\). The case where \(\mathcal{X} = \mathcal{V}'\) was the first convolution structure defined in Section 7 of [DS2]. That case has further properties.

Proposition 2.2 Standard convolution defines an equivalence between the category of substitute structures on any small \(\mathcal{V}\)-category \(\mathcal{A}\) and the category of cocomplete lax monoidal structures on \([\mathcal{A}, \mathcal{V}]\).

For cocomplete lax monoidal \(\mathcal{V}\)-categories \(\mathcal{Z}\) and \(\mathcal{X}\), write \(\text{CocLM}(\mathcal{Z}, \mathcal{X})\) for the category of morphisms of lax monoidal \(\mathcal{V}\)-categories whose underlying \(\mathcal{V}\)-functors preserve colimits (that is, are "cocontinuous"). The following result should be compared with [IK]; we refrain from stating the several variable form which also holds.

Proposition 2.3 For any substitute \(\mathcal{A}\), the Yoneda embedding \(\mathcal{Y}^\dagger : \mathcal{A} \longrightarrow [\mathcal{A}, \mathcal{V}]^{\text{op}}\) is a substitute morphism where \([\mathcal{A}, \mathcal{V}]^{\text{op}}\) is the substitute represented by the standard convolution structure on \([\mathcal{A}, \mathcal{V}]\). Restriction along \(\mathcal{Y}^\dagger\) is an equivalence of categories
\[
\text{Sstd}(\mathcal{A}, X^{\text{op}}) \cong \text{CocLM}(\mathcal{A}, \mathcal{V}), X)^{\text{op}}.
\]

For substitutes \(\mathcal{A}\) and \(\mathcal{B}\) there is an obvious substitute structure on the \(\mathcal{V}\)-category \(\mathcal{A} \otimes \mathcal{B}\); take
\[
P_n((A_1, B_1), \ldots, (A_n, B_n); (A, B)) = P_n(A_1, \ldots, A_n; A) \otimes P_n(B_1, \ldots, B_n; B)
\]
and so on.

Proposition 2.4 For \(\mathcal{V}\)-substitudes \(\mathcal{A}\) and \(\mathcal{B}\), and a cocomplete lax monoidal \(\mathcal{V}\)-category \(\mathcal{X}\), the canonical isomorphism
\[
[\mathcal{A} \otimes \mathcal{B}, \mathcal{X}] \cong [\mathcal{A}, [\mathcal{B}, \mathcal{X}]]
\]
of \(\mathcal{V}\)-categories is a morphism of lax monoidal \(\mathcal{V}\)-categories where all three \(\mathcal{V}\)-functor \(\mathcal{V}\)-categories have the standard convolution structures.

Generalizing the observation of [D0; Section 3.1, page 72], we deduce from the last proposition that a monoid in \([\mathcal{A}, \mathcal{X}]\) is precisely a substitute morphism from \(\mathcal{A}\) to \(\mathcal{X}\) as defined in Section 1. Hence, for any \(\mathcal{V}\)-operad \(T\), the \(\mathcal{V}\)-category of \(T\)-algebras in \(\mathcal{X}\) is the \(\mathcal{V}\)-category of monoids in the standard convolution \([\Sigma T, \mathcal{X}]\).

The final proposition of this section is a lax version of a result of [DS0].
Proposition 2.5 Suppose \(J : A \to H \) is a strong substitude morphism with \(A \) small. Suppose \(X \) is a cocomplete lax monoidal \(\mathcal{V} \)-category. Then the \(\mathcal{V} \)-functor
\[
\exists_J : [A,X] \to [H,X],
\]
given by left Kan extension along \(J \), is a strong morphism of lax monoidal \(\mathcal{V} \)-categories.

