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1

Revision of basic structures

The cartesian product of n sets X1, ..., X, is the set
Xy X xXp = {(xy,...,2,) |z € Xi}.
There is a canonical bijection
(X1 x - xXp) X (X1 X xX,p,) 2 Xy x---xX,
given by deleting the inside brackets. The diagonal function
d: X—Xx--xX
is given by 0(z) = (z,...,z).
The cartesian product of no sets is the special set 1, with precisely one

element, which should technically be denoted by empty parentheses ( ).
Particular cases of the canonical bijections are

Xx12=2X21xX.

The diagonal X —1 will be denoted by & rather than §; it is the only
function X — 1. Functions f, : X1—=Y1, ..., f, : X,,— Y, induce
a function

fixooxf,: Xix o xX, =Y x:---xY,
given by (f; x --- x f)(@y,...,2,) = (fi(zy),-.., ().
The identity function 1, : X —= X on a set X is given by 1y (z) = z.

We noted that £ : X —=1 is uniquely determined. Similarly the diagonal
4 : X—= X x X is unique, determined by commutativity of the diagram

X
(Identity) = l‘; =
IX X<~ XXxX———Xx1.
exly 1y Xe



2 Revision of basic structures

Furthermore, the following diagram commutes

s Ox1y

XxXxX .

(Associativity) X X xX

1y X8
The function X —= X x X x X so determined is none other than the
ternary diagonal.

A monoid is a set M together with special purpose functions 7 : 1—= M |
i M x M —= M such that the following diagrams commute.

M
(1a) =}
I
1x M M x M M x1
X1pr Tar X
X1
(Assoc) M%MMXM%%MMXMXM
M XM

If we write 1 for the value of 1 at the only element of 1 and we write zy
for p(x,y) then the above diagrams translate to the equations

lr =2 =z1

(zy)z = = (y2)
This time functions n and p are not uniquely determined by the set M.
However given 1, condition (Id) uniquely determines  while the condition
(Assoc) gives an unambiguous ternary operation pu: M x M x M —= M
which we write as p(z,y,2z) = zyz. Generally there is an unambigu-
ous multiple product function g : M X --- x M —>= M determined by the
binary .

forall z,y,z€ M .

An element x € M is called invertible when there exist y,z € M such that
yx =1 and xz = 1. Notice that

y =yl =ylrz) = (yo)z = 1z = 2
so each invertible element z determines uniquely an element, denoted 7',
satisfying 27 'lz =1 =227 1.
A group is a monoid in which each element is invertible. Then we have a

function ¢ : M —= M such that this next diagram commutes.

LX 1y,

M—">MxM Mx M-

(Invertibility) Ly Xt
‘ "

1
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Note carefully the dependence of this axiom on the diagonal structure of
cartesian product.

For a set X, the n-fold cartesian product X x --- x X is denoted by X™.
Each permutation £ on {1,...,n} induces a bijection

TE X"— X"

given by og(ml, ce sy Ey,) = (mg(1)7 ,mg(n)). In particular, we have the

switch coming from the non-identity permutation of {1,2}:
c: XxX—XxX , olx,y) = (y,x).

Each o¢ is a composite of bijections of the form 14 X --- X o X --- x 1y .
Notice that the following diagram commutes.

(Commutativity) / \

A monoid (M ,n,p) is called commutative when the following diagram
commutes.

o¢ 14
It follows that the composite M"™ ——> M"™ ——> M is independent of
the permutation &.

Suppose M and N are monoids. A monoid morphism (or homomorphism

of monoids) is a function f: M —= N such that the following diagrams
commute.

.

M

Expressed in terms of elements, these diagrams merely say that f(1) = 1
and f(zy) = f(z)f(y). If N has cancellation (e.g. if N is a group) then
f(1) =1 is redundant.
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Monoid morphisms preserve invertibility: if x € M is invertible, f(z 1) =
f(xz) L. So for groups M and N we have commutativity of the square

M*>f N
f
M——N.

A rig is a set R enriched with two monoid structures, a commutative one
written additively and the other written multiplicatively, such that the
following equations hold:

a0 =0=20a
(Distributive) alb+c¢) =ab+ac , (a+b)c=ac+bc.

The natural numbers N = {0,1,2,...} provide an example of a rig.

A ring is a rig for which the additive monoid is a group. The integers Z
provide an example.

A rig is commutative when the multiplicative monoid is commutative.
A field is a commutative ring for which each element is either 0 or has a
multiplicative inverse.

For rigs R and S a rig morphism f: R—= S is a function which is a
monoid morphism for both the additive and multiplicative structures.

Let k denote a field. A k-algebra is a ring A together with a ring morphism
7 : k— A . Notice that either A is trivial (1 = 0), or that 7 is injective
[k # Kk = k—k #0 = k— ' invertible = n(k — ') invertible
120, n(k— k') #Z0 = n(k) #n(k')]. We can define scalar multiplication
kxA— A by ka=n(k)a.

For k-algebras A and B, a k-algebra morphism f: A—= B is a ring
morphism such that the next diagram commutes

SN

A B

that is f(ka) = & f(a). We write Alg, (A,B) for the set of k-algebra
morphisms f: A— B.

An isomorphism is a bijective morphism; automatically its inverse function
is also a morphism.
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Duality between geometry and
algebra

The purpose of this section is to convince you that commutative algebras
are really spaces seen from the other side of your brain.

For a compact hausdorff space X, we have the algebra C'(X) of continuous,
complex-valued functions a : X —= C . The addition and multiplication
are obtained pointwise from C.

A continuous function f: X —=Y gives rise to an algebra morphism
C(f) : C(Y)— C(X) (note the reversal of direction!) via C(f)() = a,
where a(z) = b(f(x)) . In particular, the unique X —=1 gives the algebra
morphism 7 : C = C(1)—= C(X), while each point = : 1—= X of the
space gives an algebra morphism C(X)—=C .

Actually C(X) is more than just a C-algebra; it is what is called a
commutative C*-algebra (there is a norm and an involution (_)* coming
from conjugation). With this extra structure the duality becomes precise:

Each commutative C*-algebra A is isomorphic to C(X) for
some compact hausdorff space X ; each C*-algebra morphism
C(Y)—= C(X) has the form C(f) for a unique continuous
function f: X—Y.

This result is commonly referred to as Gelfand duality.

Algebraic geometry is the study of spaces called varieties: the solutions to
polynomial equations in several variables. In studying the variety given by
x2 4+ 2y3 = z* over the field k, we pass to the k-algebra

A = XK[z,y,2]/(@* + 29> =2%).

By k[z,y,2] we mean the k-algebra of polynomials in three commuting
indeterminates x , ¥y, z ; the elements are expressions

ij .k
Eaijka:yz

i,5,k



6 Duality between geometry and algebra

where gy € k and (i,7,k) runs over a finite subset of N* . The quotient
algebra A is obtained from k[z,y,z] by identifying elements when they
may be transformed one into another by means of the equation z2+2y% = z*
and the algebra axioms.

Given a k-algebra B, a k-algebra morphism f : k[z,y,z]— B is
uniquely determined by its values on z,y,z. In fact we have a bijection

Algk(k[w,y,z],B) ~ B%.
Similarly, we have a bijection
Alg, (A,B) = {(u,v,w) € B*|u® +2v° = w}

where A is as above. Again we see that a k-algebra morphism A— B
corresponds to a map of varieties in the reverse direction.

For general k-algebras A and B, it is suggestive to call a morphism
f: A—= B a B-point of A. A point of (the space corresponding to) A is
a k-point, not to be confused with an element of the algebra A itself.

spectrum

( commutative )Op//\(

k-algebras spaces)

coordinate algebra

Let & denote a category. I am thinking of the objects of A as spaces X
and Y say, and the arrows X —=Y as the maps appropriate to that kind
of space. Write X(X , Y) for the set of arrows from X to Y in X'.

Let X;,..., X,, be arbitrary objects of X'. A product for this list of
objects consists of an object X; X --- x X, together with arrows

p; Xix--xX,—X; for i=1,...,n
such that, given any other object K and arrows
f: K—X; for i=1,...,n
there exists a unique arrow f: K—= X; x --- x X, with p,o f = f;.

p;

Xy x---x X,

X;
A
.
K
This means we have a bijection

X(K, Xy x--xX,) = X(K X)) % x X(K,X,) .
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In particular, the empty product is called a terminal object, denoted by 1.
We have
X(K,1) = 1.

Products are unique up to isomorphism (if they exist).

The diagonal 6 : X —= X x -+ x X is defined by p,0d = 1, for all ;. The
canonical isomorphisms f; X --- x f, and isomorphisms o, can be defined
as for sets.

The diagrammatic definition of monoid and group can be carried into the
category X (provided the products exist; 1 and M x M are enough). If M
is a monoid (group) in X’ then each X (K, M) becomes a monoid (group)
using the multiplication * given by

fxg = po(fxg)od

5 fxg Iz
K——KxK——MxM—— M.

A group in the category of topological spaces and continuous maps is called
a topological group. A group in the category of smooth manifolds and
smooth maps is called a Lie group.

We are more interested here in groups in the category (Comm Alg, )°P
of commutative k-algebras and reversed morphisms; these are called affine
groups over k. This is the variety point of view. On the algebraic side they
are called commutative Hopf algebras over k. Product of varieties becomes
tensor product A®, B of k-algebras (more on this later). A commutative
Hopf algebra H thus has structure given by the k-algebra morphisms

e:H—%k, 6:H—H®H, v:H—H

called counit, comultiplication , antipode (corresponding respectively to the
unit, multiplication, inversion for the group). Now for each commutative
k-algebra A, we obtain a group Alg, (H, A) of A-points in H.

It will also be necessary to consider the algebraic version of affine
monoids over k. These are called commutative bialgebras over k. They
have a counit and comultiplication, but generally no antipode.

Example 2.1 Let M(2) denote k[a,b,c,d] as a commutative k-algebra.
A counit €: M(2)—=k is defined by e(a) =e(d) =1, e(b) =¢(c) =0.
Clearly

k[a7b7c7d]®l(k[a7b7c7d] E k[a7b7c7d7al7b,7cl7dl]
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with the coprojections

k[a,b,c,d] —= k[a,b,c,d,d,b,c,d] <— k[a,b,c,d]
a,b,c,d——>a,b,c,d and a',b,c',d < a,b,c,d.

The comultiplication 6 : M(2)—= M(2)&y M(2) is given by
a,b,c,d —— aad +bc,ab +bd,ca +dc,cb +dd .

This makes M(2) into a commutative k-bialgebra. Notice that we have a
monoid isomorphism

Alg, (M(2),A) = Mat(2,A)

where on the right we have the multiplicative monoid of 2 x 2 matrices with
entries in A . Thus M(2) is the coordinate k-algebra of the variety of 2x2
matrices.

To obtain the coordinate k-algebra of the general linear group, we take

GL(2) = k[a,b,c,d,z]/(zad—xzbc=1).

There is an epimorphic k-algebra morphism M(2)—= GL (2) which in-
duces a bialgebra structure on GL (2) from that on M(2). The antipode

v : GL(2) — GL(2)
a,b,c,d,x —— xd,—xb,—xrc,xa,ad—bc

makes GL (2) into a commutative Hopf algebra.
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The quantum general linear group

The passage from quantum to classical mechanics is quite well defined by
taking the limit as Planck’s constant A tends to 0. The passage in the other
direction is not so clear cut, and may not be uniquely determined. On the
algebraic side, “quantization” involves deforming commutative algebras to
non-commutative ones:

e.g. TY = yx becomes ry = elyzx.

Usually we deal with ¢ = e” rather than &, so classical results correspond
to the case ¢ =1. Quantum spaces correspond to more general k-algebras,
not necessarily commutative.

Let k be a fixed field and fix ¢ € k with ¢ # 0. Write k(z, ,... ,z, ) for
the k-algebra of polynomials in non-commuting indeterminates z, ,... ,z
As a vector space over k, a basis is given by those elements

n-*

Te) Te(a) T Te(r)

for which r € N and m,,...,m, € ZT and &: {1,...,r}—{1,...,n} is
any function. Notice that

k[z,y] =k(z,y)/(zy=yz).
The coordinate algebra of the space of quantum 2 x 2 matrices is defined by
M,(2) = k{a,b,c,d)/R
where R is the system of equations

ab = ¢ 'ba , ac = ¢ lea , ed = ¢q"'de , bd = ¢ 'db
bc = cb , ad—da = (¢ '—q)bc .

aq ——>

b
(mnemonic) l /
i

C ——>
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The monomials a™: b™=2 ¢™s d™+ form a basis for the algebra, as a vector
space over k.

Alg, (M,(2),4) = {(Z 2) € Mat (2,4) | R holds}

! !
Theorem 3.1 Let ((cl Z) and (Z, Z,) be two A-points of M, (2) such

that each entry of the first commutes with each entry of the second.

! !
(i) The product ((cl 2) (Z, 2,) (as matrices) is an A-point of M (2) .
(ii) The “g-determinant” detq(z Z) = (ad — q 'bc) commutes with

each of a,b,c,d and
don, (2 (6 5)) = e g)xae (3 )

a by . . oo
(iii) If detq(c d) is invertible in A then

(0" = (D) (e )
is an A-point of M1 (2) .

The above result can be proved by direct calculation, but this gives
little insight into the special nature of the relations R. Examples such as
this arose in work of L.D. Faddeev [FRT87] and his school on the quantum
inverse scattering transform (QIST) method. The version I present here
comes from some lectures of Yu Manin [Man88] given at Université de
Montréal in June 1988. The following “explanation” of Theorem 3.1 is due
to Yu Kobyzev (Moscow, winter 1986-87).

Introduce the gquantum plane, as defined by the k-algebra

A} = Kk(,y)/(xy =q " yz) .

The monomials ™ y™ with m ,n € N form a basis for this as a vector space.
We also need to consider a quantized version of a Grassmannian algebra in
two variables:

A? = k() /(€ =n"=0=_¢&n+qnf).

The monomials €™ n™ with m ,n € {0, 1} form a basis for this algebra. The
reason for the funny superscripts 2jo and o2 comes from “supergeometry”
where dimensions are represented by pairs d|d’ of numbers. This A" is a
quantum superplane.

An A-point of B is called generic when the algebra morphism B—> A
is injective.
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Theorem 3.2 Suppose (x,%y) is a generic A-point of A7° and (&,7m)
is a generic A-point of Ay®. Suppose a,b,c,d € A all commute with
z,y,8,n. Put

()= a6 G)=G D6 ()= D)
If ¢®> # —1, the following conditions are equivalent :

() (=',y") and (2",y") are points of A" ;
(ii) (2',y") is a point of AY° and (&',1') is a point of Ay ;
(i

iii) (Z ccl) is a point of My(2).
[For q® = —1 we only have (iii) = (i) & (ii).]

Proof. (i) & (iii). (2',y) is a point of Ay iff 2'y’ = ¢ 1y'a'; that is, iff
(az+by)(cz+dy) =q (cz+dy)(ax+by). Multiply out the products
using the fact that a,b,c,d each commute with x and y; since (z,y) is
generic, we can equate coefficients of z2,y?, zy. So the single equation is
in fact equivalent to the following set of three equations:

(%) ac = ¢ tca , bd = qtdb , ad—da = ¢ teb—qbc.
Interchanging b and ¢ we see that (z”,y") is a point of Ay iff
(%) ab = ¢ 'ba , ed = qgtde , ad—da = ¢ tbe—qch.

Taking the last equations in (x) & (**) we get ¢ 'eb—qbc = ¢ tbe—qch;
that is, (¢ + ¢ ') (bc — ¢b) = 0 hence bc = cb, provided ¢> # —1.

So (iii) & (%) & (xx), which together are equivalent to (i).

(i) < (iii). (¢',n') is a point of AJ” iff 0 = (a€& +bn)? = (c& +dn)? =
(a&+bn)(cE+dn)+q(cE+dn)(aé+bn). Using €2 = n? = 0 these become
abén+bané = 0 and ed En+dené = 0 and abEn+bené+q (cbén+dané) =0.
Using &n = —¢né and the linear independence of n and £ in A, we get that
—qab+ba = 0 and that —g cd+dc = 0 and also —q (ad+q ¢b)+bc+qda = 0.
These are equivalent to (xx). So (ii) & (x) and (xx) < (i).

In other words, the relations R are precisely what is needed for ((cl Z)

and its transpose to both transform the quantum plane into itself; or for

((cl Z) to transform both the plane and superplane into themselves.

Proof of Theorem 3.1. (i) Let B be the free k-algebra containing the
indeterminates a,b,c,d, a’,b',c',d', z,y subject to the relations on these
variables in the hypotheses of Theorems 3.1 and 3.2. Then (z,y) is generic;
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! !
((CL b) and (Z, b ) are B-points of M (2). By Theorem 3.2, we have

d d
! !
that (Z (cl) (;) and ((cl, Z, ) (?aj) are B-points of A7°. Each coordinate
in the first of these commutes with all of a’, V', ¢/, d’ while coordinates in the

a c
b d
composed with B—= A}° for which (a,b,c,d,z,y)—(1,0,0,1,z,y)

second commute with a,b,c,d. Also ( )(z) is generic since when

! !
we get (z,y), which is genleric; Similarly (Z, 2’) (z) is genleric.l So by
a c a c\(x a byra b x
Theorem 32 we have () (5 2)(7) a0t (2 2)(& o)(})
! !

both being B-points of A7°. Again by Theorem 3.2, (Z Z) (Z, Z,) isa
B-point of M, (2).

To obtain the result for the given A apply the morphism B—= A for which
(a,b,...,d,z,y)—(a,b,...,d,0,0).

(ii) We now get a natural definition of the quantum determinant which
immediately yields its multiplicativity: in the notation of Theorem 3.2

€ = (a&+bmct+dn) = det,(* ") en.

(iii) This is left as an exercise for the reader.

The quantum general linear group is defined from 2 x 2 matrices by inverting
the determinant:

GL,(2) = M,(2)[t]/(ta=at, tb=0bt,tc=ct,dt=td, tdet, =1).

Similarly, the quantum special linear group is defined by requiring that the
determinant be equal to 1:

SL4(2) = M,(2)/(det, = 1).

Theorem 3.2 describes the representations of these “groups” on quantum
2|0 0|2
spaces Ay" and Aj".

Exercises

1. Give a direct proof of Theorem 3.1 on quantum 2 X 2-matrices.
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Modules and tensor products

Let R be a ring (not necessarily commutative). We write R°P for the ring
with opposite multiplication

o 1

R xR R xR

R.

(To say R is commutative is to say R°P = R.)
A left R-module is an abelian group M (written additively) together
with a function

Rx M—= M whereby (r,m)+——=rm
called scalar multiplication, such that

Ilm=m , (rsym = r(sm)

(r+r)m =rm+r'm , r(m+m’) = rm+rm’.

A right R-module is defined similarly, with multiplication M x R—= M .
A left R°?-module structure on an abelian group M “is the same” as
a right R-module structure. More precisely, u: R x M —= M is a scalar

o 12
multiplication for a left R°P-module iff M xR RxM M g

one for a right R-module. In this way, we can deal only with left R-modules
and omit “left”, unless we explicitly stipulate otherwise.

If R is commutative, R = R°P and there is no need to distinguish
left and right modules. If R is a field, an R-module is precisely a vector
space over R. Furthermore, Z-modules are precisely abelian groups since
each abelian group A admits a unique Z-scalar multiplication given by
na=a+ - +a (n terms) for n >0 and na = —((—n)a) for n < 0.

A subset X of an R-module M is said to generate M (or span M) when,
for each m € M , there exist vy, ... ,r, € R and 2, ... ,x,, € X such that

(%) m =nrx,+ - +r,T,.

Call M finitely generated when it is generated by some finite subset.

13



14 Modules and tensor products

A (not necessarily finite) subset X of M is linearly independent when for

Zy,...,2T, € X distinct elements, having a relation of the form r; z; +
o +r,z, = 0 with r,...,r, € R implies that r;, = --- =1, = 0.
Then each expression (x) is unique up to order of factors (with z,, ... ,z,
distinct).

An R-module F is said to be free when it is generated by some linearly
independent subset. Every vector space is free, but this is peculiar to R
being a field. It is easy to see that Z/(2) is not a free abelian group.

Each set X determines an R-module

Fr(X) = {riz1+ - +rpz,|m€R, z;€ X, neN}

with addition and scalar multiplication defined in the obvious way. We
can identify € X with 1z € Fi(X) and see easily that X is linearly
independent and generates 75 (X). So Fp(X) is free.

For R-modules M and N, a function f: M —= N is (left)R-linear (or an
R-module morphism) when f(m+m') = f(m)+f(m') and f(rm) =r f(m)
for all m,m' € M and r € R. Write Homg (M, N) for the abelian group
of R-linear functions f : M — N ; the addition is given by (f + g)(m) =
f(m) +g(m).

Warning: You may think Homy (A, N) becomes an R-module by defining
(rf)(m) = r f(m). But this rf does not preserve scalar multiplication
when R is non-commutative.

For sets X and Y, write YX for the set of all functions f : X — Y . An R-
linear function f : Fp(X)—>= M is uniquely determined by its restriction
to X . Indeed, this gives an isomorphism of abelian groups

HomR(]:R(X) 7M) = MX
where the addition on M ¥ is pointwise.

A submodule H of an R-module M is a subset which is closed under addition
and scalar multiplication. This gives an equivalence relation =5 on M
whereby

m=pm’' ifandonlyif m-m'eH.

The equivalence class containing m € M is m+ H = {m+h | h € H},
called the H-coset containing m . The set M/H of H-cosets becomes an
R-module via

(im+H)+(n+H) = (m+n)+H , r(m+H) =rm+H.

We have a surjective R-linear function p : M —= M/H for which p(m) =
m + H. For each R-linear g: M—= N with g(m) = 0 for all m € H,
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there exists a unique R-linear ¢ : M/H—>= N with gop = g. The kernel
ker f ={m € M| f(m) =0} of any R-linear f: M —= N is a submodule
of M ; we have a commutative diagram

M N
| J
M/kerf;>imf

of R-modules, where im f = {f(m) | m € M} is the image of f, the bottom
arrow is an R-linear isomorphism, and the right arrow is an inclusion of a
submodule.

The submodule (X) generated by a subset X of an R-module M is the
smallest submodule of M which contains X . As such it is the image of
the R-linear function Fp(X)—= M whose restriction to X is the inclusion
XC— M. Of course (X) is generated by X, but in general not freely.

Suppose that M is a right R-module and N is a left R-module. A function
f i+ M x N—= A into an abelian group A is R-bilinear when it satisfies
f(m7n+n,) = f(man)+f(m7nl)
f(m+mlan) = f(m,n) +f(m,7n)

fmr,n) = f(m,rn).
Write Bil, (M, N ; A) for the abelian group, which is a subgroup of AM*N,
of R-bilinear functions f : M x N—= A. Our main goal is to construct a
“universal” bilinear function A : M x N—= M®gN .

