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Abstract
The purpose of this work is to highlight the notions of lax braiding and lax
centre for monoidal categories and more generally for promonoidal categories.
Lax centres are lax braided. Generally the centreis a full subcategory of the lax
centre, however we show that it is sometimes the case that the two coincide.

We identify lax centres of monoidal functor categories in various cases.

Introduction
Braidings for monoidal categories were introduced in [JS1] and its forerunners. The
centre ZX of a monoidal category X was introduced in [JSO] in the process of proving

that the free tortile monoidal category has another universal property. The centre of a

monoidal category is a braided monoidal category. What we now call lax braidings were
considered tangentially by Yetter [Yet]. What we now call the lax centre Z,X of X was

considered under the name "weak centre" by P. Schauenburg [Sch].

The purpose of this work is to highlight the notions of lax braiding and lax centre for

monoidal categories X and more generally for promonoidal categories C. Lax centres turn
out to be lax braided monoidal categories.

Generally the centre is a full subcategory of the lax centre, however it is sometimes the
case that the two coincide. We have two such theorems under different hypotheses, one in
the case sufficient dual objects exist in the additive context, and the other in the cartesian

context.

For a promonoidal category C, we relate the lax centre of the [Day]convolution on C
to the convolution on the lax centre of C. Indeed, sometimes these are equivalent.

One reason for being interested in the lax centre of X is that, if an object X of X is
equipped with the structure of monoid in Z,X, then tensoring with X defines a
monoidal endofunctor —® X of X; this has applications in cases where the lax centre can

be explicitly identified.

1. Lax braidings for promonoidal categories
Let 7 denote a complete cocomplete symmetric closed monoidal category and let C

be a T-enriched category in the sense of [Kel]. A promagmal structureon C consists of two
V-functors P:CPR®CPR®C——Y and ]:C——YV (called the protensor product and

prounit). Recall from [Day] that a promonoidal structureon C is a promagmal structure



equipped further with 1 natural isomorphisms

jUP(U,C,-D)@P(A,B;U) %]VP(A,V;D)@JP(B,C;V),

[7P(U,AB)®TU 5 C(A,B) and [ P(A,V;B)®IV—2C(A,B)

(called the associativity, left unit and right unit constraints) satisfying two coherence

conditions.
The importance of promonoidal structures on C lies in their equivalence to (left-and-
right-) closed monoidal structures on the 7-functor category [C,7]. Given a promonoidal

structure on C, we obtain a closed monoidal structure on [C vV ] where the tensor product

# is defined by the convolution formula

X, Y
(M#N)C = [ P(X,Y;C)® MX®NY

and the unit is J . Conversely, given a monoidal structure on [C,‘V], we obtain a
promonoidal structure on C by defining

P(AIBI C) = (C(AI _) * C(BI _))C
and taking the unit as the prounit.

By way of example, every monoidal structure on C determines a promonoidal one by
defining P(A,B;C)=C(B®A,C) and JC=C(I,C). Another example, for any comonoidal
C, is defined by P(A,B;C)=C(B,C)®C(A,C) and JC=1I; the comonoidal structure includes

Vfunctors C——>C®C and C——1 which are used to make P and ] into U‘functors

in the C variable. These two examples agree in case ¥ = Set (so that every C is

comonoidal) and where the monoidal structure on C is coproduct.

Symmetries for promonoidal structures were defined by [Day] and braidings by [JS1].
We generalize this slightly. A lax braiding for a promonoidal structure on C is a V*natural
family of morphisms cpp.c:P(A,B;C)——P(B,A;C) such that the following four
diagrams commute.

U [Te®1  y
J P(U,C;D)®P(A,B;U) — > J P(C,U;D)®P(A,B;U)

assoc ¢ T assoc

["P(a,v;D)® P(B,C;V) [V Pw,B;D)® P(C, A;W)
jv1®c¢ Tjwlcac

assoc !

A\ %
j P(A,V;D)®P(C,B;V) — = P(W,B;D)®P(A,C; W)



V4 J.VC®1 \V4
j P(A,V;D)@P(B,C;V)*)J. P(V,A;D)®P(B,C;V)

assoc_l¢ ? assoc 7!

[7Pu,cD)®P(A,B;U) [V P8, W;D)® P(C, A;W)
jU1®c¢ T‘ Mec

assoc

jUP(U, C:D)® P(B, A;U)*>J‘WP(B, W:D)® P(A, C; W)

jUP(U,A;B)®]U et YP(A,U;B)®]JU JUP(A,U;B)@)]UJﬂ IUP(U,A;B)®]U

lun /un WN /un

C(A,B) C(A,B)

A braiding is a lax braiding for which each cy p.c :P(A,B;C)——P(B,A;C) is invertible. In

particular, by regarding a monoidal category as a promonoidal one in the manner described
above, we obtain the notion of lax braiding and braiding for a monoidal category; by

Yoneda's Lemma in this case, we can regard the lax braiding as a morphism
cap: A®B——B®A satisfying four conditions; then cp p.c:C(B®A,C)——C(A®B,(C)
is C(CA,B/C)'

We can easily adjust the results of [Day]on symmetries to obtain the following for lax

braidings.
Proposition1.1 Let C be a promonoidal V-category and regard [C,V|*, under the

convolution monoidal structure, as promonoidal.  Then the Yoneda embedding

Y:CH[C,‘V]OP preserves promonoidal structures. Moreover, there is a bijection

between lax braidings on C and those on [C,‘V]Op defined by the requirement that Y

should preserve lax braidings; the bijection restricts to braidings and to symmetries.