§3. Non-standard convolution

For any small \(\mathcal{V} \)-substitude \(A \) there is a \(\mathcal{V} \)-substitude structure on the \(\mathcal{V} \)-category \([A^{op}, \mathcal{V}]\) which we described at the end of [DS2] in order to include the fundamental "pseudo-tensor category" used in [BDK]. For \(\mathcal{V} \)-functors \(F_1, \ldots, F_n, F : A^{op} \to \mathcal{V} \) we put
\[
P_n(F_1, \ldots, F_n; F) = \int_{A_1, \ldots, A_n} \left[F_1 A_1 \otimes \cdots \otimes F_n A_n, \int_A P_n(A_1, \ldots, A_n; A) \otimes FA \right]
= \left[A^{\otimes n}^{op}, \mathcal{V} \right] \left[F_1 \otimes \cdots \otimes F_n, \int_A P_n(-; A) \otimes FA \right].
\]
The substitution \(\mu_\xi : P_n(F_\bullet; F) \otimes P_m(F_\bullet; F) \otimes \cdots \otimes P_m(F_\bullet; F) \to P_n(F_\bullet; F) \) is defined by the following composite
\[
\left[A^{\otimes n}^{op}, \mathcal{V} \right] \left[\otimes F_\bullet, \int_A P_n(-; A) \otimes FA \right] \otimes_{r=1}^n \left[A^{\otimes m}^{op}, \mathcal{V} \right] \left[\otimes F_\bullet, \int_A P_m(-; A_r) \otimes F_r A_r \right]
\]
while the unit \(\eta : [A^{op}, \mathcal{V}] (F_1, F) \to P_1(F_1; F) \) is the following composite.

Proposition 3.1 For any small substitude \(A \) the Yoneda embedding \(Y : A \to [A^{op}, \mathcal{V}] \) is a strong substitude morphism into the non-standard convolution substitude.

Proof Using the Yoneda lemma, we have
\[
\int^A P_n(A_\bullet; A) \otimes [A^\op, \mathcal{V}](YA, \mathcal{F}) \cong \int^A P_n(A_\bullet; A) \otimes FA \\
\cong \left[A^\otimes n^\op, \mathcal{V} \right] (\otimes_n YA_\bullet, \int^A P_n(-; A) \otimes FA) \cong P_n(YA_\bullet; F). \text{ q.e.d.}
\]

By combining Proposition 2.5 and Proposition 3.1, we obtain the next result.

Corollary 3.2 For any small substitute \(A \) and any cocomplete lax monoidal \(\mathcal{V} \)-category \(X \), left Kan extension along the Yoneda embedding \(Y : A \to [A^\op, \mathcal{V}] \) is a strong morphism

\[
\exists_Y : [A, X] \to [[A^\op, \mathcal{V}], X]
\]

of lax monoidal \(\mathcal{V} \)-categories.

Let us define the K-annihilator of \(F \) by

\[
\mathcal{A}\text{mn}_K F = \exists_Y(K)(F) = \int^A FA \otimes KA.
\]

Corollary 3.2 explains the general mechanics behind the "annihilation algebra" of [BDK; Corollary 7.1, page 45]. The case of interest in that paper is where \(X = [A, \mathcal{V}] \) with the standard convolution structure, and \(K \) is a monoid in \([A, X] \cong [A \otimes A, \mathcal{V}] \); in other words, \(K \) is a substitute morphism \(K : A \otimes A \to \mathcal{V} \). Then \(\mathcal{A}\text{mn}_K : [A^\op, \mathcal{V}] \to [A, \mathcal{V}] \) is a morphism between the non-standard and the standard structures.

§4. Braided and symmetric substitutes

We begin by reviewing a few facts about some categories that involve braids. We write \(B \) for the monoidal category of braids [JS1]; the objects are the natural numbers, all morphisms are automorphisms, the hom \(B(n, n) \) is the Artin braid group \(B_n \) on \(n \) strings, and the tensor product is defined to be addition of natural numbers and horizontal stacking of braids. We write \(P \) for the monoidal category defined similarly using the permutation groups \(P_n \) rather than the braid groups. Each braid \(\beta \) on \(n \) strings has an underlying permutation \(\overline{\beta} : i \mapsto \beta(i) \) of the set \(n = \{1, \ldots, n\} \); this defines a braided strict monoidal functor \(B \to P \) which is the identity on objects and full. For each finite sequence \((A_1, \ldots, A_n) \) of objects in any braided monoidal category \(\mathcal{V} \), we obtain a canonical isomorphism \(c_\beta : A_{\beta(1)} \otimes \cdots \otimes A_{\beta(n)} \to A_1 \otimes \cdots \otimes A_n \) which is defined to be