Let B denote the subset of the abelian group F,(M x N) consisting of
all elements of the form

(m+m' n)—(m,n)— (m' n),
(m7n+nl) - (man) - (manl) )
(mr,n)— (m,rn)

for m,m' € M with n,n' € N and r € R. Put

M#pN = F,(M x N)/(B).
Then we have abelian group isomorphisms

Hom,(M &, N , A) = Hom,(F,(M x N)/(B),A)

{9 € Hom,(F,(M x N),A) | f is zero on B}
{f € AM*N| fis R-bilinear}
Bil,(M,N; A) .

IR

12
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In particular by taking A = M ®, N we get the identity morphism A— A
corresponding, under the composite of the above string of isomorphisms,
to a bilinear morphism A : M X N—= M®,N . Then we easily see that
each R-bilinear f: M x N—= A uniquely determines an abelian group
morphism g : M@, N—= A with goA = f.

For (m,n) € M x N, we put men = A(m,n). A typical element of
M®gN then has the form

k
E m;®n;
i=1

where my, ..., m;, € M and n, ..., n;, € N. These elements satisfy
(m+m')en = men+m'en
me(n+n') = men+men'
mren = mern.

With R and S rings, a module M from R to S, written M : R—+= S, is
an abelian group M enriched with a left R-module structure and a right
S-module structure related by

(rm)s = r(ms)

forall € R, m € M and s € S. (In the literature this structure is also
known as a left R-/right S-bimodule.) In this notation, tensor product can
be viewed as a kind of “composition of modules”.

For M and N as above, M ®¢N becomes a module from R to T by defining
r(men)t = (rm)s(nt) .
This composition of modules is not strictly associative, but is associative

up to canonical isomorphisms much like cartesian product of sets. This can
be seen by defining a multiple tensor product as we now proceed to do.

For rings R and S and any set X, there is a free module from R to S
generated by X . It is denoted by F5(X) and its elements have the form

T EyS; + o TS for r;,eR,s,€S,z;€ X, neN.

nn n
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For each module M : R —+> S we have
Homp (FR(X), M) = MX

where Homlg (N, M) is the abelian group which has as elements the left R-
/right S-module morphisms N—= M .

Exercise 4.1 For rings R, S, T and any sets X , Y prove that

FA(X xY) = FR(X)oqFd (V)
(x,y) +——> zoy .

Hint:  Look at left R-/right T-module morphisms into M : R —+=T .

Given rings and modules as in the diagram

M.
M. RQH;

Ry

ﬁ/ L S

R, R

a function f: M; x --- x M, —= L is called multilinear when it satisfies
the equations

flmy,...om;+mi,....om,) = f(my,...,m;,...,m,)
+ flmy,...,m},...,m,)
ro fmy,...,m,) = f(romy,my,...,m,)
fmy,oooompry,myy .o omy) = flmy,..o,my, rymy,y,...,my)
flmy,...omy)r, = flmgy,...,m,_q, m,7r,)

for r; € R, and m; ,m} € M,. Write
Mult (M, ... ,M,, ;L)

for the abelian group of such functions f. It should now be clear how to
construct a module

M1®R1M2®R2'-‘ ®Rn,1Mn : RO _'_>Rn
and multilinear function
A My x oo X M, — M,®p -+ Qg M,

having the universal property that, for each multilinear function f : M; x
- X M, — L, there exists a unique left R-/right R, -module morphism
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g: My®p -+ ®g _ M,—>L for which go A = f. This describes an
abelian group isomorphism

Mult (M, ..., M,;L) = Homp(M,®p, -+ ®g,_ M, ,L)

(where Homp (M, N) = Mult (M, N) is the abelian group of left R-/right
S-module morphisms M —= N ). When there is no ambiguity about the
rings, we write M;® --- @M,, instead of M,®p --- ®p M, . As with
cartesian product we have canonical isomorphisms

(My® - @M )®(M} 11 ® --- ®M,) = M;® --- @M, .

However, the diagonal M —= M®M in which mr——=m®m , does not pre-
serve addition. The empty tensor product M;® --- ®M,, for n = 0 is just
R, as a module R, += R, , using multiplication in R as scalar multiplica-
tion on both sides. We have canonical isomorphisms

RopM = M = M,S .
Given M, M' : R —+= S, we write

f:M=M:R—+=S or R r S

to mean f: M —= M' is a left R- and right S-module morphism. Given
the data

Ml M2 Mn
P N N S L
R, |n R, o Ry e R, . R,
~— 7 7 T —
M, M M,

we obtain fi®---@fy: Mi®p -+ @p M, = M{®p - ®@p  M;:
Ry == R, given by (fi®---af,)oA=Xo(fy X - x f,).

We have seen that tensor products allow us to represent bilinear functions
as module morphisms. Another way of doing this uses Hom instead of
tensor. Given a triangle of modules

M
R % S

e

T
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we can enrich the abelian group Homp, (M, L) (resp. Hom’(N, L)) of left R-
(resp. right T-) module morphisms with a module structure

Hompg(M,L) : S+=T
(resp. Hom!(N,L): R—+=S)
using the scalar multiplications
(s ft)(m) = f(ms)t  (resp. (rgs)(n) =rg(sn)).
We then have abelian group isomorphisms
Hom%(N,Homg(M,L)) = Mult(M,N;L)
Homy, (M ,Hom'(N, L))

1%

induced by the canonical bijections
(LMY = pMN = (LN
Combining these with the earlier results, we have
Homy (N, Homp(M, L)) = Homp(M®gN, L)
Hom3, (M, Hom (N, L)) .

1

These isomorphisms are determined by the evaluation morphisms
evy : M®gHomp(M,L)— L
evN 1 Hom” (N, L)@gN — L

, maf = f(m)

,  gon = g(n) .

Explicitly, the first isomorphism takes any u : N—= Homy(M, L) to the
composite

1,,9u vy,

M@gHomg, (M, L)

MegN L.

Exercises
1. Describe Z/(2)®,Z/(5).
2. (a) If R, S arerings, describe a canonical ring structure on R®,.S.

(b) Is the function from R to R®,S taking R to rs1 a ring mor-
phism? Why?

(c) Show that R®,S is the coproduct of R, S in the category of
commutative rings.

3. Show that a module M from R to S amounts to the same thing as
a left R®,S°P-module.

4. Describe explicitly the construction of M ®¢N® L.
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Cauchy modules

A module M : R -+ S givesrise to amodule M* = Hom,(M,R) : S+ R
called the left dual of M. There is a canonical module morphism

p¥ : M*®,L— Homy(M, L)

given by pM (ul)(m) = u(m)l, for each left R-module L.

Call an M : R—+> S cauchy when p?! is an isomorphism for all left
R-modules L. Our goal in this section is to characterize cauchy modules
more intrinsically.

A module P is called projective when, for all surjective module morphisms
e: L— L' and all module morphisms f: P— L', there exists some
module morphism ¢g: P—> L with f =eog.

>,

A morphism r : M —= N is said to be a retraction when there exists a
morphism i : N—> M with roi =1, . When a retraction exists from M
to N, we call N a retract of M .

Proposition 5.1 A module P is projective iff P is a retract of some free
module F'.

Proof. 1) A retract Q of a projective P is projective. To see this take
i:Q—=P and r: P—@Q withroi=15. Suppose e: L == L' is a
surjective morphism and f: Q—=L'. Then for: P—>= L' and since
P is projective, there is a morphism h: P—= L with eoh = for. But
then eo(hoi) = (eoh)oi= foroi= foly =f,s0g=hoihaseog=f.

2) Free modules F(X) are projective. Take e: L—= L' surjective and

f: F(X)—=L'. Then we can choose (using the axiom of choice) an

21
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element g(z) € L for each z € X such that e(g(z)) = f(z). Since F(X)

is free, we can extend g uniquely to a morphism g¢: F(X)—= L; and
furthermore e o g = f since they agree on X .

3) For each module M there is a free module F and a surjective morphism
e: FF—= M . Just take F' to be the free module F (M) on the underlying
set of M . To give a morphism e : F—> M we only have to give it on M,
so we take e(m) = m. Clearly this e is surjective.

4) If e: F—= P is surjective and P projective then e is a retraction. For
we have i as in:

Exercise 5.2 Show that a module P is finitely generated and projective if
and only if P is a retract of a free module on a finite set.
Hint: In (3) we did not need F(M); only F (X) for any X generating M.

This brings us to the fundamental theorem of “Morita theory”.

Theorem 5.3 The following conditions on a module M : R —+>S are
equivalent:

(i) M is cauchy.

(ii) there exists a morphism d: S = M*®,M : S == S such that both the
following two composites are identity morphisms

1 d ev, ®1

M = MgyS —% > Ma M*®,M —— > Ro,M = M
d® 1+ T+ ®evy,

M* ES®SM* M*®RM®SM*%M*®RREM*

(iii) there exists a module N : S —+= R and morphisms
e: Mo N— R d: S— NegM
such that the following composite is the identity morphism

1y ®d e®1ns

(iv) M is a finitely generated projective left R-module.
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Proof. (i) = (ii). Since p4f is an isomorphism, there is an element of
M*®sM taken by pif to 1,, : M—= M. This element of M*®zM now
determines a unique morphism d: S— M*®, M whose value at 1 € S
is the element. Write d(1) =}, u;®@m;. The condition p};(d(1))(m) = m
becomes ). u;(m)m; = m for all m € M . This immediately gives that the
first composite of (ii) takes m to m . To see that the second takes u € M*
to itself we use u(m) = u(>_ u;(m)m;) = u;(m)u(m,).

(ii) = (iii). Just take N = M*, e = ey, and d as in (ii).

(iii) = (iv). Just put d(1) = Zle n;em; € N®,M . From the fact
that the composite in (iii) is the identity, we have ). e(men;,)m; = m
for all m € M. So M is generated by m,,...m, . It remains to see that
M is projective. Take s: L—= L' surjective and f: M —= L’'. Then
we can choose ly,...,l, € L with s(l;) = f(m;). Define g: M—=L
by g(m) = > ,e(man;)l; and we get s(g(m)) = ) ,e(man,;)s(l;) =
Y. e(man;) f(m;) = f(3, e(men;)m;) = f(m), as required.

(iv) = (i). It is easy to see that a retract of a cauchy module is cauchy
(exercise). So it suffices to show that M = Fp(X) is cauchy for X a

finite set {z,, ..., z;,}. But then M* = Homg(F(X),R) = R* and
Homp (M ,L) = Homp(F (X),L) = L*. Under these isomorphisms p}
carries across to the morphism RF®pL—=L* with (ry,...,r,)el—
(ryl,...,r, 1) which has inverse (I, ..., [, )+— Ele u;®l;, in which

u; € R* projects to 0 in all components except the i-th where it projects
to 1. So p¥ is an isomorphism.

Given rings R and S, from any ring morphism f : S—= R we obtain two
modules (R : S+ R and R;: R—+= S, which have R as underlying
abelian group. They have scalar multiplicatons

S xR — sR , fRx R— (R

Ry xS — Ry , R x R;— R;
given by, respectively

(s,r) — f(s)r ) (r,r") — rr'

(r,s) — rf(s , (r',r) — r'r .

For any module L : R +> T we have canonical isomorphisms

fRopl = L = HomR(Rf,L)
rel —— 1
u(l) =— u .
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It follows easily from this that
(Ry)*" = 4R

and that R is cauchy.
A module M : R—+= S is called convergent when there exists a ring
morphism f : S—= R and a module isomorphism M 2 R.

The product [[;c; M; : R =+> S of a family of modules M; : R += S with
i € I, has as elements the families m = (m;);; with m; € M;; addition
and scalar multiplication are given by

! ! —
m+m' = (m; +my);c; , rms=(rm;s),s -
There are projections

prj HMZ»—>M]. for each j € I
iel

given by pr;(m) = m; . There are also injective module morphisms

in; : Mj—>HMi foreach j € I
il
given by in;(m) = m where m; = m and m; = 0 for all i # j; we can
use these to identify each M; with the submodule of [];.; M; consisting of
those m with m; =0 for all ¢ # j.

The direct sum ) ;c; M;: R—=+>S is the submodule of [[;.; M; which
consists of those m for which m;, = 0 for all but finitly many ¢ € I.
This is the submodule generated by the union U,.;M; , hence we can write

> icrm; instead of m € 3, .; M;. Of course the injections in; actually
land in ), ; M;.

Proposition 5.4 There are module isomorphisms
(a) Homp, ( 3 M, L) >  T[ Homp(M;, L)
icl iel
[~ (foin)s

(b) (ZMi)®SN = Z M;®@gN

iel el
(Xm;)en <—+— Y ,(m;en).
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Proof. (a) Injectivity. If foin, = 0 for all i € I then f is zero on each M;
and hence on > M, .

Surjectivity. Given f; : M,—=L for all i € I, define f: Y M,— L by

(b) HomR((ZMi)(X)SN,L) o~ Homs(ZMi,HomR(N,L))

12

I Hom® (M Hom® (N, L))
i

1

H Homg (M;®¢N, L)

K3

1%

Homg (> (M;@5N) , L)

(3

and the composite isomorphism is induced by the given map in (b). This
proves it. (Why?)

When T is finite, notice that ), M; = [[,c; M;. This is also frequently
written ®;erM,. So M $ N=M xN =M+ N.

Exercises

1. Suppose M is a finitely generated projective module over a com-
mutative ring R. Show that M* is a finitely generated projective
module and that the canonical morphism M — M** is bijective.

2. Prove directly from the definition of “Cauchy module” that a retract
of a Cauchy module is Cauchy.
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6
Algebras

Let R be any ring. An algebra over R (or R-algebra) isamodule A : R -+ R
together with module morphisms

p:ARgA—A , n:R—A

such that
pely @
(Associativity) ARp A®p A ﬁ> AQpA—— A
AQU
UEIN m
(Identity) A AxpA A .
W

La

Notice that A becomes a ring with multiplication a b = p(a®b) and identity
1=n().

For R-algebras A,B: R—+> R an algebra morphism f: A—= B is a
module morphism satisfying

fef
A@pA ——"—= B2,B

AN

B

"

A

We write Algg (A, B) for the set of algebra morphisms from A to B.

27



28 Algebras

Example 6.1 For any module M : R —+> S, the endomorphism algebras,
over S and R respectively, are given by

Endp(M) = Homg(M,M) :S —+— S
End®(M) = Hom®(M,M) :R -+ R

In each case the multiplication is given by composition.
A module morphism

fi: A= End*(M) :R + R
corresponds to a module morphism

p: A9pM = M : R + S .

To say that i is an algebra morphism is precisely to say that u is a scalar
multiplication enriching M with the structure of left A-module.

Example 6.2 For any module M : R —+= R, write
M®" = M®g--- QM (n terms) .

The tensor algebra on M is defined by the “geometric series”
T(M) = Y M®"
n=0

with multiplication p: T(M)QpT(M)—= T (M) induced by the canonical
isomorphisms

M®p®RM®q = MeP+a)
and unit 1 : R—=T(M) equal to the injection
o0
ing: R = M®° — ZM@’”.
n=0
Composition with the injection in, : M —=T(M) gives a bijection
Alg,(T(M),A) = Homf(M,A)

for any algebra A. The inverse takes f: M—= A to g: T(M)—= A
given by gmy® --- em,) = f(my) --- f(m,). In particular, if we take
M =A and f =1, , we obtain an algebra morphism

p:T(A)—S with ple,® -+ ®a,.) = a, -+ a, .
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Example 6.3 Let G be any monoid. There is an R-algebra R(G) which
is just the free module FE(G) on the underlying set of G together with the
multiplication p which extends that of G in the sense that

Gx G F{GxG) = FHG)2RFH(G)

G¢ FRG) .

This R(G) is called the monoid R-algebra of G ; or when G is a group,
the group R-algebra of G. Fach monoid morphism G—>= A into the
multiplicative monoid of A extends uniquely to an R-algebra morphism
R(G)—A.

A representation of G on M is an R(G)-module. Scalar multiplication
R(G)®&x M —= M can be viewed as a monoid morphism

G — Endgp(M) .

The subset of M given by {gm—m | g € G, m € M} generates a submodule
(gm —m | g € G, m € M) and we write M/G for the quotient module
M/(gm-m|ge G, meM).

An ideal in an algebra A is a submodule [ such that azb € I for all x € T
and a,b € A. There is a unique structure of algebra on the quotient module
A/T for which the canonical p: A—= A/I is an algebra morphism. The
kernel of any algebra morphism f : A—> B is an ideal in A.

If X is a subset of an algebra A , we write (X)) for the smallest ideal of A
containing X . This should not cause confusion with the module notation;
the ideal (X) is precisely the submodule (A X A) generated by the subset
AXA={azb|a,be A,z € X} of A. Given any algebra morphism
g : A— B satisfying g(z) = 0 for all z € X, then an algebra morphism
f: A/(X)—= B is uniquely determined via the equation fop=g.

Now suppose that R is a commutative ring. Then left R-modules are
“the same thing” as right R-modules. Moreover, each left R-module M can
be naturally regarded as a module M : R —+> R by defining

rms = (rs)m forall r,s€ R and meM .

In dealing with modules over a commutative ring, we happily regard left
modules as two-sided via this process. Thus for R-modules M, ..., M,
we have a tensor product R-module

M,®q -+ ®xM, .



30 Algebras

Furthermore every permutation £ on the set {1, ..., n} induces a canonical
module isomorphism

oe 1 My®p - ®pM, ———> My ® - @M,

MA® s @My M) ® 1t Oy -

Given an algebra A over R with multiplication p and unit n, we obtain an
opposite algebra A°P on the same module A, with multiplication

AgpA—"— A

g

ot Aop A

and with the same unit n: R—= A. Call A commutative when AP = A
as algebras. It follows that the composite

o
ARy, - QpA——> A%y, -+ QpA——> A
is independent of the permutation £ .

Example 6.4 For any set X, the set RX of all functions from X into
the commutative ring R becomes a commutative R-algebra after defining
addition, scalar multiplication and multiplication as acting pointwise. The
unit 7 : R—= RX s given by n(r)(z) =7 forall r € R and x € X .

Example 6.5 Let M be any module over the commutative ring R . There
is a natural representation of the symmetric group S, on M®" given by
o_ : 8, == Endp(M®") ; that is £- (my® - @my,) =M@ @My, -
The symmetric R-algebra on M is given by the “exponential series”

oo

Sy = > M/S, .

n=0

Another way of constructing this is as follows. For any R-algebra A we
can form a commutative R-algebra by taking the quotient of A by the ideal
(ab—ba | a,b € A). Applying this construction to the tensor algebra
T (M) gives S(M) .

For every commutative R-algebra A, we have that

Alg,,(S(M),A) = Homp,(M,A).

In particular, corresponding to the identity map 1, : A—= A there is an
R-algebra morphism p : S(A)—= A.
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The following diagram of “forgetful” and “free” constructions summarizes
some of the above.

Comm Algy
S
T
forget forget
module multiplication

Monoids ModulesR

word monoid Fr
forget forget
module structure

multiplication
Sets

Skew commutativity ab + ba = 0 for an R-algebra is too strong as a
requirement for all a,b € A. For example taking b = 1, it would give
(1+1)a=0. Hence if R is a field of characteristic other than 2 (meaning
1+1#0in R), we would get a =0, and so A = {0}.

An R-algebra A is said to be skew commutative when for all a € A
either a®> = 0 or a € p(R). Then, provided none of a,b and a + b are in
the image of n: R—= A, we have

ab+ba = (a+b)?—-a*> - =0.

Example 6.6 For any R-algebra A we can form the quotient by the ideal
(a*|a ¢ n(R)) to obtain a skew commutative algebra. If we do this to the
tensor algebra T(M) we obtain the exterior algebra A(M) . Alternatively,
let Ap(M) be the quotient module of M®™ by the submodule generated by
the elements m® - - ©@m, with m; = m; for some i # j (this submodule
is {0} when n =0 or 1); then

We write mq A --- Am,, for the image of my®---em,, in A(M). For all
T,y,z € M we have

xAzx = 0 therefore zAy = —yAzx
(re+sy)Az = r(@Az)+s(ynz).
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If M = Fp{xy,...,x,} is a free module on a k-element set then A, (M) is
a free module on a (Z) -element set; so A(M) is a free module on a set with
2k -elements. In particular Ay (M) is free on the singleton set {x, A---Ax.},
so if

then y; A--- Ay, must be a unique scalar multiple
Yy A ANy, = det(ri]-)ml/\---/\a:k

of x; A--- ANz, . This can be taken as a definition of the determinant of
(r;;) € Mat (k,R) .

If A is a skew-commutative algebra then we have a bijection

Alg,(A(M),A) = Hompg(M,A).

An R-Lie algebra is an R-module L together with a module morphism
B : L&y L— L satisfying the conditions

Blx,z) = 0
(Jacobi identity) B(B(z,y),z) +B(B(z,z),y) +B(By,2),z) =0

Call such a 8 a Lie bracket on the module L.

Example 6.7 For any R-algebra A the commutator [a,b] = ab —ba
defines a Lie bracket on the underlying R-module of A:

[[a,b],c]+[[c,a],b]+[[b,c],a]
= [a,blec—cla,b] + [c,alb—D[c,a] + [b,c]la—alb,c]
= (abc—bac)—(cab—cba)+ (cab—acbh)— (bca—bac)+
+(bca—cba)—(abc—ach) = 0.
So A becomes a Lie algebra, denoted by A, . It turns out (at least when R

is a field) that every Lie algebra is a submodule, closed under commutator,
of such an example.

Example 6.8 Let A be an R-algebra and M : A —+= A a module. Then
a derivation D : A—= M is an R-module morphism satisfying

(Leibniz rule) D(ab) = D(a)b + aD(b) .
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Notice that a = b =1 gives D(1) =2D(1), so D(1) = 0. Let Derp(A, M)
denote the submodule of Homp(A, M) consisting of the derivations. We
write Dery(A) for Derp (A, A). It is easy to check that Dery(A) is closed
under commutator in the algebra Endg(A); that is, if D ,D,: A— A
are derivations then so is [Dy,D,] =D, oDy, —D,o0D, .

Example 6.9 The tangent space at the identity of each Lie group is a Lie
algebra. The pioneering work of Sophus Lie and Eli Cartan showed how
much information about the Lie group is obtainable from the Lie algebra
(especially in the compact case).

The Lie groups GL (n,R) and SL (n,R) and O(n,R) consist of those
matrices x € Mat(n,R) for which respectively x is invertible, detx = 1
and xxt = 1. They have associated Lie algebras

gl(n,R) = Mat(n,R)
slin,R) = {xegl(n,R) | trace(x) =0}
on,R) = {xegl(n,R) | x* =—-x}.

(We shall not stop to prove this here.) The Lie bracket is [x,y] =xy—-yx
in each case. As an exercise the reader should check that sl(n,R) and
o(n,R) are closed under commutator.