Example Let 7 be the monoidal category of vector spaces over the complex number field
k. Let A be an abelian category. We write A, for the subcategory of 4 with the same
objects yetonly the invertible morphisms. We write k,A, for the free 7 categoryon A,;

it has the same objects as A, and its hom vector spaces have the homs of A, asbases. A

promonoidal structure on k*/‘zlg is obtained by defining P(A,B;C) to have basis

{(f, g)| 0 A—t,c—85B 0 is a short exact sequence in ﬁl}

and defining



k for C=0
J 0 otherwise.

The associativity constraints come from contemplation of the following 3 x 3 diagram of

short exact sequences.

o

%

A lax braiding is obtained by defining cy p.c :P(A,B;C)——P(B,A;C) to take the basis

element (f,g) to the sum of all those pairs (h,k) such that

is a direct sum situation; the abelian category A must be restricted so that this sum is

finite. This lax braiding is generally not invertible; however, in the case where A is the
category of finite vector spaces over a fixed finite field, the paper [JS3] proves it really is a

braiding.

In the presence of duals, various unexpected things can be proved invertible; see [JS2;

Section 10, Proposition 8], [Yet; Proposition 7.1], and [JS1; Propositions 7.1 and 7.4].

Proposition 1.2 If C is a right autonomous (meaning that each object has a right dual)

monoidal category then any lax braiding on C is necessarily a braiding.

Proof If B has right dual C then the mate of cy ¢ is an inverse for c, 5. While the
proof of this is in [JS2; Section 10, Proposition 8], we shall repeat it below squeezing out a

little more in the form of our Proposition 3.1 below. QED

We use the terminology of [Kel] so that a monoidal functor F:C——D is equipped

with a natural family of morphisms FA®FB——>F(A®B) and a morphism I——FI ;

these morphisms satisfy coherence conditions but are not necessarily invertible: in the case

where they are all invertible we say the monoidal functor is strong.

Proposition 1.3 Any lax braiding of a monoidal V-category C equips the tensor product
V-functor ®:C®C——C with a monoidal structure. Since monoidal functors preserve

monoids, it follows that the tensor product of two monoids in C is again a monoid.



2. The lax centre of a promonoidal category

For each promonoidal 7-category C, we shall construct a promagmal V-category Z,C

which we call the (left) lax centre of C. It is quite often canonically promonoidal in which

case it is lax-braided.

The objects of Z,C are pairs (A,0) where A is an object of C and o isa ¥ natural
family of morphisms oy.y : P(A,X;Y)——P(X,A;Y) such that the following two diagrams

commute.

\ [lao1 v
["P(A,V;2)®P(X, Y; V) = [ P(V,A;Z)®P(X,Y;V)

assoc - T assoc !

U w

j P(U,Y;Z)® P(A,X;U) j P(X,W;Z)® P(Y, A; W)
_[U1®oc¢ M1ea

U assoc W
j P(U,Y;Z)@P(X,A;U)Hj P(X,W;Z)®P(A,Y; W)

8]

oa®1
JUP(A,U;X)®JU L)JUP(U,A;X)(@]U

rux /un

C(A,X)

The hom object Z,C ((A, oc),(B,B)) is defined to be the equalizer in ¥ of the two composed

paths around the following square.

C(AB)———= [ _[P(B,X;Y),P(A,X;Y)]

Pi i [1,0]

Jy, | [POCB; ), POX, A;Y)] e Ji y[PBXY), PX, A;Y)]

Composition in Z,C is defined so that we have the obvious faithful 7*functor

Z,C —C taking (A,0) to A.

The promagmal structure on Z,C is defined by taking P((A,a),(B,B);(C,7)) to be the
equalizer of the two composed paths around the following square in which the top and left
sides are transforms under the tensor-hom adjunction of the associativity constraint and

its inverse.



P(ABC) — = P(C,Y;Z),JXP(A,X;Z)®P(B,Y;X)

i 1./ asp]

P(C,Y;Z),jX P(X, A;Z) ® P(Y,B: X)

[P(Y,C;Z) j P(X,A;Z)®@P(Y,B; X)] -
v,

We take J(A,a) to bethe equalizer of the two legs around the following triangle in which

the top side and left side come from the unit constraints.

JA———>[P(AX;Y),C(X,Y)]

[P(X,A;Y),C(X,Y)]

It is frequently the case that Z,C is promonoidal in such a way that the forgetful 7
functor Z,C ——C is strong promonoidal. For example, if C is monoidal then so too is

Z,C and Z,C——C is strong monoidal.