\[
1_{A_1} \otimes \cdots \otimes 1_{A_{i-1}} \otimes c_{A_{i-1}, A_{i+1}} \otimes 1_{A_{i+2}} \otimes \cdots \otimes 1_{A_n}
\]

when \(\beta \) the braid that crosses the \(i \)-th string over the \((i+1) \)-th string, the identity when \(\beta \) is the identity braid, and \(c_\beta = c_{\beta'} \circ c_{\beta''} \) when \(\beta = \beta'' \circ \beta' \).

The algebraic simplicial category \(\Delta \) has objects the natural numbers and has hom
Δ(m, n) consisting of the order-preserving functions \(\xi : m \rightarrow n \); composition is that of functions. Moreover, \(\Delta \) becomes monoidal under addition of natural numbers and ordinal sum of order-preserving functions.

With respect to strict monoidal functors, \(B \) is the free braided strict monoidal category generated by a single object, \(P \) is the free symmetric strict monoidal category generated by a single object, and \(\Delta \) is the free strict monoidal category containing a monoid. First we need to recall from [JS1] and [JS2] the description of the free braided strict monoidal category \(B \mathcal{A} \) on any category \(\mathcal{A} \). The objects of \(B \mathcal{A} \) are finite sequences \((A_1, \ldots, A_n)\) of objects of \(\mathcal{A} \). Morphisms only occur between sequences of the same length; a morphism

\[
(\alpha; f_1, \ldots, f_n) : (A_1, \ldots, A_n) \rightarrow (B_1, \ldots, B_n)
\]

consists of \(\alpha \in B_n \) and \(f_i : A_i \rightarrow B_{\alpha(i)} \) in \(\mathcal{A} \). Such a morphism can be viewed as the braid \(\alpha \) labelled by \(f_1, \ldots, f_n \) as, for example:

![Diagram](image)

Composition of labelled braids is performed by composing the labels on each string of the composite braid. The operation of addition of braids extends in the obvious way to labelled braids yielding a tensor structure on \(B \mathcal{A} \). There is an obvious braiding on \(B \mathcal{A} \) obtained from the braiding on \(B \) by labelling the strings with identity morphisms. We have an inclusion functor \(i : \mathcal{A} \rightarrow B \mathcal{A} \) identifying \(\mathcal{A} \) with the labelled braids with a single string.

If \(\mathcal{V} \) is braided monoidal, there is a "substitution" operation \(\otimes : B \mathcal{V} \rightarrow \mathcal{V} \) whose composite with \(i : \mathcal{V} \rightarrow B \mathcal{V} \) is isomorphic to the identity functor; explicitly, it takes \((A_1, \ldots, A_n)\) to \(\otimes_n (A_1, \ldots, A_n) = A_1 \otimes \ldots \otimes A_n \) (bracketed from the left, say) and takes \((\alpha; f_1, \ldots, f_n)\) to the morphism

\[
\alpha[f_1, \ldots, f_n] : A_1 \otimes \ldots \otimes A_n \rightarrow B_1 \otimes \ldots \otimes B_n
\]

obtained by composing \(f_1 \otimes \ldots \otimes f_n \) with the canonical isomorphism

\[
c_\alpha : B_{\alpha(1)} \otimes \ldots \otimes B_{\alpha(n)} \rightarrow B_1 \otimes \ldots \otimes B_n.
\]
In particular, we are interested in the case $V = B$. We can identify an object (m_1, \ldots, m_n) of $B|B$ with the order-preserving function $\xi : m \to n$ whose fibre over $i \in n$ has cardinality m_i. For any braid $\alpha \in B_n$ we write $\bar{\xi}_\alpha : m \to n$ for the order-preserving function determined by the object $(m_{\alpha(1)}, \ldots, m_{\alpha(n)})$ of $B|B$. Then we have the morphism

$$\alpha^\xi = \alpha[1_{m_1}, \ldots, 1_{m_n}] : m \to m$$

in B. In other words, we have defined a function

$$\Delta(m,n) \times B(n,n) \to B(m,m) \times \Delta(m,n)$$

that takes the pair (ξ, α) to the pair $(\alpha^\xi, \bar{\xi}_\alpha)$; we call this the *distributive law* for Δ over B. We can visualise this process as follows.