Suppose L and L' are R-Lie algebras and f: L—= L' is an R-module
morphism. Then f is a Lie algebra morphism when it satisfies

F(B,y) = B(fx),fy) -

Write Lieg (L, L') for the set of Lie algebra morphisms f: L—=L'.

We saw in Example 6.1above that each R-algebra A gives rise to an R-Lie
algebra A; using the commutator. We shall describe an “adjoint” for this
process: for each R-Lie algebra L we obtain an R-algebra U/(L), called the
universal enveloping algebra of L, such that there is a natural bijection

Alg, (U(L),A) = Lie(L,A;). (%)

For this we use the tensor algebra T'(L) on the underlying R-module of L,
and take the quotient by the appropriate ideal:

UL) = T(L)/(roy —yoz — B(z,y) |z,y€L) .



34 Algebras

We have a Lie algebra morphism ¢ as in:

and it is composition with ¢ that induces the bijection (x).

The direct sum L, @ L, of Lie algebras L, , L, is their direct sum as modules
together with the Lie bracket

B((% ,T3) 5 (U 792)) = (B(wl Y1) 5 B(xy ay2)) -

Proposition 6.10 There is an algebra isomorphism
ULy & Ly) = U(Ly) Rz U(Ly)

whose composite with i : Ly ® Ly—>U(L, ® L,) takes the pair (z,,z,)
to ;01 + 1oz, .

Proof. It is left to the reader to check that

L,®oL,— (U(L1)®RL{(L2))L (T1,75) = 701+ lom,
Ly —U(L, © Ly)y, r; — (z;,0)
)

L,—U(L, ® L,), Ty > (0,z5)

are Lie algebra morphisms. These three must therefore be composites with
1 of algebra morphisms

¢ : ULy & Ly) —= U(Ly) ®U(Ly)
Y1t UL)  —= UL ® L)
Yyt U(Ly) — U(L; ® Ly)

Define ¢ : U(L,) @z U(Ly) —= U(L, B L,) by (a®b) = 1, (a) 1Py (b). Then
we have that

1/’(¢(331 a%)) = Y(r;0l + loxy) = (,,0)+(0,25) = (v,,7,)
¢(¢1(ﬂ51)) = ¢(z,0) = 701
¢7(‘/’2(332)) = ¢(0,z,) = lo, .

Hence ¢ and v are mutually inverse.
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A deeper result which we shall not prove here is:

Proposition 6.11 (Poincaré—Birkhoff-Witt) If the R-Lie algebra L is
free as an R-module then 1 : L—=U(L)1, is injective.

A Lie algebra L is called commutative when B(z,y) =0 for all z,y € L.
So an algebra A is commutative iff A; is commutative.

Notice that, for any module M, we can make M into a commutative
Lie algebra. Then the universal enveloping algebra of M is precisely the
same as the symmetric algebra of M , that is /(M) = S(M) . In particular,
we have (Proposition 6.10):

S(Ma M) = S(M)egS(M') .

Exercises

1. Let R be a commutative ring and G be a group. Consider left
modules M, N, L over the group algebra R(G).

(a) Show that M®gN becomes an R(G)-module on defining g(men) =
(gm)e(gn) for g € G,m € M,n € N.

(b) Show that Homp (A, L) becomes an R(G)-module on defining
(gu)(n) = gu(g *m) for g € G,u € Homp (M, L),m € M.

(c) Show that evaluation ev pr : M®gHomp(M,L) — L is an
R(G)-module morphism.

(d) Prove that the evaluation induces an isomorphism of R-modules

Homy, g, (N,Homp(M, L)) = Homg (M®gN, L)
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7
Coalgebras and bialgebras

Let R be any ring. By a coalgebra over R (or R-coalgebra) we mean a
module C' : R —+> R together with module morphisms

§: C—=Cx,C and e:C—R

such that
s R 1y
c CapC = C®,C2C
X

e®ly

C Co,C ——=C .
1y ®e

1C

We call § the comultiplication and e the counit. This structure provides a
module with “formal diagonals”. There is a uniquely determined

0: C—=CxrCx - &C
where for each ¢ € C' we have d(c) = > ¢;;® --- ®¢,,;, . The notation
(S(C) = ZC(l)® Tt ®C(n)
(e)

is sometimes used even though the representation of d(c) in the tensor
product is not uniquely determined—we act as though a choice of this
representation has been made for each ¢ € C'. Given a multilinear function
f:Cx---x(C—= A we also write

f(5(0)) = Z f(0(1)> cee C(n)) .
(c)

37
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In terms of this notation the axioms can be rewritten as

26 C(l) ®C ZC ®C ®C(3) = ZC(l)®6(C(2))
c = Z (C(l) ®C ZC(l)@)E 0(2)

(e)

Suppose C and D are coalgebras. A coalgebra morphism f: C—= D is a
module morphism such that

C D c D

5 5 \ /
€ £
fof

C2pC DD R

that is,

Zf ®f0(2)) = Zf (1)®f

(F(e))
e(£(e) = e(e) -

We write Cogp(C', D) for the set of coalgebra morphisms from C' to D .

Suppose R is commutative. A coalgebra C over R is cocommutative when

N

C®,C z CorC .

Return now to a general ring R. Suppose that A is an R-algebra and C
is an R-coalgebra. Then Hompy(C', A) becomes an R-algebra under the
following convolution structure.

Homp(C', A)®zHomg,(C', A)

—®_

l [o_od

Homy(C', A) Homy (C

no_oe
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In terms of elements, for left R-module morphisms f, g: C—= A their
convolution product is given by

f*xg = po(feg)od and 1 =noe.

Using the notation for comultiplication this becomes the formula

(fxg)(c) = Zf(c(l))g(c@)) .
(c)

In particular, with A = R each R-coalgebra C gives rise to a convolution
R-algebra structure on the dual C* = Homg(C,R). However, we prefer
to regard C* as an R-algebra via the multiplication p : C*®,C* — C*
defined by

nel

1®1®6l le
C* @, C* @R CRRC R
%& /
C*@RC

(This works even for non-commutative R.)

Example 7.1 Suppose X is any category which admits finite products.
Suppose F : X —= Modg is a functor into the category of modules from
R to R. Suppose there are natural module morphisms

¢X X 'F(XIX.XX’IL)%FX1®RFX2®R..®RFX’IL

1300 Ap
compatible with the canonical associativity isomorphisms for product and
tensor product. Then for each object X of X we obtain a coalgebra FX,
with comultiplication and counit

Fé ¢xx

FX

F(X x X)

. p
Fx —F F1 ° R .

FX@pFX

If furthermore R is commutative and F' is compatible with the twists, then
this coalgebra is cocommutative.
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sub-example (a). (R commutative) The free R-module construction
gives a functor
Fg : Set — Mod,

from the category of sets to Mlod, . We have isomorphisms

¢+ Fr(Xy x - x X)) — FpX1®g - @pFrX,

(Ty, ..o y@y) s T1® - BT, .

Proof. (n =2)

Homy, (Fp(X x V), M)

1%

=~ Hompg(FRY ,M¥)
= Homp (_7—'RY, Hom(]—'RX,M))
Homp (FRX®FRY , M) .

1

So each FrX becomes an R-coalgebra.

sub-example (b). The universal enveloping algebra provides a functor
U : Lie,— Mod,
and we have already observed
UL L) = UL)RgUL) and Uo}) = R
(z,2") — zol+ lox'

Since direct sum is product in Lie, we have another standard example.
Thus each universal enveloping algebra U (L) becomes an R-coalgebra. The
comultiplication here is determined by

L— = UL UL)RU(L)

[ rel+lex

Subexamples (a), (b) suggest two definitions that we can make for any
coalgebra C'.

e Say that ¢ € C is set-like when §(c) = coc and €(¢) = 1. (In the
case of C = Fp(X) the set-like elements are precisely the elements
of X.) Write D(C) for the set of set-like elements of C'.
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e Say that ¢ € C is primitive when
d(c) =col +1oc .

(In the case of C = U(L) each element of L is primitive.)
Write P(C) for the submodule of primitive elements of C'.

Proposition 7.2 (with R a field.) The set-like elements of any coalgebra
C form a linearly independent subset D(C) .

Proof. Suppose D(C) is linearly dependent. Let n+ 1 be the first natural
number for which there is a linearly dependent subset of D(C) with that
many elements. Then any set of n elements of D(C) must necessarily be
linearly independent, while there exist distinct g, g;, ..., g,, € D(C) which
are linearly dependent. Then we can write

g=Mg+ -+,

with the \; € R all non-zero. Then
Y Ngeg = D> No(g) = dg) = geg
i=1 i=1

= Z AiXj 999, -

4,j=1

Since {g;,...,g,} is linearly independent in C' then {g,®g,} is linearly
independent in C®C', so we can equate coefficients: A\;A; = 0 for i # j and
A\; = A?. Since \; # 0 this means n = 1 and A, = 1. But g = g, was not
allowed.

We shall come back to set-like and primitive elements in the context of
bialgebras.

Example 7.3 (with R commutative.) Let C = FyN be the free R-module
on the countable set N. Define

1 f =0
o(n) = Z PG and e(n) = {0 fgi Z >0
p+g=n '

This defines a cocommutative coalgebra structure on C .

Take an R-algebra A and look at an example of convolution with this
coalgebra C'. The convolution structure transports across the R-module
isomorphism

Homp(C,A4) = AV (sequences in A)
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to give the multiplication
ab = ( Z a,b,)
p+g=n

for sequences a = (a,) = (ag,a,,-..) and b = (b,,) = (by,by,...) in A.
The unit sequence is (1,0,0,0,...). A precise definition of indeterminate
can be taken to mean the sequence

z = (0,1,0,0,0,0,...) € A

in A. Each u € A is identified with ul = (u,0,0,0,...) € AN, Then
each a € AN can be written as a formal (no convergence requirements!)

power series
o0
J— n
a = E a,x" .
n=0

Write A[z] for AN with this algebra structure. It is the R-algebra of formal
power series in A. If A is commutative so is Alx]. In particular when
A = R we obtain the commutative R-algebra C* = R]z] .

Example 7.4 Let n = {1, 2, ... ,n} and put C = Fp(n xn). Then C
becomes an R-coalgebra on defining

n

8(i,5) = Y. (i,k)elk,j) and  e(i,j) = {1 for i = j

Pt 0 otherwise.

Given any R-algebra A, the convolution structure simply transports across
the R-module isomorphism

Homp(C',A) = A™*" ( n x n matrices in A)

to give the usual matriz multiplication
n
(aij) (bij) = (Zaik bkj) .
k=1

In this way we obtain the R-algebra Mat(n,A) = Endgz(A™) of n xn
matrices with entries in A .

Suppose that R is a commutative ring. An R-bialgebra is an R-module B
together with algebra and coalgebra structures

p: BepB—=B and n: R— B
0: B—B®B and e: B—R
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satisfying the conditions

By B = B
0®0 [
o ®
B®yBoyp BB ——— By Boy BepB ———> BB

BoB —2> ReR "~ BB

l l~ T(s

Notice the complete duality between (u,n) and (§,e). When expressed
in terms of elements the duality is not so apparent:

o(z,y) = ZZ Z(1)Y(1)®T(2)Y(2)
(2) (v)
c(y) = 2@e(y) and (1) = 1s1 and e(1) = 1.

For R commutative, the tensor product A®zA’ of R-algebras A and A’
becomes an R-algebra via the multiplication

= pop
(ARpA") R (ARRA") — > (AR A) QR (A'@A") —= ARz A
01324
and unit
R = R®yR— > Ag A’ .

Also the tensor product C®,C’, of R-coalgebras C' and C’, becomes an
R-coalgebra via the comultiplication

CapC! —22°

(CeRrC)eR(C'@rCT) (CRpC") @R (CRRCT)

loo®l

and counit
ERE

C@pC"

RozR = R .
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With this, we can make the observation:

Proposition 7.5 Suppose (u,n) and (§,¢) are respectively, algebra and
coalgebra structures on the R-module B. Then the following conditions
are equivalent:

(i) B is a bialgebra;
(i) p: BgB—= DB and n: R— B are coalgebra morphisms ;

(i) 6 : B—= B®RB and € : B—= R are algebra morphisms.

For bialgebras B and B’ a bialgebra morphism f : B—= B' is a function
which is both an algebra and coalgebra morphism. Write Bigy (B, B") for
the set of such functions f.

Before giving examples of bialgebras we prove some extra results on the
set-like and primitive elements for the bialgebra case.

Proposition 7.6 If B is a bialgebra then the set-like elements are closed
under multiplication: so D(B) becomes a monoid.

Proof. 5(bb") = §(b) §(b') = (beb)(b'ob") = bb'ebb’ for b,b' € D(B); also
1

) =
c) =e(b)e(@) =1-1=1.

Proposition 7.7 If B is a bialgebra then the set of primitive elements is
closed under commutator, so P(B) becomes a Lie algebra. Also e(z) =0

for all xz € P(B).
Proof. For z,y € P(B) we have

5((w,y]) = 8x)6(y) - 8(y) b(x)
= (zol+loz)(yel + 1oy) — (yol + 1oy)(zel + 1ox)
= zyel+zoy +yer + leozy — (yrol + yor + zoy + loyx)
= [z,y]el+1e[z,y]

so that [z,y] € P(B). Also z = (1g¢)d(z) = (1ge) (z®l + loz) =
x +¢e(z); hence e(z) =0.

Example 7.8 Return to the situation of coalgebras in example 7.1. There
are two conditions on the functor F : X —> Mody which gives rise to
bialgebras FX .
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(a) When the morphisms ¢ are all invertible.
Then F takes each monoid G in X to a bialgebra FG . The multiplication
and unit for G give an algebra structure

F
" FG and R~ F1_"

FG®,FG = F(G xG)

FG

on FG . These are coalgebra morphisms since all arrows in X “commute
with diagonals”. By proposition 7.5, each FG becomes a bialgebra. This is
the situation for the functor Fg : Set —= Modp, so for each monoid G
the monoid algebra R(G) is a cocommutative bialgebra. Notice here that
G = D(R(G)) as monoids (see proposition 7.6).

(b) When F lifts to F' : X — Algy, . In this case each FX is clearly
a bialgebra since the comultiplication and counit are algebra morphisms
(proposition 7.5). For the functor U : Liep—= Algy this is indeed the
situation. Thus we have that each universal enveloping algebra U (L) is a
cocommutative bialgebra.

Example 7.9 Return to ezample 7.3 of a coalgebra. This time, to use the
symbol N to denote our countable set would be confusing. Instead we denote
it by E = {eg,ei,ey,€3,...}. Then the coalgebra structure on Fp(E) is

0 for n>0,
de,) = Z e,0e, and ele,) = {1 fgi Z:O

We now make Fp(E) into an algebra via

_ (p+ 9!
epeq = 1
plq!

€ptq with ep=1.

(The binomial coefficient is an integer and so “lives” in any ring R.) Then
Fr(E) is a bialgebra. If R is a field of characteristic 0 (i.e. 14+---+1#0
in R for any non-zero number of terms) put x = ey so that one sees that
en = % z". Hence, as an algebra, Fp(E) is isomorphic to the polynomial
algebra R[z] in one variable. For general R we can think of Fp(E) as the
algebra of Hurwitz polynomials in one indeterminate:

an T
Z n' with each a, € R.
n!

n=0

Example 7.10 Return to example 7.4 and form the symmetric algebra
S(C) of the coalgebra C = Fp(n x n) . Since using n x n can be confusing
we replace it by any set X = {z;; | i,j € n} of cardinality n2. Then we

identify S(Fr(X)) with the polynomial R-algebra R[(z,;)] in n® commauting
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indeterminates x;; fori,j € n. In example 7.1 we saw that this becomes a
bialgebra by virtue of the fact that it is the universal enveloping algebra of
a commutative Lie algebra Fp(X), but this is not the structure of interest
here. The coalgebra C' induces the bialgebra structure

6(z;;) = ;mik@’x,ﬁ and e(zy;) = {(1) igi z ;j
which we call the matrix bialgebra M(n) over R. This must not be confused
with the matriz algebra
Mat(n,R) = Alg,(M(n),R)
(which is the algebra of “points” of M(n) ).

Exercises

1. For any R-coalgebra C, prove the following identities:
(a) 6(c) = Z(c) 5(0(2))®5(C(1)) = Z(c) 5(0(2))®5(C(1)) Z(c) 0(1)®5(C(3))®C(2)
(b) (e eleay)ee e = X coc)
(c) Z(c) 5(0(1))®5(C(3))®C(2) =c
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Dual coalgebras of algebras

We have seen that the dual C* of a coalgebra has a natural structure of an
algebra. One might expect the dual A* of an algebra to be a coalgebra in
an obvious way, but this is not true because of the failure of the canonical
morphism

M*@yN* — (M®yN )*
to be always invertible. If M is cauchy the morphism is invertible since

Homp(M,N*) =2 M*®yN*.

1

So for an algebra A which is cauchy (as a module) we obtain a coalgebra,
denoted by A*, via

5 AT (AgpA)t = A*gpA
e: A" >R =R .

However instead of restricting A, which is unsatisfactory since many of the
examples are not cauchy, we modify the definition of the dual A*.

Let’s call an ideal I of an algebra A cocauchy when the quotient algebra
A/I is cauchy (as a module). Define

A® = {u € A* | uis zero on some cocauchy ideal of A } .
Proposition 8.1 (with R a field.)
(a) A° is a submodule of A*.

(b) If f € Algr(A,B) then f*: B*—= A", given by composition
with f, takes B° into AO.

(¢) For any R-algebra B the canonical morphism A*®@B* —(A®B)*
induces an isomorphism A°®B° —> (A®B)°.
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(d) There ezists a unique & : A°—= A°®A" satisfying

A0 0 L 040 = o (ARA)°

T

p C— (A®A)* .

Proof. (a) If u € A and r € R then ker(ru) D keru, so that ru € A°.
Take u,v € A° zero on cocauchy ideals I and J respectively. We can
find subspaces U, V and W of A with A = (INJ)®e UV & W and
I=(InJ)yeUand J=(INJ)®dV.So A/I=2VdWand A/J=UsW
are finite dimensional. Thus A/INJ = U &V @ W is finite dimensional.
Hence I N J is a cocauchy ideal on which u + v is zero.

(b) Take v € B® zero on cocauchy .J in B. Then f~'(J) C ker(vf) =
ker f*(v) is an ideal of A ; but f~1(J) is the kernel of A-L>p— B/J so
that A/f1(J) is isomorphic to a subspace of B/J. So f~1(J) is cocauchy.
(c) We shall use the following .. .

Exercise. (with R a field.) When f: M—= N is an injective module
morphism then f®pl: M®pL—> N®gL is injective. Furthermore we
have that M*®pN*—=(M®gN)* is injective.

Before beginning the proof of proposition 8.1(c) notice that for any co-
cauchy ideal K in A®B we have cocauchy ideals

I ={acAlasle K} = (A—=2'> AoB)*(K)
J={beB|1®be K} = (B 2> A®B)*(K)
Apd + I9,B = ker( Az B—(A/T)®@g(B/J))
of A and B and A®B respectively.
Now take w € (A®B)° which is zero on some cocauchy K as above.

Then w is zero on A®J + I®B C K. However AQB/(A®J + I®B) =
A/I® B/.J so there exists a unique w:

w

A®B R

p®p /

(A/D&(B/T)

Furthermore since A/I and B/J are finite dimensional, so that we have
(A/D)*®&(B/J)* —— (A/I®B/J)* is invertible, there is some element
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S hi®k; € (A/I)*®(B/J)* corresponding to w . In particular, for z € A/I
and y € B/J we have that

w(zoy) = X hi@)kiy) - (+)

Define the composite h; = hiop : A—= A/I— R and similarly define
ki=k;op: B—= B/J—= R . These are in A’ and B° since they are
zero on I and J respectively. Hence we have

Zhi@’ki € A0®BO

which is the image of w € (A®B)® because of ().

Conversely, if h € A° and k € B° vanish on cocauchy I and J (ideals
of A and B) then hek vanishes on A®.J + I®B which is a cocauchy ideal
of A®B.

(d) Suppose u € A° vanishes on a cocauchy ideal I. Then p*(u)(a®b) =
(up)(a®b) = u(ab), so p*(u) vanishes on A®I + I®A which is a cocauchy
ideal of A®A. Hence p* takes A° into (A®A)° and § exists as desired.

Corollary 8.2 (with R a field.) For each algebra A a coalgebra structure

on AY is given by the § in 8.1(d) and ¢ = (A° ——~ A* s R R).
Also each algebra morphism f : A—= B induces a coalgebra morphism
fO: BY—= A® given by restriction of f* (see proposition 8.1(b) ).

Proof. Draw the diagrams expressing the axioms on g, n and f. Simply
apply (_)* then restrict to (_)°.

Exercise 8.3 An algebra morphism f : A—= R is a set-like element of
AO,

For each algebra A we obtain a left and right A-module structure on A*
given as follows, for a € A and u € A*:

(au)(z) = wu(za) ,

(ua)(z) = wulaz) .
In fact A* : A—+= A. For any f € A* write
Af and fA and AfA

for the R-submodules of A* consisting of those elements of the form af
and fa and afb respectively with a,b € A.
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Proposition 8.4 (with R a field.) For f € A* these are equivalent:
(1) feA,
(2) p*(f) is in the image of A*Q@A* —=(ARA)*;
(3) w*(f) is in the image of (A®A)’C» (A®A)*;
(4) Af is cauchy;
(5) fA is cauchy;
(6) AfA is cauchy.
Proof. (1) = (3) by proposition 8.1(d). Also (3) = (2) is trivial.
(2) = (4). Let p*(f) be the image of >, u;ov; € A*®A*. Then we have
that f(ab) = Y, ui(a)vi(b) so bf =3 . vi(b)u; € A*. Thus bf is in the
subspace of A* spanned by the u;. Hence Af is finite dimensional.
(4) = (1). Suppose Af is finite dimensional. Then also Endg(Af) is finite
dimensional, so the kernel I of the morphism A— Endy(Af) given by

ar—(bfr—=bfa), is a cocauchy ideal of A. But a € [ implies 1fa =0,
so f(a) = 0. Hence f is zero on I so that f € A°.

(5) = (1) is similar to (4) = (1) and (6) = (5) is trivial.
(1) = (6). Take f € A° zero on the cofinite ideal I. Then for ¢ € I we have
(afb)(c)=f(bca)=0. Thus AfACT ={ue A*|u(l) =0} = (A/])*
which is finite dimensional since A/T is so.
Corollary 8.5 For any coalgebra C' the canonical injection d : C—= C**
given by d(c)(u) = u(c), has image in (C*)°.
Proof. Take ¢ € C'. Then C*d(c) = {ud(c)|u € C*} C C**. Now
(ud(c))(v) = d(c)(v*u) = (vxu)(c) = (vou)d(c) = (vou) o) ¢, ®C) =
> (e) U(cn)) u(cz)) using the definition of multiplication v+ w in C'. Thus
ud(c) = 3 u(c(2)) d(c(l)), which is in the subspace of C** spanned by
the d(c(l)). Hence C* d(c) has finite dimension and by using (4)< (1) of
proposition 8.4 it follows that d(c) € (C*)°.
Theorem 8.6 (with R a field.) For all algebras A and coalgebras C there
is a bijection

Algp(A,C*) = Cogg(C,A")
fO

(A-Lsc*) 4 (02 (0 A0)

Proof. The inclusion i: A°—= A* induces i* : A** —= A% while the

inverse to f —f? o d takes g € Cogg(C, A°) to the composite

AT g T qor T o

The remaining details are left to the reader.
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Hopf algebras

Our base ring R will always be assumed commutative, and whenever ( )°
appears we happily suppose it to be a field.

An R-Hopf algebra is an R-bialgebra H together with R-module morphism
v:H—H
called the antipode, which satisfies the following diagram.

rel
H—' > HoH———>HgH ——=H

R

For any Hopf algebra H let H°P denote the Hopf algebra obtained by
replacing p with poo : HoH —% H®H -*> H and replacing § with
§oo: H-> HoH %> H®H while keeping the same 7,  and v.

There is also a bialgebra H' obtained more simply by just replacing ¢

with oo : H -%> H®H -2~ H®H while keeping the same j, 1, & and
v. In general however, this H' is not a Hopf algebra.

Proposition 9.1 Let H be a Hopf algebra. Then

(a) the antipode v is uniquely determined;

(b) v: H®—= H is a bialgebra morphism;

(c) H' is a Hopf algebra if and only if v is bijective (moreover the antipode
for H' is the inverse for v );

(d) if H is commutative or cocommutative then vov = 1y (that is, v is
an involution,).

Proof. (a) Since H is a coalgebra and an algebra, we have the convolution

algebra structure on Homy(H, H) . An antipode is precisely an inverse for
1;; € Homy (H, H) under convolution. For any monoid, inverses are unique.

o1
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(b) To show v : H°®—= H preserves multiplication we must show that

(HoH “>Hg-"~H) = (HoH % HoH "> HoH > H)

We do this by showing that, under convolution, the left-hand side is a left
inverse for p € Homp(H®H, H) while the right-hand side is a right inverse.

H®2

HoH

ERE

leo®l
_—

f{®4 f{®4

bialgebra definition of
axiom l Kou convolution

bialgebra H 4 He? v®l He2 Iz H

axiom
/ antipode axiom
n

1®n®1

lop®l 1®lev

®3 ®3

nel H
u®1tt1®u

g2 18 ®2

— = H

Lu

R
1eo®l 4 helel
H® H®3
1®c
g3 186®1 ot nelel o3
1®e
1®l®e
1ee®l 1®level 1evel
H S H®2 ®4 ”®1®1; H®3

n

While the second commutativity is perhaps more easily seen by looking at
elements, the bonus we get on using diagrams is that, formally reversing
all the arrows and replacing p and i by § and £, we have the proof that
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v: H°® — H preserves comultiplication. The following diagram proves
v preserves unit, while the dual diagram proves v preserves counit.

R H H

nen 1®n
n
0
R ! H

(c) V' is a (composition) right inverse for v & vov' =1 & vov'isa
convolution left inverse for v (since 1 is the convolution inverse for v )

H—pgon "~ Hon ">~ HoH —" s H
& \ / (using (b))
£ n
R
8 1ev o Iz v
H HoH HoH —2 > HoH o "
f=4
\\\\T>\\\\$ ////////7’/////»
R
8 o v'ol Iz v
H HoH HoH 22 HoH o I

The last condition is the condition that v’ should be a left convolution
inverse for 15, in Hom(H', H') , except that v is applied to the condition.
Similarly, we get that v’ is a left (composition) inverse for v if and only
if V' satisfies the condition to be a right convolution inverse for 1, in
Hom (H', H') with v applied to the condition. It follows then that v and v’
are mutually (composition) inverse precisely when v’ and 1, are mutually
convolution inverse; that is, if and only if v/ is an anitpode for H'.

(d) If H is cocommutative then H' = H so that H' is a Hopf algebra with
antipode v/ = v. So v is its own (composition) inverse; that is, vov = 1 ;.
For the commutative case replace H by H°P.

Remark. Proposition 9.1(d) can also be seen from the observation that
commutative Hopf algebras are groups in the opposite of the category of
commutative algebras, while cocommutative Hopf algebras are groups in
the category of cocommutative coalgebras; the antipode is inversion so is
clearly involutory.
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Proposition 9.2 Let H and K be any Hopf algebras. Then each bialgebra
morphism f : H—= K preserves antipode.

H ! K

H ! K
Proof. Clearlyif f: D—=C and g : A—= B are coalgebra and algebra
morphisms respectively, then

Hom(C',A)—= Hom(D,B) whereby wut—= gouof

is a monoid morphism for the convolution structures. In particular, here
we have two monoid morphisms

_of and fo_ :Hom(H,H)— Hom(H,K)
that both take 1 to f. Monoid morphisms take inverses to inverses. So

vof = ( convolution inverse of f in Hom(H, K))

fov.

Using other fancier words, the category Hopfy of Hopf algebras is a full
subcategory of the category Bigy, of bialgebras.

For any algebra H we have seen that H° becomes a coalgebra. If H is a
bialgebra then H® becomes a bialgebra using the multiplication

0

H°®H® = (HoH)® —— H°

and unit
0

R = R —— H°

(recall ). Proposition 8.1). Furthermore, if H is a Hopf algebra then so is
H° with antipode
v’ H* — H°.

What we have here is a contravariant “self-adjoint” functor
(_)°: Hopfs? — Hopfy .
What “self-adjoint” means in this context is that

Bigy(H,K°) = Bigy(K,H°).
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Proposition 9.3 If H is any Hopf algebra then the monoid D(H) of set-
like elements is a group.

Proof. For g € D(H) we have

v(g)g = (no(vel))(gog)
= (po(vel))i(g)
= (uo(vel)od)(g) = n(e(g) = n(1) = 1.

An A-point of a Hopf algebra H is an algebra morphism f: H—= A.

Proposition 9.4 (a) If f,g: H—= A are commuting A-points of H
(meaning that [ f(h),g(k)] =0 for all h,k € H) then fxg: H—= A is
an A-point of H.

(b) If f:H—=A is an A-point of H then f has a convolution inverse
fov: H®—= A which is an A-point of H°P.

Proof. (a) The commuting property yields that

HoH —1%% ~ Ag4 —" =4

is an algebra morphism. But § : H—> H®H is an algebra morphism
since H is a bialgebra. So fxg € Alg(H,A).

(b) Clear from Proposition 9.1(b).

Example 9.5 For a monoid G, we have seen that the monoid algebra
R(G) is a bialgebra. If G is a group then the group algebra R(G) becomes
a Hopf algebra with antipode v : R(G)—= R(G) given by v(g) = g~ '.
(The azioms for (_)': G—= G expressed diagramatically in Set are
taken by the functor Fy : Set — Mody into the azioms which define
the antipode.)

Example 9.6 For a Lie algebra L, write L°P for the Lie algebra with the
same module L but with Lie bracket B°P given by [°P(xz,y) = B(y,z).
For any algebra A we have (A°P);, = (A;)°P. It follows (why?) that we
have a canonical algebra isomorphism

ULP) = UL) .

We have a Lie algebra isomorphism L—> L°P taking x to —x (note that
[—2,~y] = [2,y] = ~[ y,2]). So we define v : UL)—=UL)> by
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UL) ——= UL)P = ULP) .

One easily checks that for ©,, ... ,z, € L

v(i(zy) - i(,) = (=D)"i(zy) - ilw,) -
With this antipode U(L) becomes a Hopf algebra.
Example 9.7 The matriz bialgebra M(n) (Ezample 7.8 of a bialgebra) is
not a Hopf algebra. We need to “adjoin an inverse for the determinant”.
Recall that M(n) = R[X ] = S(Fg(X)) where X = {z;li,j=1,...,n}
has cardinality n®. Define
§es,

where |£] is the least number of simple transpositions required to obtain the
permutation £. Form the following commutative polynomial R-algebra:
R[X U{t}] = R[(x;),t] = S(Fp(X U{t})), in n® +1 (commuting)
indeterminates t and x;; with (1 <1i,j <n). Put

GL(n) = R[XU{t}]/(tdet(X)—1)

as a commutative R-algebra. We make GL (n) into a bialgebra by defining
0(zi;) = Y w01y i(t) = tot
k=1

5(%’3‘) = 5ij et) =1
modulo (tdet(X) —1). Put X;; = {z. |r #i,s#j}. Now define the
morphism v : GL (n)—= GL (n) by
V(ﬂ?ij) = t det(in)
v(t) = det(X)
modulo (tdet(X) —1). Then GL (n) becomes a Hopf algebra.
For any commutative R-algebra A we have a canonical isomorphism
of groups
Alg,(GL(n),A) = GL(n,A).

Examples 9.5 and 9.6 above exhibit cocommutative Hopf algebras R(G)
and U(L), while Example 9.7 is a commutative Hopf algebra GL (n). It
is only recently that the importance of Hopf algebras which are neither
commutative nor cocommutative has been properly understood.
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Example 9.8 We now describe a “quantum deformation” of Example 9.7.
This is a generalization to n X n, from the 2 X 2 case discussed in . Section
3.

Take X = {z;;|i,j=1,...,n} asin Ezample 9.7. First we form the
free algebra R(X) = T(Fr(X)) on the (non-commuting) indeterminates
z;; . Let M, (n) denote the quotient of R(X') by the ideal generated by the
following elements:

Tip Tjpo — Tjp, Tiy for i<j and k<r
71 - -
Ty Tjp — T Ty — (@ — ¢ )Ty wy, for i<j and r <k
T Tip — qTjp Ty, for i <j
Ty, Tip — 4 T5p Ty for k<r.

This becomes a coalgebra with comultiplication
n
8(z;;) = inr@)xrj ( modulo the ideal )
r=1

and counit

e(zy) = 0y ( Kronecker delta ) .

Define the “quantum determinant” by

dety(X) = Y (=0) @10y Tagra)  Tagen
£€S,

which is a central element of M, (n) (that is, it commutes with all other
elements). The quantum general linear group is defined by

GL,(n) = M,(n)[t]/(tdet,(X)—1).

We adjust the comultiplication and counit of M (n) by defining 6(t) = tot
and £(t) = 1. Then we have a bialgebra epimorphism

p: M,(n)— GL,(n) .
Define v : GL, (n)—= GL,(n) by
v(z;;) = tdet, (X;;) and v(t) = det, (X).
Then GL,(n) becomes a Hopf algebra. Notice that GL,(n)°? = GL ..(n).
Many claims have been made in this section. For n = 2 the calculations
in Theorem 3.1 prove them all. (This should be compared with Proposi-

tion 9.4 in the present section.) The general case can be verified similarly,
but will follow from later work.
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Exercises

1. Assume our base ring R is a field and write ® for ®g. An ideal in
an algebra A is a submodule I such that u(I®A + A®I) C I. We
know that A/I becomes an algebra. A coideal is a coalgebra C is a
submodule I such that §(I) C I®C + C®I and £(I) C 0.

(a) If I is a coideal of a coalgebra C, describe a coalgebra structure
on C/I for which p : C — C'/I becomes a coalgebra morphism.
If C is a bialgebra and I is also an ideal, show that C/I is a
bialgebra. What condition on I ensures C'/I has an antipode
if C has? I is called a Hopf ideal when this holds.

(b) Verfy that the polynomial R-algebra B = R{x,y,z) on three
non-commuting indeterminates becomes a bialgebra with
§(z) = zex, O(y) =ysy, 0(z)=1lez+ zez,
ex) =e(y) =1, e(z)=0
(c) Verify that the ideal (zy — 1,yz — 1) is a coideal in B. Let H
denote the quotient bialgebra.
(d) Show that H is a Hopf algebra with antipode v given by

v(z) =y, v(y)==, wv(z)=-2y (modulo the ideal of Q.3)

Show further that v?"(z) = z"zy", v?"*1(z) = —z"zy™ L.
Hence, this antipode has an infinite order.
(e) i. Show that the ideals I,, = (z"zy" — z), J, = ("™ — 1) are
Hopf ideals in H.

ii. Show that the antipodes of both H/I, and H/.J, have
order 2n.
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Representations of quantum groups

We mentioned in Example 6.3 that a representation of a group G was an
R(G)-module. One kind of representation for a Hopf algebra H therefore
suggests itself: a module over H. We begin by discussing modules over
bialgebras.

First note that if f: E—> A is a ring morphism then each (left)
A-module M becomes a (left) E-module via the action

em = f(e)ym foree E, me M.

This is called restriction of scalars along f.

Let A be an R-algebra. Then each module is automatically an R-
module via restriction of scalars along the unit n: R—= A. Alternative-
ly, we can view an A-module as an R-module M with a ring morphism
ft: A—= Endg(M). Later, we want to look at “comodules”, and so we
want a definition of A-module which dualizes. The good version is: an R-
module M with a module morphism p : ARy, M —= M , called the action
of A on M, satisfying

nel
ARpAGM ——% A@gM ——> M
®p

Az M
> %
M ! M.

We write Mod(A) for Mod, just to emphasize that we build it up from
Mod,.

Suppose M and N are (left) modules over the R-algebra A. Regard
M :A—-+> R and N : R+ A . Weseethat M®,N : A +> A°?  which

means M®gN becomes an A®A-module. If A is a bialgebra then we can

59
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restrict scalars along § : A—> A®j A to obtain an A-module structure on
M®gN. Explicitly, the action is the composite

AR M®sN "% Ag, AR, M N 2% A®, M@, AgpN *o% Map,N .

This generalizes to multiple tensor products (over R) of A-modules. In
particular, the empty tensor product R becomes an A-module by restricting
scalars along the counit ¢ : A— R.

With M and N left A-modules as before, we can regard M : R —+= A°P
and N : R —+> A°  so that Homp (M, N) : A°? > A°P; or in other words
Hompg (M, N) becomes an A°°®A-module. Thus if A = H is a Hopf alge-
bra, we can restrict scalars along the R-algebra morphism

H "> He,H '~ H?w, H

to make Homp (M, N) into an H-module. Explicitly, the action of H on
Homy (M, N) is the composite

1o

H&y,Hom,(M,N) —*'~ He, Hy,Homy (M,N) —— 27—
HeyHomy, (M,N)@pH ~— > Homy, (M,N) @y H ———> Homy,(M,N)

where p; and p, are the left and right actions ...

HepHomg, (M,N) 222 Hom,,(N,N)&;Hom,(M,N) —>= Hom,(M,N)

i hef (m —=h(fm))
Homy, (M,N) @, H ~2% Hom, (M, N)®,Homy,(M,M) —>> Homy(M,N)
Wy ¢ foh (m = f(hm)) .

Proposition 10.1 For left modules M and N over the Hopf algebra H,
the canonical R-module morphisms

e: Homg,(M,N)®; M —= N where fom — f(m)
d: M—=Homy(N,M®,N) where m = (n+— men)

are left H-module morphisms.

Proof. Omitting ®;, and Homj, from the notation, we obtain the first of
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these from the following diagram. The second we leave to the reader.

011 lol

H(MN)M 2> HH(MN)M -2~ H(MN)HM
u e
1611 o111
lell 110l
1 HHH(MN)M HH(MN)HM
1v1ll lo11l

1101

H(MN)M  HHHMN)M 22 HH(MN)HM —~— H(MN)HHM

Inll 1011
\\\\\\\\\\x 1pll \\\\\\\\\\\i 11v11

HH(MN)M H(MN)HHM

11l
101 éf’////////,///”’/////”/ 1psll

H(MN)HM H(MN)HM

1191

1=l Lzl i1l
H(MN)M ——— (MN)M Y (MN)HM
e l
HN £ N

Corollary 10.2 For modules M, N and L over a Hopf algebra H, the
canonical isomorphism

Hompy (M®pN,L) = Hompg(M ,Homg(N,L))
restricts to an isomorphism

Homy,(M®yN,L) = Homy(M,Homg(N,L)).

Proof. The canonical isomorphism is obtained from the evaluation e and
the canonical d of Proposition 10.1.

In other words, we have a nice tensor—hom situation for the category
Mody(H) of (left) H-modules. Both the tensor and the hom are preserved
by the functor

Mod,(H)— Mod

given by ignoring the H-action.

Although modules over the group algebra are representations of the group,
so that the study of modules over a Hopf algebra does suggest itself, the
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point of view of Section 2 (i.e. space—algebra duality) leads more naturally
to “comodules”. For here, it is the comultiplication 6 : H —= H®H of the
Hopf algebra which corresponds to the spatial multiplication.

Suppose C' is an R-coalgebra. A (left) C-comodule is an R-module M
with a module morphism § : M — C®, M , called the coaction of C' on
M, satisfying

el
M2 C@pM —= CerCopM
1®
Co,M
/ e®1
M ! M

We write Comy(C') for the category whose objects are C-comodules and
whose arrows are C-comodule morphisms; that is, R-module morphisms
f+ M— N such that

M 2> CopM

I

N> CeyN
Each C-comodule M becomes a C*-module with the action
CrepM 22> C*@,CoaM 2> M .

See Section 7 for the algebra structure on C*.

By the fundamental theorem of Morita theory (Theorem 5.3), if C is
cauchy (as an R-module) then this gives a bijection between C-coactions §
and C*-actions p on each R-module M: recover § as the composite

M 22 CopCr @M —> Ceu M .
So for C' cauchy, we have an isomorphism of categories
Com,(C) = Modg(C™).

If C is an R-bialgebra not necessarily cauchy we obtain, in a manner
dual to that for modules, a coaction on the tensor product (over R) of
C-comodules. Explicitly for C-modules M and N, the coaction for M ®, N
is given by the composite

0®0 01324 uelel



Representations of quantum groups 63

The empty tensor product R has the coaction 1 : R—> C®zR.

When it comes to Hom our formal duality fails: in reversing arrows we
have maintained ®, yet Hom does not maintain its universal property.

However if M is cauchy, Homg (M, N) does have the reverse-arrow universal
property: there is a bijection between R-module morphisms

L <——Homg(M,N)
and R-module morphisms
ML~<——N
since Homy, (M, N) & M*®, N and M ®g,L = Hompg(M*, L).

Proposition 10.3 FEach cauchy R-module M gives rise to an R-coalgebra
M®gM* with counit e : MRy M*—= R and comultiplication

(see Theorem 5.3). For any R-coalgebra C, the assignment

0®l

determines a bijection between coactions
0: M— CezM

of C on M and coalgebra morphisms

d: MeopaM*—C .

Proof. M, M* = M*®,M = Hompg (M, M) has the universal property
of Hom under arrow reversal;’so the diagrammatic proof that End (M)

is an algebra and that an action is an algebra morphism A—= Endg (M),
dualizes.

Take M = R™ in the above proposition and let eq,...,e, be the stan-
dard basis. Now let ef,...,e; be the dual basis for R™" so ej(e;) = d;;
(Kronecker-0). A coaction of C' on R" thus amounts to a coalgebra mor-
phism 5 R"®pR""— C', and this is determined by its values on the
basis elements e;®e; of R"®pR"™:

o(e;@ej) = x;; €C.
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So C-comodule structures on R™ are in bijection with multiplicative matri-
ces in C; that is, matrices X = (7;;) in C satisfying

5(3%]') = ink@’mkj ) 5(331']') = 5ij .
k

Following Manin[Man88], we write the last two equations as
5(R)=%ex , ) =i

where 1 is the identity matrix and ey = (g T4, ©7y;) is not the usual
tensor product of matrices.

Example 10.4 In the situation of Ezample 9.8 X = (z;;) and (B( 3)

are multiplicative matrices for Mat,(n) and GL,(n), respectively.

Now suppose C' = H is a Hopf algebra and M is a cauchy R-module. By
applying Proposition 10.1 to M* (and using the canonical M** = M), we
see that M*®,M becomes a coalgebra with counit

M*®@yM —— M@, M* — R
and comultiplication

ledel 1®o®l

M*@, M —2" M*®, M*®, M@, M M*@p M@y M*®, M .

Proposition 10.5 (a) 5 M®gM*— H 1is a coalgebra morphism if and
only if the composite

M* @M —2—> M@y M* ——> Hop

is a coalgebra morphism.
(b) Suppose M is an H-comodule and put

~ l/k
be = (MepM* ——~H ——H) .

For k even, by, is a coalgebra morphism and has convolution inverse 8k+1
in Homp (M@ M*, H) .
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Proof. (a)
M*M —7 MM* H MM MM*—-H
1®d®1l ll@d@l l& ol /
. s 04231 " . 0®6
M*M*MM —— MM*MM* —— HRH MM* e e
1®0®1l l03412 la \
M*MM*M 222 MM*MM* 22 HoH R

(b) Since v : H— H°P is a coalgebra morphism, by 9.1(b); then v* : H— H
is a coalgebra morphism for k even; so Sk =vkodisa coalgebra morphis-

m, as required. This also means that right composition with 5), preserves
convolution. Since 1; and v are convolution inverses, so are 1; o Sk and

vo Sk; that is, so are Sk and Sk+1‘

Proposition 10.6 Suppose that M is a comodule over the Hopf algebra H
and that M is cauchy as an R-module. Then M* becomes an H -comodule
via

§ = (M*@pM —2> Me,M* —>H —"~H) .
Moreover, the R-module morphisms
e: Mey,M*"— R
d . .R9 M*®RM

become H -comodule morphisms. One might therefore say that M becomes
a cauchy H-comodule.

Proof. By Propositions 10.5(a) and 9.1(b), the stated é is a coalgebra
morphism. So by Proposition 10.5, it determines a coaction of H on M*.
Tracing through, one sees that this is dual to the situation for Homg (M, R)
as in Proposition 10.1; so the proof dualizes, but it can also be shown
directly that e and d are comodule morphisms.

Remark. To obtain results as in Proposition 10.5(b) for k& odd, apply
Proposition 10.5(b) to the M* of Proposition 10.6; compare with [Man88],
p-14.

Exercises

1. Give a direct proof of Proposition 10.3 concerning the coalgebra
structure on M®@grM* where M is a Cauchy R-module.
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Tensor categories

It is clear that specific categories have entered explicitly into the above
discussion, but we have made little use of them as categories apart from
diagrams and duality. For what follows it is hard to imagine how to express
the results without categories.