There is also a distributive law

$$\Delta(m,n) \times P(n,n) \to P(m,m) \times \Delta(m,n)$$

for Δ over P which we can obtain similarly, or from the braid case by means of the quotient homomorphisms $B_n \to P_n$ and $B_m \to P_m$.

We can use this discussion to define monoidal categories BA and PA which are the free braided and symmetric (respectively) strict monoidal categories containing a monoid. In other terminology, PA is the PROP for monoids (a description occurs in [MT; Construction 4.1, page 215] although there is a misprint\(^2\) in which the outside product should be a sum). To be explicit, the objects of BA and PA are the natural numbers. A morphism $(\alpha, \xi) : m \to n$ in BA consists of a braid $\alpha \in B_m$ and an order-preserving function $\xi : m \to n$. The composite of $(\alpha, \xi) : m \to n$ and $(\beta, \zeta) : n \to p$ is defined to be $(\beta^\xi \circ \alpha, \zeta \circ \xi_\beta) : m \to p$. There is a faithful functor $B \to BA$ taking $\alpha : m \to m$ to $(\alpha, 1_m) : m \to m$, and a faithful functor $\Delta \to BA$ taking $\xi : m \to n$ to $(1_m, \xi) : m \to n$; both functors are the identity on objects and we identify morphisms in B and Δ with their image in BA. So we may write $(\alpha, \xi) = \xi \circ \alpha$ and note that the morphisms of B are precisely the invertible morphisms of BA. There is a braided strict monoidal structure on BA for which $B \to BA$ is a braided strict monoidal functor and

\(^2\)This misprint was pointed out to us by Teimuraz Pirashvili.
Δ → BΔ is strict monoidal. The symmetric strict monoidal category \(\text{PΔ} \) is defined similarly; in fact, \(\text{PΔ} \) is equivalent to the category whose objects are finite sets and whose morphisms are functions with the structure of linear order on each fibre\(^3\).

Recall from [DS2] that lax monoids in a Gray monoid \(\mathcal{M} \) amount to strict-monoidal lax functors \(\mathcal{M} : \Delta \rightarrow \mathcal{M} \). A braided lax monoid in a braided (see [DS1]) Gray monoid \(\mathcal{M} \) is a braided strict-monoidal lax functor \(\mathcal{M} : \text{BΔ} \rightarrow \mathcal{M} \) whose composition constraints

\[
\mu_{\theta, \phi} : \mathcal{M}(\phi) \mathcal{M}(\theta) \rightarrow \mathcal{M}(\theta \phi)
\]

are identities whenever \(\theta \) is invertible. In particular, this last condition implies that the composite of \(\mathcal{M} \) with \(\text{B} \rightarrow \text{BΔ} \) is a 2-functor. Of course the composite of \(\mathcal{M} \) with the strict-monoidal functor \(\Delta \rightarrow \text{BΔ} \) is the underlying lax monoid of \(\mathcal{M} \); we say that \(\mathcal{M} \) provides a braiding for the underlying lax monoid.

Similarly, a symmetric lax monoid in a sylleptic (see [DS1]) Gray monoid \(\mathcal{M} \) is a sylleptic strict-monoidal lax functor \(\mathcal{M} : \text{PΔ} \rightarrow \mathcal{M} \) whose composition constraints

\[
\mu_{\theta, \phi} : \mathcal{M}(\phi) \mathcal{M}(\theta) \rightarrow \mathcal{M}(\theta \phi)
\]

are identities whenever \(\theta \) is invertible.