A tensor category is a category V together with functor ® : V x V—>V
called tensor product, an object I of V' called the unit object, and natural
families of isomorphisms

ay g o (A®B)®C— Ax(B®C)
o ARI—A , 1 IA— A

called respectively the associativity constraint, the right unit constraint
and the left unit constraint, subject to the two conditions:

(A®B)®(C®D)

aA®IV W\C@D

(A®B)®C)®D) A®(B®(C®D))

aA‘B‘C®\ /®QB,C,D

(A®(B®(C))®D AR((B®C)®D)

5 BRC,D

a1,

(AR)®(C ————————> Ax(I®C)

’2& /1®lC

AxC

Define 4, ®...®A, to be the object obtained by inserting brackets in some
chosen preassigned way, such as from the left ((... (4 ®4,)®...)04, . It
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is an important fact (MacLane’s coherence theorem)that the only automor-
phisms of the form 1®(z®1) or (lez)®1, where x is a component of a, r,
[ or their inverses, is the identity arrow of 4, ®...®A, . This essentially
allows one to work as if the a, r, [ are all identities. If all the a, r, [ are
indeed identities, then the tensor category is called strict. The opposite V°P
of a tensor category V counsists of the opposite category of V (obtained by
reversing the direction of arrows of V) and the reverse tensor product, so
that A®B in V°P is just B®A in V.

A braiding for a tensor category V is a natural family of isomorphisms
crpt ARB— B®A

subject to the conditions

A2(BeC) —"%C . (BaC)oA
A®(B®C) B®(C®A)
(BoA)0C —7* . Bo(AnC)
(A®B)®C hone C®(A®B)

s c xc,a,s
A®(B®C) (C®A)®B
1®CB,C’ /A,C;’@l
A®(C®B) "o (A®C)®B

A braided tensor category is a tensor category with a chosen braiding.

A symmetry for a tensor category is a braiding which satisfies the following
extra condition:

AeB AeoB

Bgo A

A symmetric tensor categoryis a tensor category with a chosen symmetry.
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Example 11.1 The braid category B has as objects the natural numbers
0,1,2,... and as arrows « : n—>=n the braids on n strings; there are no
arrows m—>=n for m#n. A braid «

res

)
on n strings can be regarded as an element of the Artin braid group B,
with generators s, ... ,S,_; subject to the relations
8;8; = 88 forj <i—1
Sit15:8i41 = SiSip15;

where s; is the braid depicted as:

|
[

Si

n — ./ —

Composition of braids is just multiplication in this group, represent-
ed diagramatically by vertical stacking of braids with the same number of
strings.

e
; %é%

Tensor product of braids adds the number of strings by placing one braid
next to the other longitudinally.

YY-7-YYY
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This makes B a strict tensor category. A braiding cp,, : m+n—>n+m
is given by crossing the first m strings over the remaining n .

<~ n >

4+2

TS

2+4

The azioms that show B is braided are easily checked diagramatically.

Example 11.2 The category Mody of modules over a commutative ring
R is a symmetric tensor category with tensor product &y , with the canon-
ical constraints, and with symmetry o : AQ,B—= BRpA.

Example 11.3 Let A be an R-bialgebra. If M and N are A-modules, we
have an A-module structure on M®pN given by

m®n Za m®a

as seen in the last section. So Modg(A) becomes a tensor category with
tensor product ®p, .

If A is cocommutative, the switch morphism o : My N —= NQy M
is a symmetry for Mody(A) . However, as in the rest of this book, we are
more interested in non-cocommutative A .

We ask: what are the possible braidings on the tensor category Mody(A)?

A braiding cyn : M@yN—= N®y M gives, for each A, a morphism
Can @ ABRA—> A®pA which gives an element v = c, 4(1o1) € A®A.

Conwversely, each element v =3 . u;ov; € A®A determines a natural
morphism ¢y n : M@y N—= N M wvia the formula

ey n(men) = Z(uin)@)(vim) .
i
This is a bijection, as can be seen from the following diagram in which
m : A—= M is the unique module morphism with (1) =m.

wagm

CyMN
M&pN —= > N@, M

ReRR
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In order for each c); n; to be an isomorphism it is necessary for v € A®Qp A

to be invertible. In order for each ¢y to be a module morphism we need

c(a-(men)) = C(Z(a(l)m)®(a(2)n))

to be equal to

a-c(men) = a-ZU»n
= ZZ a(yyu;n) ®(agv;m).

This is equivalent to the requirement

Z(Uia(z))@’(viau)) = Z(aa)“i)@(a(z)”i)-
i(a) ir(a)

Regarding v € A®zA as a morphism v: R—= A®zA whose value at
1 € R is the given ~v. We can express this condition diagramatically as

Y@ 1432 =y
(B0) R VUt
3142

For a braiding, we require two more conditions:

cynor(mensl) = (Ivecy r)(eyyely)(mensl)
CM®N,L(m®”®l) = (CM,L®1N)(1M®CN,L)(m®n®l)
that is,
Zu ymeuylevim = Zun@ujl@vjvim
i, (i)
Zul@vl(l)mcbv Zuul@vm@vn

i,(vs)
These are equivalent to the two conditions

Z U V; = ZU1®U]®U]'UZ

i, (w;i)

Z U DV;(1) BVy(2) Zu u;V; QV;

i7(vi)
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Diagramatically, these conditions become:

(B1) R~ ot T Yo
¥ 19leu
A®4 gl 4®3
(B2) R—T s got T you
¥ pelel
A®4 189 A4®3

Hence, we define a braiding element for a bialgebra A to be an invertible
element v € AQp A which satisfies (B0), (B1), (B2). We have proved above
that braiding elements for A are in bijection with braidings on the tensor
category Modg(A) .

A braided bialgebra (also called “quasitriangular bialgebra”) is a bial-
gebra equipped with a braiding element v € A®zA. A braiding element v is
called a symmetry element whenv* = 1 € A®gzA; these are in bijection with
symmetries on Modg(A). A symmetric bialgebra (also sometimes called
“triangular algebra”) is a bialgebra equipped with a symmetry element.

Before leaving this example, we point out that conditions (B1), (B2)
can be put in a more familiar form in the case where A is cauchy as an R-
module. For in this case, elements v =) u;ov; € AQzA are in bijection
with R-module morphisms g : A*—= A wvia the formula

—

Condition (B1) precisely says that g preserves comultiplication, while con-
dition (B2) says that g reverses multiplication. In fact, if v is a braiding
element, g : A*—= AP is a bialgebra morphism; preservation of unit and
counit follows from cyrp = ¢ppr = 1.

We shall just look at the translation of (B2) to g. Begin with the defin-
ing diagram

d

1A

ledol

R A*@pA A*@p A*®p AR A
d *elel
% 180 %
A*@p A A*@p ARp A
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for 6%, which is the multiplication for A*. To prove g reverses multiplica-

tion is to prove
" . 9%g o
A*@QpA* — AQp A — AL A
a* Iz

A* J A

This is equivalent to proving the legs are equal after applying ~QpA®RLA
and composing with

1o A @y A* 21 v, A* R, AR A

R

From the defining diagram for 6*, this amounts to

1edel gogelel -

R—1> A*@,A* A* @y A* @ AR, A A%t Ao
1®4 uelel
A* @ AR A getel e

Using v = (gola) o d, we easily see that this is equivalent to (B2).

Although a braiding is as useful as a symmetry for most purposes, there
is sometimes further structure on a braiding which makes it even more like
a symmetry without actually forcing it to be one.

Suppose V is a braided tensor category. A twist for V is a natural
family of isomorphisms

0,: A— A
such that §; = 1; and
Ca,B
A®B B®A
baoB lGB®9A
A®B B®A
°B,A

A balanced tensor category is a braided tensor category with a chosen twist.
(A braiding is a symmetry if and only if the identity arrows provide a twist.)
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Example 11.4 The braid category B is canonically balanced. The twist
0, : n—>=n 1is obtained by taking n vertical parallel strings with ends tied
to two horizontal parallel rods, and rotating the bottom rod through a full
21 twist in the right-hand screw direction with thumb vertical. Then 6, 6,
are identities, while 0, (which can be written as (s1)? using the notation
from Ezample 11.1) is:

S
02

N<—1IN

Example 11.5 There is a tensor category B which is defined similarly
to B, except that the arrows are braids on ribbons (instead of on strings)
and it is permissible to twist the ribbons through full 27 turns (as in the

following diagram,).
3
\\/ |
: %

{

AN

The homsets B(n,n) = B,, are groups under composition. A presenta-

tion of this group B, is given by generators sy, ... ,s, where sy, ... ,8,_1
satisfy the relations as for B,,. These are depicted by thickened versions of

the diagrams in Example 11.1, along with the extra relation

Sn—15n5n—15n = SnSpn—15nSn—-1

where s,, is depicted as follows

{00-0%

Composition in B is vertical stacking of digrams, and tensor product
for B is horizontal placement of diagrams, much as for B. The braiding
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Cpp P M+ n—>n+m for B is obtaining the first m ribbons over the
remaining n without introducing any twists. The twist 6, : n—>=n_for
B is obtained by regarding the two boundary edges of the ribbons as extra

strings and taking 0., : 2n—= 2n in B. Then in B we have
1 2 /7
/
01 02
s/

1 2 Z/

Example 11.6 Let A and B be abelian groups and f: Ax A—= B be a
bilinear function. There is a balanced strict tensor category C, constructed
as follows. The objects are the elements of A. The homset Cf(:c,y) 18
empty unless x =y, in which case Cf(a:,a:) = B. The tensor product is
given by

a+p3

(-2 2)oy—>y) = (@+y z+y)

The braiding is c,, = f(z,y): ¢ +y—>=y +z and the twist is Oy =

flz,z) : x—>x.

Example 11.7 Let A be a braided R-bialgebra with braiding element v =
Y u;ov; € AR A. A twist element for A is an invertible central element
T € A such that (t) =1 and

8(r) = (wrv))e(v;ru;) .

i,j

Diagrammatically the last equation becomes:

YRTRTRY A®6 0136245 A®6
lu@lu@l
T A®4
lu®u
A d A8?

Twist elements 7 for A are in bijection with twists 8 for the braided tensor
category Mody(A) . Naturality of 6y, : M —= M means it has the form
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O (m) = ™m for some T € A; for 6, to be an A-module morphism, T
needs to be central (meaning T-a = a -1 for all a € A); for 6,; to be an
isomorphism, T needs to be invertible; for 6,; = 1, the condition e(1) =1
is needed; and of course the remaining twist conditions correspond.

A balanced bialgebra is a braided bialgebra with a twist.

Exercises
1. (a) In a braided tensor category V show that (ignoring the con-

straints a,l,7) ca; = cr,a =14 and

A9C®B —2> 09 A9B

B®RARC T@c> BC®A

(b) For a braided bialgebra A and V = Modj(A), interpret the
properties of ¢ in (a) in terms of the braiding element v €
A®pA.

(c) Draw diagrams of braids which express the hexagonal diagram
of (a) in the braid category B.

2. Define the centre Zy, of a tensor category V to be the category
whose objects are pairs (A,a) where A € Vanda: AQ —— —®A4
is a natural isomorphism such that the following conditions hold:

e a;r = 1 (more precisely, ar is the composite of the canonical
isomorphisms ART = A = I®A).

e axgy = (leay) o (axwl) forall X,V € V

An arrow f : (A,a)—=(B,b) in Zy is an arrow f : A—=B such
that, for all X € V, we have bx o (fel) = (1sf) oax.

(a) Show that Zy becomes a tensor category with:
(4,a)®(B,b) = (A®B, (asl) o (1sb))
(b) Show that the tensor category Zy, is braided via
C(A,a),(Bb) = aB : (4,a)®(B,b)—=(B,b)®(4, a)
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Internal homs and duals

Suppose V is a tensor category with A and B being objects of V. A (left)
internal hom for A and B consists of an object [A, B] of V together with
an arrow

¢ :[A,B]®A— B (called evaluation)

such that, for all arrows f: C®A—= B, there exists a unique arrow
f: C—=]A,B] with

f o= (coA-l™14,Blea—% - )

Thus we have a natural bijection
V(C,[A,B]) = V(C®A,B)
g <> go(gel) .
A tensor category is called left-closed when each pair of objects has a left

internal hom. If f: C—=A and g: B—> D are arrows of V, then
provided the internal homs exist, there is a unique arrow

[f,9] : [A,B]—[C, D]

such that
[4,B]eC Falole [C,D]eC
Lap)®f o
[A,BlA—2 -~ d D .

In this way, when V is left-closed the internal hom becomes a functor

L] VP x V—V.

77
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From the universal property, the internal hom for A, B is unique up to
isomorphism. An internal hom for I, A always exists; namely

[I,A]=A with g = 1y ARI— A .
If B,C and A®B, C have internal homs then so do A4, [B, C']; namely,

[A,[B,C]] = [A®B,C] with ¢, = é,,,:[A®B,C|oA—[B,C].

Usually the internal hom functor [-,_] is given a priori; in which case all
we have are canonical isomorphisms

[T,A]= A and [A,[B,C]] = [A®B,C].
There is a composition arrow
[B,Cl®[A,B]—[4,C]

in V (whenever the internal homs exist) which corresponds, by using the
universal property of [A,C'], to the composite

1loe,

[B,C®[A,B]oA B,C]®B —2—>(C

A right internal hom [A, B]' for A, B comes equipped with an arrow

er : A®[A,B]'— B
which induces a bijection
V(C,[A,B]) = V(4A®C,B)

for all objects C. If V is braided, each left internal hom [A, B] gives a
right internal hom via [A,B]' =[A, B] and

CaA B)

e, = (A®[A,B] [A,BloA —>—>pB).

A tensor category is called closed when all left- and right-internal homs
exist. (In the literature, “closed” is sometimes used for our left closed,
while “biclosed” is used for our closed.) When the internal homs exist, we
have an arrow

wy : A—[[A,B],BY

which corresponds to e, : [A, B]® A—= B via efAB]. Similarly, we have
wy : A—[[A,B],B]

corresponding to €.
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Example 12.1 The symmetric tensor category Mody, of modules over a
commutative ring R is closed with internal homs given by

[M,N] = [M,N]" = Homg(M, N)

Example 12.2 Suppose H to be an R-Hopf algebra. Then the tensor cat-
egory Modg(H) of H-modules (with tensor product ®) is left-closed with
internal hom given by

[M,N] = Homg(M,N)

see Proposition 10.1.
Suppose the antipode v for H is invertible. Using Proposition 8.1(c),

H' becomes a Hopf algebra having antipode v—'. Write Hom;%(M, N) for
Hompy (M, N) as a left H'-module. Clearly, Modp(H) is right closed with

[M,N] = HomlR(M, N). Therefore Modg(H) becomes closed when v is
invertible. The forgetful functor

Mod,(H)— Mod,

preserves tensor product, and both left and right internal homs.

Example 12.3 Let Ban denote the category of Banach spaces (over the
complex numbers), where the arrows f : A—= B are linear functions for
which

1 (@)l < llall -

(The analysts in the audience will think these fairly uninteresting func-
tions.) We make Ban into a symmetric tensor category by taking tensor
products as vector spaces, completing in the obvious way. The internal hom
[A, B] exists for all banach spaces A, B; it is the banach space of bounded
linear functions from A to B with the usual norm. (These functions are
of more interest to the analyst.) Thus Ban is a closed symmetric tensor
category.

medskipSuppose V is a tensor category. An object J is called left
dualizing when, for all objects A, internal homs [A, J], [4, J] exist, and
the arrow

Wa : A_>[[A7J]17J]

is invertible. It follows that V is left closed with

[4,B] = [A®[B,J],]],
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since

V(C,[A®[B, J]', J]) V(C®AR[B, T, J)
= V(C®A,[[B,J],]])

V(C®A,B).

1%

The concept of right dualizing object is defined in the same way, with w
replaced by w'. A dualizing object is one which is both left and right
dualizing.

Example 12.4 The category of finite dimensional vector spaces over a
field has a dualizing object, namely the field itself. In this case, the dualizing
object is the unit for tensor product.

Example 12.5 Fiz a field k. A quadratic algebra is a pair (V, R) where
V is a finite dimensional vector space and R is a subspace of V®V.
A quadratic algebra morphism f : (V,R) —>(W,S) is a linear function
f:V—=W for which

(fof)(R)CS.

Write QA for the category of quadratic algebras. Fach quadratic algebra
(V,R) determines an actual algebra

T(V)/R

where T(V') is the tensor algebra on V (see Example 6.2). The category
QA has a symmetric tensor product given by

(V,R)®(W,S) = (VW 0,35, (R®S)) .

The unit object is I = (k ,k®k).
We claim that J = (k ,0) is a dualizing object. It is easy to see that

[(V.R),T] = (V*,R")

where V* = Hom, (V,k) and R* is the kernel of the composite surjection

(VaV)* —— = g

VeV

with i : R—>=V®V being inclusion. It follows that R is the kernel of

IR

wWRW

VeV Ve QU ** (V*@V*)* —— ~ R+

so we have an isomorphism

w: (V,R)— (V™ R*) |
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The quadratic algebra which we identify with the quantum plane A}°
(recall Section 3) is

A" = (K, (yoz — qzay))
where x = (1,0), y = (0,1) € k2. Let £,n € k® be the dual basis given by
§(x) =nly) =1, £(y) =n(x) = 0. Then
(yor —qzoy)" = ({af,nen,{on +qnel)

as a subspace of k**®k?*. Hence the quantum superplane arises as the
quadratic algebra

A = (K7, (€e€ nen, Eon +qnef))
[A7°,T].
Notice also that
AP0AY® = (K*0k?, (boa — qaeb,doc — qead,
g 'boc — qeeb+ dva — awd))

(which should be compared with equations (xx) in the proof of Theorem 3.2)
where
a=¢ex , b=¢ey , c=ner , d=noy

gives half the relations required for My(2).

Let V be a tensor category. Write d,e : B— A , or briefly B+ A , for
objects A, B of V and arrows
e: BRA—1 , d: [— A®B

when the following diagrams commute:

del, 1ped
A A®B®A B B®RA®B
\ L®e i, Le@lB
A

We call B a left dual for A, and we call A a right dual for B. We call e the
counit and d the unit. Duals are uniquely determined up to isomorphism.

The tensor category is called left autonomous when each object A has a left
dual A*. Each arrow f : A— B determines a unique arrow f* : B* — A*
given by the composite

f e®l

* lad * * lefel * * * .
B* ———— B*QARQA*— = B*QBQA — A
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This makes left dual into a functor
(L) VP— V.

We also have (A®B)* & B*®A* and I* =2 I. The tensor category is called
autonomous when each object A has both a left dual 4* and right dual A .

If V is a braided tensor category then each left dual A* is also a right
dual with counit and unit, respectively

Ao A —22 L gpd I

I AA —2 = 4wA .

This implies A** = A .

A tortile tensor category is an autonomous balanced tensor category in
which the twist is related to the dual via the condition

B, = 6" AA— A .

A left dual A* for A gives a left internal hom [A, B] = B A* with “evalu-
ation”:

g = lgee: BRA®RA— B
for all objects B of V. A right dual A" for A gives a right internal hom

[A,B] = A'®B. Hence a left/right autonomous tensor category is left-
/right-closed.

Example 12.6 For each commutative ring R, an object M of Mody has
a (left) dual if and only if it is cauchy (Theorem 5.3). Write Prfy, for the

full subcategory of Mody, consisting of cauchy R-modules. Since Prfy is
closed under tensor, it is an autonomous (symmetric) tensor category.

Example 12.7 Let H be an R-Hopf algebra. An object M of the tensor
category Mody(H) has a left dual precisely when it is cauchy as an R-
module; in this case, M* = Hompy (M, R) (Proposition 10.1). If H has an
invertible antipode then each such M has a right dual MV = Hom IR(M, R).
Write Prfy,(H) for the full subcategory of Modg(H) consisting of those

H-modules M which are cauchy when viewed as R-modules. For H with
invertible antipode, Prf,(H) is an autonomous tensor category.

Example 12.8 Tangles on strings. (This ezample was discovered by
Freyd—Yetter[FY89].) Let P be an Euclidean plane. A geometric tangle
T is a compact 1-dimensional oriented submanifold of [0,1] x P which is
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tamely embedded and whose boundary 0T is equal to TNO([0, 1] x P). Thus
a geometric tangle T is a disjoint union of directed (topological) circles
contained in (0,1) x P and of directed paths connecting two points on the
boundary O0([0,1] x P). The target of T is the subset 0T N ({1} x P)
as an oriented 0-dimensional manifold. The source of T is the subset
0T N ({0} x P) but with orientation reversed. A geometric tangle can be
pictured as follows:

i
)
2

A tangle is an isotopy class of geometric tangles where the isotopies keep
the boundaries fized. The source and target of a tangle are regarded as
signed subsets of P. Let 1,2,3,... denote equally-spaced collinear points
on P.

Now we can define the autonomous braided tensor category T of tangles.
The objects are functions A: {1,2,...,n}—={+,—} for n > 0, called
signed sets. The arrows of T are the tangles which have these signed sets
as sources and targets. Composition and tensor-product are as for braids.

The braiding is illustrated below.

+ — + + + —
o
-
— —
— —
/ —
-

+ — + — + +

The left dual A* of a signed set A is given by reversing the order and the

sign of the points; that is, A*(i) and A(n — i+ 1) are opposite signs for
1< i< n. The counit and unit are illustrated below for A ={—+ —}.



84 Internal homs and duals

d: [— A@QA" %}\\\
-+ -+ - ¥

The next diagram proves one triangle for e and d; the other is similar.

+ -+

+ - o+

Example 12.9 Tangles on ribbons. (The full details of this example
appear in the thesis of Shum [Shu89]) The category T of tangles on ribbons
is obtained from T just as we obtained B from B in Exzample 11.5. The
directed strings of tangles are thickened into (directed) ribbons. Ribbons
obtained from strings with boundary may be twisted through complete turns.
Those which are thickenings of closed strings may have twists, as long as
they remain 2-sided 2-manifolds; the Mdbius ribbon is not allowed.

Again we obtain an autonomous tensor category. The counits and units
look like this:

+ -+

- 4+ - //;////s?\\
AR Ay NN
No—— o™\
N -~
P —— -+ - + -+

e d
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In fact, T is a tortile tensor category. The twist is as for B and the 1dentity
Oy = 0" can be seen from the following diagram.

:
b
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Tensor functors and Yang—Baxter
operators

Suppose C and V are tensor categories. A tensor functor F: C—>=V
consists of a functor F': C—= V (denoted by the same symbol) togeth-
er with a natural isomorphism ¢, p : FA®RFB = F(A®B) and another
isomorphism ¢, : I —> FI, such that

¢4, p®L

FA®QFBRFC

F(A®B)®FC

1895 ¢ YgBRC

YBoC

FA®F(BaC) —2° . F(A®B&C)

and

1®
FA————= FA®FI
$o®1 Par

br.a
FIQFA—FA

(where we have suppressed the constraints a, , £ as usual). If the condition
that ¢, ¢, be invertible is dropped, we have a weak tensor functor. If in
fact ¢ and @, are identities, then F' is called a strict tensor functor.