A braided [respectively, symmetric] \(\mathcal{V} \)-substitude is a braided [respectively, symmetric] lax monoid in \((\mathcal{V} \text{-Mod})^{\text{op}} \).

More explicitly, a braiding for a substitude \(\mathcal{A} \) assigns to each natural number \(n \) and each braid \(\alpha \) on \(n \) strings, a \(\mathcal{V} \)-natural family of isomorphisms

\[
\gamma_{\alpha} : P_n(A_1, \ldots, A_n; X) \rightarrow P_n(A_{\alpha(1)}, \ldots, A_{\alpha(n)}; X),
\]

such that \(\gamma_{\alpha'} \circ \gamma_{\alpha} = \gamma_{\alpha \alpha} \) and the following two diagrams commute.

\[
\begin{align*}
P_n(A_{\alpha(*)}; A) \otimes \bigotimes_{i=1}^n P_m(A_{\alpha(i)}; A) & \xrightarrow{\mu_{\gamma_{\alpha}}(\bigotimes_{i=1}^n)} P_{\gamma_{\alpha}}(A_{\alpha(*)}; A) \\
\gamma_{\alpha} \otimes \xi^{-1} & \xrightarrow{\mu_{\gamma_{\alpha}}} P_{\gamma_{\alpha}}(A_{\alpha(*)}; A)
\end{align*}
\]

\[
\begin{align*}
P_n(A_{\alpha(*)}; A) \otimes \bigotimes_{i=1}^n P_m(A_{\alpha(*)}; A) & \xrightarrow{\mu_{\gamma_{\alpha}}} P_{\gamma_{\alpha}}(A_{\alpha(*)}; A) \\
1 \otimes \bigotimes_{i=1}^n \gamma_{\alpha_i} & \xrightarrow{\mu_{\gamma_{\alpha}}} P_{\gamma_{\alpha}}(A_{\alpha(*)}; A)
\end{align*}
\]

The braiding is a symmetry when \(\gamma_{\alpha} \gamma_{\alpha} = 1 \) if \(\alpha \) is the basic left-over-right cross-over of two strings.

\(^3\)In the late 1980s, Andrè Joyal pointed out this description of \(\text{PΔ} \) to the second author. He also remarked that there is a corresponding fact for \(\text{BΔ} \) whereby "linear order" is replaced by "plane configuration".
A \mathcal{V}-operad T is *braided [symmetric]* when the \mathcal{V}-substitude ΣT is equipped with a braiding [symmetry]. Symmetric operads are the original operads of May [M]. Braided operads have been used for example by Fiedorowicz [F] and Tamarkin [T].

Proposition 4.1 Suppose \mathcal{A} is a small braided [symmetric] \mathcal{V}-substitude and X is a cocomplete braided [symmetric] lax monoidal \mathcal{V}-category. Then the standard convolution $[\mathcal{A}, X]$ has a canonical braiding [symmetry] induced on coends by the following isomorphisms.

\[
\gamma_v \circ c_\alpha : P_n(A_1, \ldots, A_n ; -) \otimes (F_1 A_1, \ldots, F_n A_n) \rightarrow P_n(A_{\alpha(1)}, \ldots, A_{\alpha(n)} ; -) \otimes (F_\alpha A_{\alpha(1)}, \ldots, F_\alpha A_{\alpha(n)})
\]

Proposition 4.2 Suppose \mathcal{A} is a small braided [symmetric] \mathcal{V}-substitude. Then the non-standard convolution $[\mathcal{A}^\text{op}, \mathcal{V}]$ has a canonical braiding [symmetry] induced on ends by the following isomorphisms.

\[
\left[F_1 A_1 \otimes \ldots \otimes F_n A_n, \int P_n(A_1, \ldots, A_n ; A) \otimes FA \right] \rightarrow \left[F_\alpha A_{\alpha(1)} \otimes \ldots \otimes F_\alpha A_{\alpha(n)} \right] \rightarrow \int P_n(A_{\alpha(1)}, \ldots, A_{\alpha(n)} ; A) \otimes FA
\]

We conclude this section with a construction in the case where \mathcal{V} is cartesian closed.