If C and V are braided, we describe a tensor functor as braided when

04 g®1
FA®FB —2 F(A®B)
CFA,FB F(CA,B)
[
FB®FA —"— F(BoA) .

87
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If C and V are symmetric, we say F' is symmetric instead of “braided”. If
C and V are balanced, we say F' is balanced, when it is braided and

F(8,) = 6, : FA— FA .

Suppose F' : C—= V is a weak tensor functor and C and V are left-
closed tensor categories. Then the composite

A,B],A

[ Fe,
F[A,B]oFA —" . F([A,B|®A) — >~ FB

corresponds, using the defining property of [FA, FB], to an arrow
¢y 1 F[A,B]—=[FA,FB] .

We call F a left-closed tensor functor when each &A’B is invertible; right
closed and closed are now defined in the obvious way. [This differs from
the notion of “closed functor” in the literature].

When it comes to duals, the situation is better: tensor functors preserve
duals. More precisely, if F': C— V is a tensor functor and d,e : B+ A
in C, then FB— FA in V with unit

-1

¢ Pa,5),
I—2 —pr—" . F(BeA) —22Y . FAoFB
and counit
B, 4] Fe ¢ )
FBRFA———— F(B®A) FI I

Hence, if C is (left-) autonomous and V is (left-) closed, then each tensor
functor C—= V is (left-) closed (since [A,B] = BA*in C).

Example 13.1 The category Set of (small) sets is a tensor category using
cartesian product as tensor product. For each commutative ring R, the “free
module functor” (see Section /)

Fr : Set — Mod,
is a tensor functor. It is certainly not closed since we have that
Homp (FpX, FpY) = (FpYV)* 2 V¥

The functor |_|: Mody,—> Set which takes each module to its under-
lying set |M| is a good example of a weak tensor functor: we have functions
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by 0 M X [N| — [MaN|
(m,n) ——— mon
¢g =m: 1 — |R|
which are not invertible.

Example 13.2 Universal Algebra. The “universal enveloping algebra”
functor U : Liep,—= Algy, is a tensor functor (see Proposition 6.10).

Example 13.3 Yang—Baxter operators. We want to examine what is
involved in giving a tensor functor F : B—= YV from the braid category
into an arbitrary tensor category V.

A Yang-Bazter (YB) operator on an object A of V is an invertible
arrow y : AQA—= A®A such that the following hexagon commutes.

1®

ADARA ——2 > AQARA

y®1/ \y@l

1
A9AA ——> Ao A®A

For example, the object 1 of B admits the following YB-operator:
¢g=8:1+1—1+1

which is the element of the braid group Bo depicted by the diagram:

/

%

The YB-hexagon becomes the following simple identity.

/ /

/
/
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Since any tensor functor F : B—= ) preserves tensor products “up to
coherent isomorphism”, we obtain a YB-operator y on F(1) = A; namely,

—1

1,1 Fs; 1,1

y : A®A F(1+1) F(1+1) ARA

Conversely, given a YB-operator y on an object A of V, we can determine
a tensor functor F : B—=V such that F(1) = A and y is the above com-
posite. In fact, F is unique up to isomorphism, arising from the different
possible choices for the n-fold tensor product A®™). Since F is to be a
tensor functor, we are forced to have

F(n) = F(1+1+4...41) = A®".

Each generator s; of By can be written as s, =1, _;®s,91,_,_4 in B, so
the definition of F's; : A®™—>= A®™ s forced. We just need to check that
this is compatible with the braid relations (Example 11.1); but this follows
from the YB-hexagon and the functoriality of tensor product. Details are
left as an exercise (which is worth doing).

Hence, up to the appropriate notion of isomorphism, tensor functors
F : B—= YV correspond to pairs (A,y) consisting of an object A of V and
a YB-operator y on A. We can express this by saying:

(B,1,s,) is the free tensor category having an object e-
quipped with a YB-operator.

Example 13.4 A tensor functor from ribbons F : B—=V also deter-
mines a YB-operator y on F'1 = A as in Example ??ex133 This time the
twist 6, : 1—=1 in B gives an isomorphism z = F6, : A— A.

Due to the equalities in B...

<Ny XD
g/ A/’XXAXJ

this gives an example of the following concept.

A YB-operator y on an object A of V is said to be balanced when it is
equipped with an isomorphism z : A—= A such that

A9A —L > A4 A9A —L = A0 A

z®1 2®1l Ll@z

Py p——— ApA—2L s A

1oz
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Each balanced YB-operator determines a unique (once the n-fold tensors

A®™ are chosen) tensor functor F : B—V from which A, y, z are re-
covered as above. So ...

(B,1,c,,,6,) is the free tensor category containing an object
equipped with a balanced YB-operator.

The easier part of Example ??ex133 can be obtained from two observa-
tions.

e tensor functors take YB-operators into YB-operators.
More precisely, if F': C—= V is a tensor functor and if y is a YB-
operatoron X in C, then Fy : F(X®X)—= F(X®X) carries across
the isomorphism ng,X to a YB-operator y on FX in V.

e a braiding on a tensor category gives, on each object X, a YB-
operator. cy y : X®X — X®@X;

Moreover, tensor functors take balanced YB-operators into balanced YB-
operators. Furthermore, in a balanced tensor category there is a balanced
YB-operator (cx x ,0x) on each object X. (See Example ??ex134)

We now look at compatibility of YB-operators with duals .

A YB-operator y on A is called (left-) dualizable when A has a left dual
A* and both the arrows u,v : AQA—= A* given by the composites:

loy®l
ArgA 2 po A0 AR A* 2 ARARARA colel
1oy~ "®1

A A

are invertible. It follows that the composite w given by ...

1eled leuel e®l®l
—_—

ARA — > AQARARA* —— A QARQA'QA* A A*

has inverse w™! given by the composite:

1oled 1evel e®l®l

AQA ——— A'QAQARA* ——— AQARQA* QA" AQA -

Proposition 13.5 In a braided tensor category, if an object A has a dual,
thenY =c, 4 is a dualizable YB-operator on A with

_ 1 _ -1 _ —1
U=Chp , V=Cpp s W= Cpp
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Proof. To prove CaaeOU = Ly g, it suffices (by the property of duals) to
show that equality holds after applying A® _ to both sides and composing
with do1,. Thus the following diagram gives the first equation.

1@lec, 401

ARA QAR AR A* ARA' QAR AR A*
1®leled / \ deleledelelel / \ 18e®11
c ®1
ARARA  ARARA —2 > ARARA —> ARARD A"
/ \
1®cA A
— ARQA*®A

The result for v follows by using the braiding cl}’lA in place of ¢, 5. For w,
consider A* in place of A.

Tensor functors F' : C—= V preserve dualizability. So if C is braided and
X has a dual in V, we obtain a dualizable YB-operator on F X in V.

A YB-operator on A is called tortile when it is balanced, dualizable, and

ARAR A

1 1@v
y \
ARARA* ARA®RA

1od 1®e

Proposition 13.6 In a balanced tensor category, if an object A has a dual
then the pair (cy 4 ,0y) is a tortile YB-operator precisely when 0y = (6,)".

Proof. The following diagram proves the equation

(0,:)%0, = (1ze) o (lev 1) o (yo1) o (1ad) .
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A 1lod 1®CA_*,114
A A AQARA* ———— AQA'®A
1ed hotel 186,81
1ocuy
AR AR A* AQA' QA ———— AQA'®RA
@,@%@1
CA_*’}‘ .
€y 4x®1
Cry®1 '
ARARA AQARA
foa®1
yel | = 4,01 1®c, 4 e®l
ARARA
-1
Caxaa
Caxa®1
* * N
A®A®A 1gv~ ! — 1®Q4;,14 A®A ®A 1ee A

So the balanced YB-operator (y, z) is tortile if and only if (6,.)*6, = 2%
that is, if and only if (6,.)%6, = (,)® & (0,.)* =6, < 6, = (6,)".

It follows that, in a tortile tensor category, each object A is equipped
with a tortile YB-operator (cy 4 ,6,)-

Example 13.7 Since T is a tortile tensor_category, we obtain a tortile
YB-operator (c, . ,0,) on the object + of T. Thus, each tensor functor
F : T—=V yields a tortile YB-operator on F(+) in V.

In fact, (7~',-|-,ch,4r ,9+) is the free tensor category equipped with a
tortile YB-operator ([Shu89] together with [JS91b]). This means that, given
a tortile YB-operator (y,z) on an object A in a tensor category V, there
exists a (unique up to isomorphism) tensor functor F : T—V which
takes (+ ,Cht ,0+) to (A,y , z) We do not intend to prove this here; after
all, our geometric description of T was incomplete. We hope the result
is believable. All we really need is that such a free T should exist; but the
description of the realistic model is too pretty to omit.

It should be clear how to define F' in terms of A, vy, z. For example,

Fl+ ———+-) = AQAQAQARARA
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Fle, ) = wu!

Flec..) = w
FO,) = =z
Fe) = =2*

and so on. Any tangle of ribbons can be decomposed, using composition
and tensor product in T, into single crossings (ch,Jr ,Cy ,C o, c,,,) and
their inverses), turnings (e and d) and twists (6., 0_, and their inverses).
So the value of F on the tangle is forced. The hard part, which we shall
not include in these notes, is to show that this value is independent of the
decomposition.

It is instructive to see in this example what is meant by the equation
2% = (1se)o(lovt)o(ysl)o(led). It is expressed by the following diagram
(which can be tested be taking off your belt).

K
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A tortile Yang—Baxter operator for
each finite-dimensional vector space

Let k be a field and let ¢ € k be a fixed non-zero element. Let V be a
vector space over k with basis ¢; ,&,,...,¢,. Define a linear function

y: VeV — VeV

on the basis elements ¢;,0¢; of V®V by

€;®€; for i > j
y(5i®5j) =\ §®¢; + (q—q") gwe; fori<j
qE;08; fori=7.

In order to check the YB-hexagon for y, we look at (yo1)(ley)(yel),
(loy)(yol)(loy) at each ¢;0¢;0¢;,. There are thirteen of these cases to
check to account for all possible relative positions of i, j and k. We shall
only give three of these cases as an illustration: put r = ¢ — ¢~ and omit
the £ and ® symbols from the notation.

i<j<k:(ijk) 2L (jik) + p(ijk)
2V (ki) + p (jik) + p (ikj) + p* (ijk)
HEEL (ki) + p (i) + p (ijk) + p (Kij) + p* (ikj)
+p”(jik) + p° (ijk)
(ijk) 2= (ikj) + p(ijk)
L (Kij) + p (ikj) + p (jik) + p*(ijk)
2 (ki) + p (ki) + p (ijk) + p (ki) + p> (jik)
+p2(ijk) + p*(ijk)

95
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j<i<k: (ijk) —2%  (jik)
Y (ki) + p (jik)
S (ki) + p (ki) + p (ik) + p° (jik)
(ijk) 24> (ikj) + p (ijk)
IS (ki) + p (ik]) + p (jik)
—EY (kji) + p (ik) + p (ki) + p* (jik)
i=j <k : (iik) 2> q(iik)
12V g (iki) + pq (iik)
—YOLL q(kit) + pq (ki) + pg?(iik)
(iik) +—2Ys  (iki) + p (iik)
B (ki) + p (iki) + pq (iik)
2V q (ki) + p (iik) + pq (iki) + p'q (iik)

(Note that ¢>r =7 +qr? sincer =q¢—q'.)

Clearly y is invertible with inverse given by:

€;®€; fori<j
y71(€i®5j) = 4 @€ + (gt —q) gwe; fori>j
q e, for i = j.

Hence, y is a YB-operator on the object V of Mod,

It is now possible to calculate the operators u, v, w and their inverses
(see the definition of dualizable YB-operator in Section 13). For this, let
ef,...,es € V* be the dual basis for ¢;,...,¢, € V; this means

;(5]') = 5z’j .

Recall that e : V*®V —=k is the evaluation functor and d = ), €, ®¢;.
Now we obtain ...

€

u(eiwe;) = (ewlol)(loyel)(leled)(ees;)
= Z(e@l@l)(1®y®1)(5§‘®6j®5k®6,‘;)
k

= Z(e@l@l) (efoe e 0ef + (¢ — ¢ ') ef0e;08,9ef)
k>j
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+q(evlol) (6o 0¢e;0¢6]) + Z(e@l@l) (ei®e,®€;0¢r)

k<j
= Z(&k g;0e, + (g — q ') dijep@er) + q0ij (;0€])
k>j
+ Z 5zk Ej®€z
k<j
€j®€: for j <1

= £;®E; for i < j

g lewer + Y (qg—q 7t eer fori=j .

k>i

The other operators are calculated similarly. We record the results below:

€:®€] fori #j

weros) = AT for i -

qgeeef + Y (q—q )e2e; ori=j

k>i

1 o €;®E; fori #j

u(gegf) = “1s 1y -2(k—i) ok for i — i

q 'efeeg; + Y (g q)q eroe, fori=j

k>i

. €] for i #j

’U(Ei®6j) = ],1 ! * -1 _ * f ..

g teeel + Y (g q) €,0€) ori=j

k<i

1 o E;®E; fori#j

vl (eoef) = . o1y 2(ik) for i — i

geioeg;, + Y (g—q')g EFOE, ori=j

k<i

E;QE] fori<j

w(efeel) = efoef + (¢ —q ') efze] for i > j

qe;RE]; fori=j

E;QE; fori>j

w™(efwel) = efoef + (¢7' —q)efze] for i < j
q 'efoe; fori=7j.

Hence y is dualizable. It enriches to a balanced YB-operator on defining
z : V—=1V simply to be the homothety

Proposition 14.1 The YB-operator (y,z) defined above is tortile.
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Proof. First observe that, for i # 5, the value of ev™!

for i = j the value is

q +Z )g2(—H)

k<i
= q+@—a¢ )@+ 1+
) (q2)i_1 -1

-1

= q+q(@®) t-q = &0

= q+a(g® -1

at ;€7 is 0; while

)

Hence, we have the following remarkable calculation:

(1ze)(lev™ ") (yol)(1ad)(s;)
= Z(l@(e v_l))(y®1)(5i®aj®6;-‘)

= Z(l@(e v)(gj0e0e5) + (1o(ev™)) ¢ (e,0g;0€])

+ Z(1®(6 o) ((g;0;2¢5) + (g — q7') (g;0¢;0¢]))

1<j

= 0+ q¢ g +0+ Z(q—q_l)q%_1 g

1<j

— (q2z+ q_q )(q2i+1+q2i+3+_”+q2n71)) €

= (" +@-DF0+F+. +
2\n—i

_ 2 2'(‘1) -1

- <ql+ qZ q2_1 >Ei

_ (qu +q2z 2n—21 __ 1)) g
7"

iil))) &
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Monoids in tensor categories

A monoid in a tensor category V consists of an object A and arrows
p: AeA— A and n:I—A

which satisfy the usual identity and associativity conditions (see Sections
1 and 6). A monoid arrow f: A—= B is an arrow in V which preserves
u# and 7, in the diagrammatically expressed sense.

It is also useful to consider “arrows between monoid arrows”. Suppose
that f,g: A—> B are monoid arrows. A 2-cell

E:f=>9g:A—B

is defined to be an arrow £ : I—= B in V such that

B.

is also used. [In the case where V = Set, such a 2-cell amounts to an
element ¢ € B for which £f(a) = g(a){ for all a € A ]

There are two basic pasting operations for 2-cells. Given the situation

f
A'L>A®BL>B’

g
where the arrows are monoid arrows and £ is a 2-cell, there is a 2-cell
kfh
.
A {x¢ _ B’

~_ V" =
kgh

99
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obtained since we have the following factorization:

§a(fh)
h €af n
Al—— A 4>4£> BeB B
\y
(gh)®¢ kek k
B'eB’ B’

This is called whiskering & by h and k.

The other basic pasting operation is wertical composition, which takes a
pair of 2-cells £ and (, as in the following situation

f

e N

%B

w
h

to a 2-cell

where (% & = (I&B®BL>B)-

The identity 2-cell n : f = f : A—>= B is an identity for the operation of
vertical composition.

When we write a diagram such as

fs

[

—h
PN be /gCB
T —

3
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it is intended that & : f3 f5 fi = 9493929, : A—= B. This allows us to
define a more general pasting operation, which assigns to a diagram like

f3
—_—

E fa
fy Y ﬂ\A fs f f,
/ \ Js /u\*
A\ ! I
91 93

92

a 2-cell fg f7 fe f5 f4 f3 fQ f1 = g4 fe g3 g2 g1 - A— B , obtained (quite
possibly in several different ways) by first whiskering the 2-cells in the
diagram to be of the form

A_ | _B
~ "V -

as well as being vertically composable, and then composing vertically.

As an example of this pasting, consider the diagram

. B
First whisker £ and ¢ appropriately, as in
f gl
1h k

to obtain two vertically composable 2-cells

9f

7 e
T

kh

Then vertically compose to obtain a 2-cell
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which is called the pasted composite of the original diagram. In this case
there was only one way of performing the pasting.

As another example, consider the diagram

f h
/\ h q /\
A\Uﬁ/, B ’ A \&B
g k

and then vertically compose; while on the other hand we can whisker ¢ and
¢ as in

h !
f TN TR k
T T
g

and then vertically compose. The reader should verify that the resultant
2-cells of the form

are actually equal.

It is a general fact that the result of pasting is independent of the way
it is broken down into basic pasting operations. In fact, all ambiguities in
the method can be traced back to instances of the last example. For the
particular diagrams we shall use here, it is easily shown that they have a
uniquely determined pasted composite.

Write Mon (V) to denote the category of monoids in V; the arrows are
monoid arrows. With the extra structure of 2-cells, Mon(V) is an example
of a “2-category”.

(For a commutative ring R, we have that Mon(Mody) = Algy and also
Mon(Modg") = Cogp” where Mody and Modg® have the same tensor

product ®p, .)



Monoids in tensor categories 103

Weak tensor functors take monoids to monoids.

More precisely, if F': V—= W is a weak tensor functor, each monoid A in
V gives a monoid F(A) in W with multiplication

¢AA
F(A)®F(A) —22 = FAnA) Y o pa)
and unit
— " pay

In fact, we obtain a functor
Mon(F) : Mon(V) —= Mon(W)

which preserves the basic pasting operations of 2-cells (and so is an example
of a “2-functor”).

For each monoid A in V there is a category called Mod,,(A), of (left)
A-modules. An A-module consists of an object M of V and an arrow
: AQM —= M , called the action, which satisfies all the usual defining
diagrams for a module (see Section 9). An A-module arrow p: M—= N
is an arrow in V' such that

AM

AN

M————=N

There is a “forgetful” functor U, : Mod,,(A) — V which forgets the mod-
ule action.
Each monoid arrow f : A—= B determines a functor

Mod(f) : Mod,,(B)— Mod,(A)
given by “restriction of scalars” along f. That is, for a B-module M, we
take Mod(f)(M) to be M with A-action
fel u
AQM —— BoOM —— M .

Each B-module arrow becomes an A-module arrow, thereby giving the
following commutative triangle of categories and functors:

Mod,, _ Medh Mod,,(A)

\/
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Furthermore, each 2-cell £ : f = g : A—> B between monoid arrows
fand g in V determines a natural transformation

Mod(£) : Mod(f)— Mod(yg)
whose component at the B-module M is the composite

1
M oM —t

which is an A-module arrow, as can be seen from the diagram

1®€®1 lop

ARBeM

ARM

AM
fel gR1®1l gol
E®lel lop

ARM ——— BQBM ——— BM

© lop nel I

M col BoM " M

Naturality follows from the following diagram involving a B-module arrow
u: M—=N.

1
M— oM — M
u 1ou w
1
N— paN— " N

The assignment {—Mod (&) turns the two basic pasting operations into
corresponding familiar operations on natural transformations. This gives
an example of a “2-functor”

Mod,, : Mon(V)°? — Cat

where Cat is some appropriate “2-category” of categories.

For our purposes, it is important to remember the forgetful functors
U, : Mon,,(A)—= V. So, rather than Cat, we consider Cat /)Y, whose
objects are functors F' : C—> V), whose arrows

T:(C,F)—(D,G)

are functors 7' : C—= D such that GT = F', and for which the 2-cells
a : T—=T' are arbitrary natural transformations from 7" to T" (that is,
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no condition relating it to F' and G'). Observe that Mod,, really lands in
Cat /V by taking A € Mon(V)°P to (Mod,,(A),U;) . So we have that

Mod,, : Mon(V)°? — Cat /V

is a 2-functor.
There is an obvious candidate for a tensor product on Cat/V, namely

FxG

(C,F)®(D,G) = (CxD,CxD VxV—2y).

This tensor product respects all of the pasting operations for natural trans-
formations. Ignoring the 2-cells, Cat/V becomes a tensor category with
unit given by (1, I:1—Y )

Suppose now that V is braided, For monoids A and B in V, we enrich
A®B with the multiplication

1gcg 4©1 Lo

A®RB®RA®B - ARARBRB ———— A®QB

and unit nen : I —= A®B; the braiding properties imply (exercise!) that
this makes A®B into a monoid. Thus Mon (V) becomes a tensor category
such that the forgetful functor

Mon(V)—V

is a strict tensor functor. The tensor product on Mon()V) respects the
basic pasting operations of 2-cells (exercise!).

We shall now see that

Mod,, : Mon(V)°* — Cat /V

is essentially a weak tensor functor For this, observe that Mod,(I) = V
and we have arrows

Mod,,(4) x Mod,,(B) ——> Mod,,(A® B)

11— oy
I\{ /v U, ®Ug Uigs
\%

VxYV v

in Cat/V, where ®(M ,N) = M®N , with action

1ecg 5 ®1 LOL
AQBRMQN ———— AQM QBN ——— > M®N .
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The reason for the word “essentially” is that the axioms for a weak tensor
functor (see the beginning of Section 12) hold only up to isomorphism
(instead of equality); in fact, the isomorphisms are precisely provided by
the associativity and unit constraints a, r, £ for the tensor product.

Just as weak tensor functors take monoids to monoids, the 2-functor
Mod,, takes tensor objects in Mon(V)°? to tensor objects in Cat/V .

A tensor object is “essentially” a monoid.

A tensor object in Cat is precisely a tensor category; whereas a monoid
in Cat is a strict tensor category

A tensor object in Cat/V is pair (C , F) consisting of a tensor category C
and a strict tensor functor F': C—= V.

A tensor object in Mon(V)°P will be called a quasi-bimonoid in V. This
consists of a monoid A in V', monoid arrows

0: A— ARA |, e: A—1
and 2-cells:
A J A®2 A
1A 1A
5 Y, 581 4
RN 7
A®2 106 A®3 e®l A®2 1®e A

which are invertible under vertical composition and satisfy the following
equalities between parted diagrams.

A A®2 A— > y®2
\;il \i J \531
«
5 Y, o8l A®3 5 A®2 146>A®3
®
=3 = =

184 ol “
A®2 A®3 ®1e1 A®2 el e1e1

A®3 - - A®4 A®3 - - A®4

1®1®d 1®1®d
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A d A®2 40 o 492
1
0 g& o®l 0 w1
184 _
A®2 493 = A®2 %1 A®3
Agx
1®e®l 1®e®l
1 1
A®2 A®2

A bimonoidin V is a strict quasi-bimonoid; that is, one for which the 2-
cells a, A, p are actually identity 2-cells. (A bimonoid in Mody is an
R-bialgebra; see Proposition 7.2.)

Hence we have that a (quasi-) bimonoid A in V' determines the struc-
ture of a tensor category on Mod,,(4) as well as a tensor functor structure
on U, : Mod,,(4)— V (see Section 10 for those cases when V = Mod,
and when V = Modg").

A (quasi-) Hopf monoid in V is a (quasi-) bimonoid H together with
an arrow v : H—= H , called the antipode, such that

vl

H— > HoH HoH —“=H

I

Drinfeld [Dri89] has recently obtained interesting examples of quasi-Hopf
monoids in Mod,_.

Proposition 15.1 Suppose V is a braided tensor category and H is a
Hopf monoid in V. If M is an H-module which has a left dual M* as
an object of V then M* becomes the left dual of M in Mod,(H) via the
action

HoM* Alﬁ§£4> HoM* Aliﬁfi> A{*@@}{A4}E$1%> M*@HOMQM* — -+

lopu®l

AI*@QAJQQAJ*“:§2£‘> M* .

Proof. This is a matter of proving that e and d are module arrows. For
this, compare with Propositions 10.1 and 10.5.
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A braiding for a (quasi-) bimonoid A in V is a 2-cell
/ [?\
ARA—— AA

which is invertible (with respect to vertical composition) and satisfies the
two equalities below.

A
\ 5 5
/ \ ARA A®A
1
A®A — A®A - A®A®A =
y®1
6 / 1®R
®1
A®A®A — ARARA AQARA — ARA®RA
ARA,A
A
\ 5 5
/ \ A®A
5
A®A — AnA” - A®A®A <
sol 1®y 106
CA 4®1
1®CA A
ARARA — ARARA AQARA — ARARA

A twist for A is a 2-cell
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which is invertible, with respect to %, and satisfies

1
A7 A s =

~—__ 7
1
1 €
X\ € N X\
AV a—r = AT
1 €

A (quasi-) bimonoid with a braiding and twist is called balanced.

The reader should interpret the above pasting diagrams in the special case
where V = Mod,_, to see that these definitions agree with the definitions
of braiding element and twist for bialgebras, as in Examples 11.3 and 11.7.
We now have a conceptual version of the calculations in those examples.

Proposition 15.2 Suppose V is a symmetric tensor category and A is
a bimonoid in V. There is a bijection between braidings v for A and
braidings c for Mod,(A) determined by cyr v as the composite:

el 1ocgm,N

1
MON —2 o AQASMON ——N  ASNRASM ——t o NoM

There is a bijection between twists T for A and twists 6 for Mod,,(A)
determined by

Proof. Apply the 2-functor Mod,, to the triangle containing v, and paste
below it a square containing a natural isomorphism whose components are
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the symmetry of V (we omit the subscripts V on maps in the diagram):

Mod,,(4)
Mod (5) Mod (5)
=
Mod(7)
Mod, (A®A) Mod(o) Mod,,(A®A)
@ = @
Mod,,(4) x Mod,,(A) -~ Mod,,(4) x Mod,,(4)

The result is a natural isomorphism, whose component at the pair (M, N) €
Mod,,(4) x Mod,,(4) is the ¢, y as stated in the proposition. The axioms
on 7 convert to the braiding axioms for c.

Conversely, to recapture v from ¢, take the composite

nen

QA
= (1 A®A A94)

where we regard A as an object of Mod,,(4) with action x. The proof of
the twist bijection is similar.

A tortile bimonoid in V is a balanced Hopf monoid H such that

Proposition 15.3 Suppose that V is a symmetric autonomous tensor cat-
egory. If H is a tortile bimonoid in V then Mod,(H) is a tortile tensor
category.

H

H .

Proof. By Propositions 15.1 and 15.2 Mod,,(H) becomes an autonomous

balanced tensor category. All that remains to see is that 6,,. = (6,,)*,
which follows from vor1 =17.

Consider the replacement of the tensor category V by its opposite ten-
sor category V°P. Monoids become comonoids, but bimonoids and Hopf
monoids are unchanged. For a bimonoid H in V', a cobraiding v : HOH — I
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on H in V is defined to be a braiding on H in V°°; a cotwist 7 : H—1
on H in V is defined to be a twist on H in V°P.

Thus we have the corresponding notions of cobraided, cobalanced and
cotortile bimonoid in V.

Our proposal for a definition of a quantum group over R is that it should
be a cotortile bimonoid in Mody, . In Section 16 we shall see that our main
example, the quantum general linear group, does indeed give an instance
of this concept.
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16
Tannaka duality

Given a compact group G, the set Rep G of isomorphism classes of appro-
priate representations admits various operations; for example direct sum
and tensor product. Tannaka’s duality theorem (1939) provided a recipe
for recovering a compact group Gp R from a structure R such as Rep G
whereby Gp Rep G = G.

For algebraic groups, Saavedra Rivano [Riv72] considered the category
of appropriate representations together with the tensor structure and the
underlying functor into vector spaces. He gave criteria on a tensor functor
into vector spaces under which it should be equivalent to such an underlying
functor. A non-commutative generalization of this was given by Ulbrich
[Ulb89]. We shall lead into this Hopf algebra version by examining the
2-functor Mod,, of the previous section.

For simplicity of exposition we suppose our tensor category V is strict.
This loses no generality in fact since every tensor category is equivalent to
a strict one (MacLane’s coherence theorem). We also suppose that V is
symmetric (but we cannot suppose the tensor product is strictly commuta-
tive). A consequence of this simplification is that we really do have a weak
tensor functor

Mod,, : Monﬂﬁ)—> Cat /V

We are now interested in going back from Cat /V to Mon(V)Op. A possible
way to do this is via a left adjoint to Mod,,, if it exists. Under reasonable
conditions, a left adjoint E € Mon())) does exist at an object (C, F) of

Cat/V. It is constructed as follows.
If each internal hom [FX , FX | exists in V and if V is suitably com-
plete, we put

E, :/ [FX,FX]
XeC

where the integral sign denotes the end (see MacLane [Mac71]) of the
functor C°° x C—= V taking (X ,Y) to [FX,FY']; it is the equalizer of

113
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the obvious pair of arrows

[I[[FX,FX]|—= ]I [FX,FY]

X f:X—=Y
There are projection arrows
gy Bp—[FX ,FX]

for each object X € C. These correspond, using the definition of internal
hom, to arrows

py : Ep@FX — FX .
The univeral properties of end and internal hom show that there exists a
bijection between the arrows f: A—= E, in V and natural families of
arrows 6y : AQFX — FX , given by

Ox = nxo(foly).
The natural families

Hx 1oy

X373
Ep®Ep,@FX ——— E,@FX FX - FX

FX

induce, under such bijections, the monoid structure on Fj, :
p: Ep@QE,—E, , n:I—E;

Example 16.1 Toke V = Mody for some commutative ring R. Then
we have that Mon(V) = Alg, . Now for any functor F: C—=V, the
algebra Ep has as elements the natural families 0 = (0x)xcq of R-linear

morphisms 6y : FX —= FX ; addition and multiplication by scalars are
done componentwise, while multiplication is componentwise composition.
In particular, for any R-algebra A, if we have that

F = U, : Modgz(A)—Mod, , n:I—E;
then there is a natural isomorphism of algebras
E, 2 A.

To see this, notice that each element m of an A-module M determines
a unique m : A—= M in Mody(A) with m(1) = m; so for a natural
0: U — U, , we have

A——= A

M f

M
which implies 6,,(m) = 0,(1)m ; so 0 is determined by 6,(1) € A.
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Suppose A is a monoid in V. The two axioms which are required for an

arrow f : A—= Ep to be in Mon(V) translate to the two conditions on
the corresponding family of arrows 6y : A®FX — FX which say that
each 6y is an action of A on FX. This is precisely what is needed to
lift F' to a functor T': C—> Mod,,(A) such that U;T = F; just put
TX = (FX 0% ) . This gives a natural bijection

Mon(V)(4, Ep) = (Cat/V)((C,F),(Mod,(4),1;))
between hom sets, which means that (C, F ) —E,. is left adjoint to Mod,, : Mon(V)" —= Cat/V .

In fact, the above bijection becomes an isomorphism of categories, since it
extends to 2-cells:

T
B
f C \U/, Mod,,(A)
TS T’
A \b E, <+
f F U,
vV

This is expressed by saying that (C ,F ) = E, is left 2-adjoint to Mod,, .
Taking A = Ej in the above bijection and looking at the image of the
identity arrow, we obtain

N
C Mod,, ()
\\ /UEF
Vv
where NX = (FX , juy ) . We obtain a (partial) 2-functor

E_: Cat/V—=(Mon(V))°P

by taking the 2-cell « : T = T’ : (C,F)—(D,G) in Cat/V into the
2-cell E, : E; = E;, : E;—= E; in Mon(V) corresponding (under the
2-adjunction) to the 2-cell in Cat/V:

Na:NT = NT':(C,F)—(Mod(E;),U, ) .

G

Remark 16.2 Formal Tannaka Duality criteria on F : C—=V are that
N : C— Mod,,(Ey) should be faithful and also that every “appropriate”

Eg-module should be isomorphic to some NX .
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We can equally well regard E_ as a 2-functor

E_: (Cat/V)°®— Mon(V)

whereupon (for general reasons as an adjoint to Mod,,) it is a weak tensor
functor. It preserves the unit in the sense that F; = I, while we have a
canonical arrow ¢ such that

e

EpQF Eroa

s
Tx® Ty XQY

[FX ,FX]|®[GY,GY | — 2= [ FX®GY, FX®GY |

where the bottom arrow corresponds to the composite

[FX,FX|®[GY,GY |9 FX®GY —2° [FX, FX|R FX®[GY, GY]2GY

e®e

FX®GY .

So E_ takes monoids in (Cat/V)°" to monoids in Mon(V), the latter
being the commutative monoids in V', but this is of no interest to us here.
Our real interest is in to what extent

op

E_: (Cat/V)—= Mon(V)

takes monoids to monoids. This will be true of those monoids (C ,F) in
Cat/V for which ¢p . : Ep®@Ep —> Epgp is invertible.
Is this a reasonable condition? At first glance, invertibility of
bpa / [FX ,FX] ® / [GY,GY]—>/ [FX®GY, FX®GY ]
X Y XY

looks unlikely. It would be implied by the two conditions:

(a) each A®_ : V—=V preserves ends; and

(b) each [4,B]®[C,D] === [A®C,BaD] s invertible, for ev-
ery A =FX and every C =GY .
However these look unlikely too, if we think in terms of Example 16.1.

We shall look at the conditions (a) and (b) more closely. If V is a closed
tensor category then A®_ preserves colimits (since it has a right adjoint
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[A, _]; see Mac Lane ([Mac71]; Chapter V §5). But end is a limit, not a
colimit. So (a) can be ensured by taking ) to be the opposite of a complete
closed tensor category. We need to be careful here since we still need the
internal homs of the form [FX, FX]in V, not in V°P.

Condition (b) is true, for example for finite-dimensional vector spaces.
What is needed is that A and C' should have duals; then we have canonical
isomorphisms

[A,B]®[C,D] = A®B®C*®D
> (A®C)*® (BD) = [A®C,BoD] .

Hence, conditions (a) and (b) are not unreasonable after all. They are
satisfied when V is the opposite of a closed symmetric tensor category
which is cocomplete enough for co-ends over C to exist, and when each F' X
and GY has a dual.

Suppose then that V°P is a closed symmetric (strict) tensor category
which is (small) cocomplete. Suppose C is a left autonomous small (strict)
tensor category and F : C—= V is a (strict) tensor functor. Then each
FX has a dual FX*. Since (C,F) is a monoid in Cat/V, we obtain a
monoid Ey in Mon(V)P; that is, a bi-monoid E, in V. This gives a
factorization

4 N Mod,, (E)
R ﬁ )
1%
of our tensor functor F' into tensor functors N and UEF'

In fact, E, is a Hopf monoid. To see this, define F* : C°P—= V by
F*X = FX*. We obtain a monoid arrow

() (€, F) —(C°", F7)

in Cat/V. This induces a monoid arrow v with

FX®QFX™

It is easy to see that Ep- = E.°P as bi-monoids in V (that is, Ep- is just
E, with switched multiplication and switched comultiplication), and v is
an antipode for the bi-monoid Ej.
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Now suppose C is braided. The braiding can be regarded as an invertible

2-cell:
F C

in Cat/V. Applying E_ , we obtain an invertible 2-cell in Mon(V):

The braiding arrows for ¢ on C carry over precisely to those for v on Ej.
Moreover, N : C—> Mod,,(E,) becomes a braided tensor functor.

(c, F)

Next suppose C is balanced. The twist on C can be regarded as being an
invertible 2-cell:

(€.F) " b0 (c.F)

in Cat/V, and, applying E_ , we obtain a twist

/\

U,T

\_/

for the braided bi-monoid Ej . So Ej becomes a balanced Hopf monoid
and N : C— Mod,,(E) becomes a balanced tensor functor.

Finally, if C is a tortile tensor category, Ej is a tortile bimonoid in V.

To obtain Ulbrich’s [UIb89] setting, we take V = Modj for a commutative
ring R. For each R-coalgebra C, we have

Mod,,(C)°* = Comod,(C) .

We use the notation Comod (C), to denote the full subcategory consisting
of C-comodules M for which the underlying R-module U, M is cauchy.
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Consider a small category C and a functor F': C—> Mody whose
values F'X are cauchy R-modules. The coend

X
B :/ FX & (FX)*

becomes an R-coalgebra and we have

(since we can apply our previous theory to F' regarded as going from C°P
to V = Mody’ ). Notice that N actually lands in Comody(E},),.

If C is a tensor category and F is a tensor functor then Ej. becomes
an R-bialgebra and N becomes a tensor functor. If C is left autonomous
then EJ. becomes a Hopf algebra with invertible antipode. If C is a tortile
tensor category then Ef. becomes a cotortile R-bialgebra (quantum group!)
and N becomes a balanced tensor functor.

An important case of Tannaka duality is the characterization of those
F: C— Mody equivalent to Uy : Comodg(H),— Mod for some
Hopf algebra H. This can be investigated by looking at when the functor
N : C— Comody(E}), is an equivalence.

The question arises here as to whether Ej. = C when the equality
F = U, : Comod(C),— Mod holds for a coalgebra C'. We cannot
use the technique of Example 16.1 since, although C' is a C-comodule, it is
generally not cauchy as an R-module.

Proposition 16.3 If C is a coalgebra over a field R and U denotes the
forgetful functor U : Comod(C),—> Mody, then there is a coalgebra i-

somorphism
E; =2 C.

Proof. We need to show that C' has the universal property of Ej; ; that
is, the assignment fr—(f®1) o § determines a natural bijection between
R-module morphisms F' : C'—= X and families of R-module morphisms
Oy : U(M)— X®U(M) natural in M € Comod(C)..

We need to apply the fundamental theorem on coalgebras (see Sweedler
[Swe69], p.46): (when R is a field) “the sub-coalgebra generated by an
element of C' is cauchy”.

Given a family 6,,, we must define f(c) for each ¢ € C. Let M be any sub-
coalgebra of C' which contains ¢ and is finite dimensional. Such M exist
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by the above fundamental theorem, and can be regarded as C'-comodules.
Put f(c) = (1®€)0,,(c). This is independent of the choice of M since 6,,
is natural in M. The proof that this gives the inverse to fr—(f®1) 04 is

now easy.
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Adjoining an antipode to a bialgebra

Tannaka duality allows the possibility of taking an R-bialgebra A , applying
some categorical construction to Comody(A),, and asking whether the
result again has the form Comodg(B),. for some R-bialgebra B .

An example of an appropriate categorical construction is adjoining left-
dual objects to a tensor category. To each tensor category C, there is a
left-autonomous tensor category A,(C) and a tensor functor C—= A4,(C)
which induces a natural equivalence between the category of tensor func-
tors A4,(C)— D and the category of tensor functors C—= D for all left
autonomous tensor categories D. (See Joyal-Street [JS91a] and paper II
in the series.)

Suppose that F': C— Mody is a tensor functor whose values F.X
are cauchy R-modules. Then we obtain a corresponding tensor functor
F: 4,(C)— Mody,.

Proposition 17.1 E! is the reflection of the R-bialgebra Ef. into the cat-
egory of Hopf R-algebras.

Proof. Let H be a Hopf R-algebra. Then we have that Comod(H)
a left autonomous tensor category. Thus the tensor functors over Mody, ,
Ay (C)— Comodg(H),, correspond to C—> Comody(H),, also as ten-
sor functors over Mody . By the left adjoint property of E' , it follows
that bialgebra morphisms E;—> H correspond to bialgebra morphisms
E/—= H, as required.

. is

This gives a construction for adjoining an antipode to a bialgebra over
a field R; that is, a construction for a left adjoint to the inclusion of the
category Hopfj, of Hopf algebras in the category Bigy, of bialgebras. Given
a bialgebra A, put F' = Uy : Comodg(A),— Mody,. By Proposition
16.3, we have A = EJ.. By Proposition 17.1, the Hopf algebra H = EI; is
the required reflection.

If we require the adjoined antipode to be invertible, we must replace
Ay(C) in the above by A(C) which is the free autonomous tensor category
on the tensor category C. And so on.
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The quantum general linear group
again

Let V be an n-dimensional vector space over a field k. Given an invertible
g € k, let (y,z) be the tortile Yang-Baxter-operator on V defined in
Section 14. By Examples 13.4 and 13.7, there are strict tensor functors

M:g—>M0dk , G:’%—>M0dk

taking (+ ,Cyoy ,9+) to be (V,y , z) (where we are identifying B with the
subcategory of T whose objects are positively signed sets, with arrows
being ribbons which do not bend around).

Applying Tannaka duality ideas (Section 16) to M and G, we obtain a

co-balanced bi-algebra E; and a co-tortile bi-algebra Ef, .

Theorem 18.1 There are k-bialgebra isomorphisms (see example 9.8):
Ey = Mat,(n) , Eg = GL,(n).

Proof. Let A be the bialgebra Ej,. It comes equipped with a universal
linear function 6, : MZ—= AMZ for Z € B. In particular, we have
0=104, : V—A®V,and 4, , : VRV —= A®V®V is the composite

0®6 1looel ne1el

ARVRARV ARARV RV

Vv ARVeV

while y : VRV —=V®V becomes a co-module morphism

Ot +

VeV ARV RV

Yy l \Ll@y
0

VRV — > AgVeV

Putting d(e;) = >_; 7;;®e; , it is a straightforward, but tedious, matter to
check that commutativity of the above square is equivalent to the elements
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X ={z;;|i,j =1,...,n} satisfying the defining relations for the quantum
matrix monoid Mat, (n) (see Example 9.8). We therefore have a bialgebra

morphism Mat, (n) — A which can be seen to be invertible.

To introduce an antipode to the bialgebra A and thereby obtain the
Hopf algebra H, we must introduce a left dual &k : V*—= A@V* for
0 : V—=A®V. Since T is the free autonomous tensor category on B,
we have H = E/ (as in Section 17). If we put

k(el) = Z wij®s;‘
J

and express what it means for e: V*®@V —=k and d: k—V*®V to
be H-comodule morphisms, we obtain the conditions

E Wiy Ty = 6ij and E Ty Wy = 6”.,
m m

which mean that the matrix (w,;) is the inverse of the transpose of (x;;)-

The Hopf algebra H is therefore obtained from A by adjoining elements w,;
subject to the above two conditions. By means of a quantum Cramer’s Rule
(checked in Section 3 for the n = 2 case), we can take w;; = t dety(X;)
(see Example 9.8) where ¢ is an adjoined inverse for det,(X). In this way

we see that H = GL,(n) .

Corollary 18.2 My(n) is a co-balanced bi-algebra and GL,(n) is a co-
tortile bi-algebra.

The co-braiding given by v : GL,(n)®GL,(n) — k, and co-twist giv-
en by 7: GL,(n)®GL,(n) — k, satisfy the equations

y(e;we;) = Z’y(xim,xjr)sm@sr
m,r
qnsi = ZT(xim) Em
m
This means:

1 foriAj,m=j,r=i
—q! fori<j,m=i,r=j
V(@i Tyy) = (¢—a) J T =

q fori=j=m=r
0 otherwise
1)



19

Solutions to Exercises

Chapter 4
1. Fora € Z/(2),b € Z/(5), put x = asb € Z/(2)®,Z/(5). So we have:

5z = 5(asb) = as5b = as0 = a=(0.0) = 0as0 = 020 = 0

2z = 2(asb) = 2asb = 0b =0
So x = (5 —2.2)x =0 —0 = 0. Elements of the form z generate, so

2](2);7./(5) = {0}.

2. (a) Let ® denote ®,. The multiplication and unit are given by
(R2S)®(R®S) 21971 (RoR)®(S®S) “X RS

72~ 7.07. 2L RoS

This makes it clear that p us an abelian group morphism, so
we automatically have distributivity. In terms of generating
elements, the multiplication is (res)(r'es’) = (rr')e(ss’) and
the unit is 1 = 1&1. Associativity and unit conditions only
need to be checked on generators where they clearly follow
from these conditions in R, S.

(b) Yes, ¢(r) =rel does define a ring morphism ¢ : R—=R®S.

¢ = (R= RoZ =¥ R®S)

is clearly an abelian group morphism. It remains to check that
multiplication and unit are preserved:

o o(rr') = (rr')el = (rel)(r's1) = @(r)e(r')
e (1) = 1s1 =1 using the definition in (a).

125
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Solutions to Ezercises

(c) Let RLR@?ZSiS, with ¢(r) = rel and ¢(s) = les; these
are ring morphisms as in (b). These give our “coprojection-

b2

s”. Now given Ri>T<LS with f,g ring morphisms and
T commutative, we must show there is a unique ring mor-
phism h : R®S—T with hoop = f, hot¢ = g. These
last equations force us to define h(res) = h((rel)(les) =
h(rel)h(les) = f(r)g(s). It is easily checked that Rx S—=T,
(r,s)—=f(r)g(s) is bilinear. So h does give an abelian group
morphism. It remains to show h preserves multiplication and
unit.

h((res)(r'es’)) = h(rr'sss’) = f(rr')g(ss)
= f(Mf0)g(s)g(s) = fOg(s)f(r")g(s")
= h(res)h(r'ss')

So h is a ring morphism. Since the definition of h was forced,
it is unique.