Each substitude \mathcal{A} can be *symmetrized*. Explicitly, we define a new substitude structure $Q = \text{sym}(P)$ on the same underlying category \mathcal{A} by

\[
Q_n(A_1, \ldots, A_n ; A) = \sum_{\sigma \in P_n} P_n(A_{\sigma(1)}, \ldots, A_{\sigma(n)} ; A).
\]

To define the substitution operation we define its composite with the coprojection from

\[
P_n(A_{\sigma(1)}, \ldots, A_{\sigma(n)} ; A) \times \prod_{r=0}^n P_{m_r}(A_{\sigma_r(1)}, \ldots, A_{\sigma_r(m_r)} ; A_r)
\]

to

\[
Q_n(A_1, \ldots, A_n ; A) \times \prod_{r=0}^n Q_{m_r}(A_{r1}, \ldots, A_{rn} ; A_r),
\]

for $\sigma \in P_n$ and $\sigma_r \in P_{m_r}$,

to be the composite of the canonical isomorphism $1 \times c_{\sigma^{-1}}$ into

\[
P_n(A_{\sigma(1)}, \ldots, A_{\sigma(n)} ; A) \times \prod_{r=0}^n P_{m_r}(A_{\sigma(r)}(\sigma_{\sigma_r(1)}), \ldots, A_{\sigma(r)}(\sigma_{\sigma_r(m_r)})) ; A_{\sigma(r)})
\]

the substitution μ_{σ_σ}, and the coprojection into $Q_m(A_{11}, \ldots, A_{nm} ; A)$ for the permutation $\sigma_{m\alpha(1)} + \ldots + \sigma_{m\alpha(n)}$ of $m_\alpha(1) + \ldots + m_\alpha(n) = m$. Noting that

\[
Q_1(A_1 ; A) = P_1(A_1 ; A),
\]

we take the same unit as before. The three substitude axioms can be verified. Moreover, we have a natural isomorphism

\[
\gamma_\tau : Q_n(A_1, \ldots, A_n ; A) \rightarrow Q_n(A_{\tau(1)}, \ldots, A_{\tau(n)} ; A)
\]
whose composite with the coprojection from $P_n(A_{\sigma(1)}, \ldots, A_{\sigma(n)}; A)$ for $\sigma \in P_n$ is the coprojection for $\tau \sigma \in P_n$. The three axioms for a symmetry can be verified.

§5. Braided substitute morphisms

Suppose \mathcal{A} and \mathcal{X} are braided \mathcal{V}-substitudes. A \mathcal{V}-substitute morphism $F : \mathcal{A} \rightarrow \mathcal{X}$ is called braided when the following square commutes for all objects A_1, \ldots, A_n and A of \mathcal{A}, and all braids α.

If T is a braided [symmetric] \mathcal{V}-operad then a T-algebra in \mathcal{A} is defined to be a braided [symmetric] \mathcal{V}-substitute morphism $A : \Sigma T \rightarrow \mathcal{A}$. For example, when T is the symmetric operad I, an I-algebra in \mathcal{A} is called a commutative monoid in \mathcal{A}. The commutative monoids in the standard convolution $[\mathcal{A}, \mathcal{X}]$ are braided substitute morphisms.

In the case where \mathcal{V} is the category of complex vector spaces, there is a symmetric \mathcal{V}-operad \mathfrak{lie} whose algebras in \mathcal{V} are complex Lie algebras. We define a Lie algebra in a \mathcal{V}-substitute \mathcal{A} to be a \mathfrak{lie}-algebra in \mathcal{A}. Lie algebras in the non-standard convolution structure $[\text{Hopf}, \mathcal{V}]$ for a symmetric finite-dimensional Hopf algebra H were extensively studied in [BDK]. Another connection between \mathfrak{lie} and substitutes will be addressed in [DvS].

References

(to appear); <http://www.maths.mq.edu.au/~street/Multicats.pdf>

[F] Z. Fiedorowicz, The symmetric bar construction (preprint c. 1988); www.math.ohio-state.edu/~fiedorow/symbar.ps.gz