3. A module M : R—+=S is an abelian group with an abelian group

morphism g : ROM®S—= M, written u(remes) = rms, satisfying
r'(rms)s’ = (r'r)m(ss’), Im1l = m. One can easily see that this
agrees with the definition given in lectures (given left R-, right S-
scalar multiplications satisfying (rm)s = r(ms) we define rms =
(rm)s; all the distributive laws precisely summarise to trilinearity
(over Z); conversely, given u, define the two scalar multiplications by
rm = rml and ms = 1ms). Now a left R®S°P-module is an abelian
group M with an abelian group morphism u : (R®S)@M—=M,
written zi(resem) = (res)m satisfying (1e1)m = m and (r'rsss’)m =
(r'es’)((res)m). Clearly to give the abelian group morphism g, fz
is the “same thing” via the diagram:

RoOM®S

R®S®M "

Moreover the conditions on g directly translate to those on 7.

. Suppose R—+>MS—+=NT—=I As an abelian group we have:

M®SN®TL = B

Where B is a subset of the abelian group F,(M x N x L) consisting
of all elements of the form:

(m + mlanal) - (manal) - (mlanal) )
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(m,n+n',l) — (m,n,1)— (m,n’,I),
(m,yn, L +1") —(
(ms,n,l) — (m,sn,l),
(m,nt,l) — (m,n,tl)

manal) - (manall) ’

The equivalence class of (m,n,l) is denoted by mensl. We now
define r(mensl)p = (rm)ene(lp) yielding M@ N@,L : R—+=U.
Then

Hom% (M @gN@,L, K) = Mult (M, N, L; K)

Chapter 5

1. We use the Fundamental Theorem of Morita Theory. Suppose M
is finitely generated and projective. By Theorem 5.3, we have the
morphisms d : R—>M*®, M, e : M®zM*— R satisfying

(M* 22 M@, M, M* %5 M*) = 1)« and  (esl)o(led) = 1y

Put d’ = (R-"> M@, M-"> M@ M*), ¢’ = (M* @ M-"> M, M*—>R).
We can now apply Theorem 5.3 (iii) (replacing M, N, e,d with M*, M, e',d’

respectively) and by (iv) M* is finitely generated and projective.

2. Notice that p} : M*®,L—=Hompg(M, L) is “natural” in M (S in
L too for that matter), meaning that for any module morphism
f:M—=N : R—+=S, the following “f-square” commutes:

N
N*@pL O Hompg(N, L)
f*®1l l—of
M*@,L > Homy, (M, L)
L

Suppose now that M is a retract of a Cauchy module N; so we have
i:M—=N,r:N—=M,roi=1 and p¥ invertible. We can show
that the composite

Ny—1 ”
Hom (M, L) % Hom (n,I) "> N*oL % MraL
is an inverse for p}. For p}M o (i*e1)o(pY)~to(—or) = (—oi)opNo
(p7) "' o(—or) (by the i-square) = (—odi)oly . v o(—or)=
1

(—oi)o(—or) = —o(ri) = —oly = Tiom (M,L) and (i*@l)o(pg)_ o
(—or)opll = (i*al)o () "o p o (r*a1) (by the r-square) =
(i*el) o (r*el) = (ri)*el = 1p+el = 1y+g1, as required.
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Chapter 6

1. (a) G—=Endy(M®N), g+ (men+— (gm)s(gn)) is a monoid
morphism since 1 — 1ygn and gh — (men — (hm)s (hn)
> (ghm)s(ghn)). So this extends to a unique R-algebra
morphism R(G)— Endp(M®zN). So M®gyN is an R(G)-
module.

(b) Let fi(g) : Homp (M, L)—Homy (M, L) be the R-module mor-
phisms given by fi(g) (1) (m) = gu(g~"m). Then u(1)(p)(m) =
p(m), jlgh)(uw)(m) = ghu(h~'g~'m) = gi(h)(n)(g~ m) =
(i(g) o (k) (1) (m). So fp : G—=Endy(Homp(M,L)) is a
monoid morphism. So Homg (M, L) becomes an R(G)-module.

(c) evy, (g o (map)) = evy (gmagp) = (gu)(gm) = gu(g~"'gm) =
gu(m) = gev,,(mep) so ev,, preserves the R(G)-action.

(d) We also need d : N—=Homp (M, M®,N), nt—(m+——=maen)
to be an R(G)-module morphism. We have

d(gn)(m) = megn = g((g~'m)en) = gd(n)(g~'m) = (gd(n))(m)

so d(gn) = gd(n). The required isomorphism is the restriction
of

Homy (N,Homg(M,L)) = Homgy(M®,N,L)
[ eo(lyef)
(go—)od < g

to R(G)-module morphis, f,g; since e,d are such, so are e o
(1yef) and (go—)od when f, g are. [This will be generalised
from R(G) to an arbitrary Hopf algebra in Section 9].

Chapter 7

1. There is a little abuse of notation here since the four parts to this
are elements of C®,C, R®,C, CR,CQR, C®,R®,C respective-
ly. But these modulesare canonically isomorphic, and so “=" really
means “corresponds under the canonical isomorphism to”.
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(a) To prove the first “equality”:

— C(C RxC
//////1 \\\\\\\\ ///////;7 194§
C®C®R — ReCxC

(b) Similarly for the second:

Co0eC —2 CeCeC

5 e®1®l e®1®l
o®1l
&

CaC ReC®C ——> RoC&C

cel

C

(c) For the third:

CoC0C —2% Colel

[ e®e®1
e®lel
o®1l e®1l®l

c ceC RoC&C ——> RRCXC 1= RORRC

1ge®l
1”0

1®1®e

C®R R®C®R

o

Chapter 9

1. (a) Suppose I is a coideal of C, that is, a submodule satisfying
0(I) CI®C + C®I and e(I) = 0. The composite morphism

c—2coc—Lo/I0C)T

maps I to 0 since (pep)d(I) C (pep)(IRC+CRI) = p(I)ep(C)+
p(Cep(I) = 0C/I + C/I®0 = 0. So there exists a unique
module morphism § : C/I—C/I®C/I such that §j o p =
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(pop) o 6. Similarly, e(I) = 0 implies there exists a unique
¢ : C/I—= R with €0 p = . These properties of d, e will mean
p: C—=C/I is a coalgebra morphism once we know C/I is a
coalgebra. To prove coassociativity of § : C'/I—C/I®C/I,
take the coassociativity diagram for C'/I and precompose with
p:C—C/I

d

C/Te0)1 =22 C[1C/16C/1
\ / M
CeC —= —ar CeCxC

The result commutes by coassociativity of C. But pis surjec-
tive; so the coassociativity diagram for C/I commutes. Simi-
larly we can prove ¢ : C'//I—=R is a counit. If C'is a bialgebra
and [ is also an ideal, certainly C'//T becomes an algebra. All
that remains to check are the extra bialgebra conditions (see
Proposition 7.2). The main one, showing that § preserves mul-
tiplication, is obtained by precomposing the diagram with pep
and using the corresponding condition for C'; This gives the
result since psp is surjective.

Since p is a bialgebra morphism, the only possible way C/I
can become a Hopf algebra is for v o p = pow this forces us to
ask v(I) C I for the antipode of C.

But B = R{x,y,z). The given equations define algebra mor-
phisms § : B—B®DB, ¢ : B— R since B is free as an algebra.
By Proposition 7.2, it remains to see that these morphisms
make B a coalgebra. First look at the coassociativity:

(0el)d(z) = (d=1)(zex) = zezer = (120)(rezr) = (1d)d(x)
Similarly for y:
(0e1)d(2)

(0el)(1loz + zox) = lolez + (182 + 20x)ex
= le(lez + zex) + zexex = (led)(lez + zex)
= (18d)d(2)

Then the counit conditions:

(eel)d(z) = (eol)(zex) = e(z)x = = (lee)(zsox) = (12€)d(x)

and similarly for y:

(ee1)d(z) = (eel)(lez+zex)=24+0x=2=0+2

(1ee)(lez + zex) = (1ee)d(z)
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(c) We have:

O0(zy — 1) (zex)(yey) — 1l = zyszy — lel
= (zy — Dszy + lozy — 1al
= (zy — Dozy + lo(zy — 1)
C I®B+ B®I

(d) We must check:

R
uw(rel)d(z) = wp(vel)(zer) = pu(yez) =yz =1=ve(zx)
=y = plwsy) = p(lev)(ver) = p(lev)i(z)
Similarly for y:
p(re)d(z) = p(vel)(lez + zex) = p(lez + (—2zy)sx) = 2z — zyx
= 0=ne(z)=0= -2y + 2y = p(le(—2y) + 28y)

u(lev)(lez + zex) = p(lev)d(z)

So H is a Hopf algebra. By Proposition 8.1, v reverses both
multiplication and comultiplication. The formulas for v"(2)
are trivial for 7 = 0, 1. Also ¥>"(z) = 2"2y™ implies:

V2"+1(z) =v(y)"v(z)v(z)" =z (—zy)y" = —z" 2yt
which gives:
P () = o) ()" = e (e = 2y

So formulas follow by induction.
If v had finite order, we would have either "z = zz" or

2"z = —zx™t! which are false in H.
1.
v(a"zy" —z) = v(y)"v(z)v(z)" —v(z) = 2" (—2y)y" + 2y
= x4 2y = (a"2y" — 2)(—y) €I,
Iz"zy" —2) = (2"e2")(loz+ zex)(y"ey") — loz — zox

= (2"ex"z+ 2"202" ) (y"0y™) — loz — 2oz
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= 2" "ex"zy" + "2y ex" T y" — loz — zox
lexzy" + 2" 2zy"ex — loz — zox
= le(z"zy" —z) + (z"2zy" — 2)sx
€ I,QH+ H®I,
g(z"zy" —z) = 0.
So I, is a Hopf ideal in H
v' -1 = y"-1=—y"@@" 1) € J,
0(z" —1) = za"sz" — 1zl = (2" — 1)ea™ + le(z™ — 1)
€ J,@H+H®J,
g(z"—1) = 1"-1=0
So J, is a Hopf ideal in H.
ii. v?"(z) =z and v*"(y) = y since v just switches z and y.
v"(z) = 2"2y" =2 (modI,)
v’z) = z"2y" =|z|=2 (mod J,)
Chapter 10

1. Let M be a Cauchy R-module. The diagrams (coassociativity and

counit) showing F to be a coalgebra are:

19d®l 1911edel
MM*——— MM*"MM* ———< MM*MM*MM*

1edelelel

9181
MM*%MM*MM*e:iMM*

1®l®e
(they follow from functionality of ®; and Theorem 5.3)

Certainly S—=disa bijection between R-linear functions 6 : M—>C®, M
and R-linear functions w : M®,M*—C. The inverse assignment
whk"w is given by:

Yw= (M2 MMM 2% oM)

[That these assignments are mutually inverse follows from the prop-
erties of e,d in Theorem 5.3] It remains to see that coaction axioms
on ¢ translate precisely to coalgebra morphisms on w. We'll do the
translation for the coaction axiom:

d®1l

M$0M;3500M
®
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(where 4 is the comult of C'). This is equivalent to:

I®lel
MM —22 oM —=coMM® wlee o oo
®
Using:
=3 ielel
MM*——— CMM* ——CCMM*
\ l1®e ll@l@e
§
C 3 cc
and
MM* Ledol M M*M M*
ool CMM*MDM* delta®1
1®1®I®
1ee®l®
CMM* I CMM*
We see that the axiom becomes:
5
MM* C

1®d®1l l5

MM*MM* — CMM*——CC
o®l 1®d

which is a coalgebra morphism axiom on 0.

Chapter 11

1. (a) ca =carocay Since ca g is invertible, c4 ; = 14. Similarly
cr,a = 1a.

CA,IRI

A

—_—
///ij;CAJ

ca,1®1r

<
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ACB -2 0 AB

CAB,C

ABC CBA

CBA,C
(b) Puty =73, piev; € A®Asothat cyr ny(men) =3, (uin)e(vin):

c®l
> moepilevin —== 2, i pipilevimevin

1®c 1®c

menasl X

c®1
i winsvimsl = > j minepjlevivim
The hexagon gives us the condition:

X = Z ujpil®ukvin®vkvjm = Z ukpjl®vkuin®vjvim
i3,k i,5,k

in A A®A. Diagramatically this comes:

RY® 0315264 QU
R%A®6%—A®G%A®3

0536142
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Index

2-category, 102, 104
2-cell, 99
2-category, 102
2-functor, 103, 104
identity, 100
pasting, 99
2-functor, 103, 104

A-point, 55
A-module, 103
action, 103
arrow, 103
left, 103
action, 59, 103, 115
of an A-module, 103
adjoining
an antipode, 121
an inverse for the determi-

nant, 56
left-dual objects, 121
adjoint
left, 115

left 2-adjoint, 115
Lie algebra, 33
algebra
R-algebra, 27
exterior, 31
Hopf, 51
morphism, 27
of endomorphisms, 28
of formal power series, 42
opposite, 30
over R, 27
polynomial R-algebra, 45
polynomial algebra, 45
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symmetric, 45

tensor, 28

universal, 89

universal enveloping, 40
Algebraic Geometry, 5
algebraic varieties, 5
antipode, 7, 51, 107, 121
appropriate

representation, 113
arrow

between monoid arrows, 99

composition, 78

monoid, 99

of category, 6
Associativity, 2, 27
associativity, 67
autonomous, 82

left, 81

left /right, 82

balanced, 109
Y B-operator, 90
bialgebra, 76
Banach spaces, 79
example of closed symmetric
tensor category, 79
bialgebra
R-bialgebra, 42
balanced, 76
braided, 72
commutative over k, 7
matrix bialgebra, 46
morphism, 44
quasitriangular, 72
symmetric, 72



138

triangular, 72
biclosed, 78
bijection

canonical, 1
bilinear

R-bilinear, 15

universal bilinear function, 15

bimodule

left R-/right S-bimodule, 16

bimonoid, 107
balanced, 109
cobalanced, 111
cobraided, 111
cotortile, 111
in Mody, 107
in V, 107
strict quasi-bimonoid, 107
tortile, 110, 118
with a braiding, 109
with a twist, 109
braid
category, 69
composition, 69
group, of Artin, 69
tensor product, 69
braided, 118
bialgebra, 72
tensor category, 68
braiding, 68, 83, 108
element, 72
for a bimonoid, 108
for a tensor category, 68

Cx-algebra
commutative, 5
cartesian product, 1
of no sets, 1
category
of braids, 69
of monoids in V', 102
strict tensor, 106
tensor, 67
cauchy
H-comodule, 65

Index

module, 21
closed

functor, 88

left-closed, 77

tensor category, 78
coaction, 62
coalgebra

morphism, 38

over a ring, 37

primitive element, 41

set-like element, 40
cobraiding, 110
cocauchy, 47
cocommutative

coalgebra, 38
coend, 119
coherence theorem

of MacLane, 68, 113
commutative, 3, 30

R-algebra, 30

Lie algebra, 35

monoid, 3

rig, 4
Commutativity, 3
commutator

defines a Lie bracket, 32
commute with diagonals, 45
comodule, 59, 62

left, 62
comodule morphism, 62
composite

pasted, 102
composition

arrow, 78

of braids, 69

vertical, 100
comultiplication, 7, 8, 37
constraint

associativity, 67

left unit, 67

right unit, 67
convergent, 24
convolution

product, 39
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structure, 38
coordinate k-algebra, 8
of general linear group, 8
coordinate algebra, 9
quantum matrices, 9
coprojection, 8
coset, 14
H-coset, 14
cotwist, 111
counit, 7, 37, 81
Cramer Rule
quantum, 124

derivation, 32
diagonal, 1
formal, 37
in category X, 7
ternary, 2
direct sum
of Lie algebras, 34
of modules, 24
Distributive, 4
dual, 21
left dual, 21, 81
right dual, 81
dualizing object, 80
left, 79
right, 80

Eli Cartan, 33
end, 113, 114

is a limit, 117
endomorphism algebra, 28
enrich, 19

abelian group with module struc-

ture, 19

equalizer, 113
essentially, 106
evaluation, 77

functor, 96

morphism, 19
exponential series, 30
exterior algebra, 31

field, 4
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finitely generated, 13
forgetful functor, 31, 103, 104, 119
formal
diagonal, 37
power series, 42
Formal Tannaka Duality, 115
free, 14
constructions, 31
module, 14
free module
from R to S, generated by
X, 16
functor, 88
function
complex-valued, 5
continuous, 5
diagonal, 1
identity, 1
functor
essentially weak tensor, 105
evaluation, 96
forgetful, 103
self-adjoint, 54
tensor, 87
weak tensor functor, 103
fundamental theorem
on coalgebras, 119
funny superscripts, 10

Gelfand duality, 5
general linear group, 8
commutative Hopf algebra, 8
coordinate k-algebra, 8
generate, 13
generic point, 10
geometric series, 28
Grassmannian
algebra, 10
group, 2, 7
R-algebra, 29
affine over k, 7
diagrammatic definition, 7
Lie group, 7
topological group, 7
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homothety, 97
Hopf algebra, 7, 51

morphism, 33
universal enveloping, 33

commutative, 7, 53 Lie bracket, 32
Hopf monoid, 117 linearly independent, 14
quasi, 107
Hurwitz polynomials, 45 MacLane
coherence theorem, 68, 113
ideal, 29 module

in an algebra, 29
Identity, 1, 2, 27
identity, 1, 85

2-cell, 100
indeterminate, 42
injective, 24

cauchy, 21

finitely generated, 13
from R to S, 16

left R-module, 13
morphism, 14
projective, 21

morphism, 24 right R-module, 13
internal hom, 77, 114 monoid, 2, 7, 99
left, 77 R-algebra, 29
right, 78 morphisms preserve invertibil-
Invertibility, 2 ity, 4
invertible, 2 affine over k, 7
isomorphism, 4 arrow, 99
category, 102
Jacobi identity, 32 commutative, 3
diagrammatic definition, 7
k-algebra, 4 homomorphism, 3
coordinate algebra, 8 morphism, 3
morphism, 4 quasi-Hopf, 107
Kobyzev, Yu, 10 Morita Theory, 62
Kronecker delta, 57 Morita theory
fundamental theorem, 22
left R-linear, 14 morphism
left 2-adjoint, 115 algebra, 5
left adjoint, 115 comodule, 62
left dual, 81 evaluation, 19
as a functor, 82 map of varieties, 6
of a module, 21 module morphism, 14
of a signed set, 83 of C'x-algebras, 5
left-closed, 77 of k-algebras, 4, 6
Leibniz rule, 32 of R-algebras, 27
Lie algebra, 32 of bialgebras, 44
adjoint, 33 of coalgebras, 38
commutative, 35 of Lie algebras, 33
direct sum, 34 of monoids, 3

Lie bracket, 32 of rigs, 4
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retraction, 21
multilinear

function, 17
multiplication

opposite, 13

scalar, 13
multiplicative matrices, 64

natural family, 68

natural numbers, 4
example of a rig, 4

natural transformation, 104

non-commutating
indeterminates, 9

object
of category, 6
terminal, 7
unit, 67

opposite
algebra, 30
multiplication, 13

pasted composite, 102
pasting, 101

2-cells, 99
Planck constant, 9
Poincaré—Birkhoff-Witt, 35
point, 5, 6

B-point, 6

B-point of a k-algebra, 6

as algebra morphism, 5

of an k-algebra, 6
primitive element

in a coalgebra, 41
product

in category X, 6

of modules, 24

tensor product, 7
projection, 24
projective, 21

QIST, 10
quadratic algebra, 80

141

category Q.A, 80
morphism, 80
quantization, 9
deforming commutative alge-
bras to non-commutative
ones, 9
quantum
Cramer Rule, 124
deformation, 57
determinant, 57
general linear group, 12, 57
group, 111, 119
group over R, 111
inverse scattering transform,
10
matrices, 9
plane, 10, 81
spaces, 9
special linear group, 12
superplane, 10, 81
quantum group
cotortile bimonoid in Modp,
111
quantum spaces
correspond to k-algebras, 9
quasi-bimonoid, 106
in V, 106
quasitriangular
bialgebra, 72

R-algebra, 27
commutative, 30
group, 29
monoid, 29
skew commutative, 31
symmetric, 30
R-coalgebra, 37
representation, 29
appropriate, 113
of group on monoid, 29
restriction of scalars, 59, 103
retract, 21
retraction
morphism, 21
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reverse-arrow universal property,
63
ribbons
Y B-operator, 90
tangles, 84
rig, 4
commutative, 4
morphism, 4
natural numbers, 4
ring, 4
with opposite multiplication,
13
R-Lie algebra, 32
R-module
derivation, 32
two-sided, 29

scalar

multiplication, 4
self-adjoint, 54
set-like element

in a coalgebra, 40
signed sets, 83
skew commutative, 31
small sets, 88
Sophus Lie, 33
source

of a tangle, 83
space

seen from the other side of

your brain, 5

span, 13
strict, 106
submodule, 14

generated by a subset, 15
supergeometry, 10
switch, 3, 70
symmetric

R-algebra, 30

tensor category, 68, 79
symmetry

for a tensor category, 68

taking off your belt, 94

Index

tangle, 83
autonomous braided catego-
ry, 83
geometric, 82
source, 83
tangles on ribbons, 84
tangles on strings, 82
target, 83
Tannaka
duality, 119, 121
duality theorem, 113
target
of a tangle, 83
tensor
algebra, 28
functor, 87
object, 106
tensor category, 67, 106
autonomous, 84
balanced, 73
braided, 68
closed, 78
free autonomous, 121
left-autonomous, 121
opposite, 68
strict, 68, 70, 106
symmetric, 68
tortile, 82, 85
tensor functor
balanced, 88, 118, 119
braided, 87, 118
closed, 88
left-closed, 88
preserves dualizability, 92
preserves duals, 88
preserves products, 90
right closed, 88
strict, 87
symmetric, 88
takes Y B-operator into Y B-
operator, 91
weak, 87
tensor product, 67
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as composition of modules,
16
multiple, 16
of R-modules, 29
of braids, 69
represent bilinear function as
module morphism, 18
tensor—hom, 61
terminal object, 7
twist, 73, 85, 108
element, 75
two-sided
R-module, 29

unit, 81
left, 67
object, 67
right, 67
universal
algebra, 89
property, 119
universal enveloping algebra, 33,
40, 46, 89
is a cocommutative bialgebra,
45
universal property
end, 114
for internal hom, 78
internal hom, 114
reverse-arrow, 63
up to coherent isomorphism, 90

vector space
over R, 13

weak tensor functor

essentially, 105

takes monoids to monoids, 103
whisker, 100-102

Yang-Baxter, 89
Y B-operator, 89
hexagon, 89
YB-hexagon, 89, 95
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YB-operator
balanced, 90, 91
compatability with duals, 91
dualizable, 91
given by braiding, 91
in braided tensor category, 91
left-dualizable, 91
tortile, 92, 93, 97
under tensor functors, 91