The lax braiding on Z,C is defined by taking the unique ¢ = ¢, Ao, (B,B)(C,7) such that

the following square commutes.

P((A,0),(B,B)(C,v))

C o

equalizer

P(A,B;C)

P((B,B), (A, 0);(C,¥))—————>=P(B,A;C)

equalizer

The centreof C is the full sub-T+category ZC of Z,C consisting of the objects (A, )
for which each ay.y :P(A, X;Y)——P(X, A;Y) is invertible.

There is a fully faithful 9*functor ¥:(2,C)* —2,[C, V] defined by
W(A,0) = (C(A, -), C(A, =) #F—F 5 F» C(A,—))

where

J.U(Xu;_ ®1FU

0 = [jUP(A,U,-—)@)FU jUP(U,A,-—)®FU].

In fact, the promagmal structure on Z,C is obtained by restriction along ¥ of the

promonoidal (actually monoidal) structure on Z([C,‘V]. The following diagram of 7~

functors and V-categories is a pullback.



(Z2/C)P = z,[C,V]
i i
cor Yoneda [C’ {V]

The Pfunctor ¥ induces an adjunction

A

(_—
zZ[CV] _ )[ZZC,‘V]
'
defined by

Q) =[""G(A,a)@W(A,q) and F(E,0)(A,a)=Z,[C, V] ¥(A, ), F,6);

this last object can be obtained as the equalizer of two morphisms out of F(A). In later

sections we shall see that this adjunction can be a lax-braided monoidal equivalence.

3. The lax centre of a monoidal category
Let C denote amonoidal T*category. As already taken for granted, the lax centre Z,C
of C is the lax centre of C as a promonoidal category with promonoidal structure defined
by
JC=C(,C) and P(A,B;C)=C(B®A,C).
Using the Yoneda lemma, we identify objects of Z,C with pairs (A,u) where A is an
object of C and u is a Pnatural family of morphisms up:A®B——B®C such that the

following two diagrams commute.

UpeC ug
AXB®C — BOC®A ARl ——1I®A
UB®N /B®UC x %
BRA®C A

In the case where 7= Set and C is monoidal, the lax centre of C, under the name
"(left) weak centre", was used in Section 4 of [Sch] where it is shown to be related to Yetter-
Drinfeld modules.

We shall see that the lax centre can be equal to the centre. As a preliminary to this we
note the following result which implies Proposition 1.2 since every object of a lax braided

monoidal category is equipped with a canonical structure of object in the lax centre.

Proposition 3.1 If (A,u) is an object of the lax centre of a monoidal V-category C and X

is an object of C with a right dual X" then the mate of u,.:A®X —X ®A isan

inverse for uyx :A®@X—X®A.

Proof The mate of u,. is the composite



Ix®u, . ®lx ®1, ®1
X e Wl A®X

XQOA—XBMEN v A X ®X XX @ A®X

where 1 and ¢ are the unit and the counit for the duality X — X*. The proof that this is a

right inverse uses the naturality of u with respect to the morphism m:I—— X" ®X and

the axioms for u; and uy. .-

1x®1A®T] )
X®A —= XRA®X ®X

1x®u ><(@1)(
Ix®n®ls 1 eu, X
X=Tx*ex
1x®1 *®ux

Ixea XX ' @XOA=<*"""X®X ®A®X
A@lA /
X® A A®X Ol @l
ux

Alternatively, we can prove it using string diagrams:

\a

. is a left inverse uses the naturality of u with

X®X* QED

Similarly, the proof that the mate of u,

respect to the morphism €:X® X*——1 and the axioms for u; and u

Proposition 3.2 Suppose F is a monoidal V-category such that, for each object F, the
functor F®—: F—— F preserves (weighted) colimits. If K:C——>9F is a dense V-

functor then, for each object F of F and endo-V-functor T of F restriction along K

provides a bijection between V-natural transformations
wF®-=T: F—> F
and V-natural transformations
t:F®®K-=TK-: C— ¥.

The components of u are induced on colimits by the components of the corresponding t;

so that, if t is invertible, so is u.

Proof The density of K means that each M in 7 is the (K-, M)-weighted colimit
colim(_‘F(K—,M), K) of K. Since F®—-: F—— ¥ preserves colimits, we have
F®M = colim(F(K-,M),F®K-).

8



It follows that 7*natural families of morphisms uy:F®M ——TM are in bijection with
V-natural families of morphisms F(K—,M)— 7 (F ®K—,TM) which, by Yoneda, are in

bijection with ¥ natural families of morphisms t, :F® KA——TKA. QED

Proposition 3.3 Suppose F is a monoidal V-category such that, for each object F, the

functors —®F and F®—: F——>F preserve (weighted) colimits. If K:C—— ¥ is a

dense V-functor and w:F®—- =-®F: F——F is a Vnatural transformation then, in

order for the triangle

UMeN

FOM®N —— = M®N®F

u M®1N\ A@ul\]

M®F®N
to commute for all M and N in F it suffices that it commute for all M and N equal to
values of K.

Proof Using the density of K and the colimit preservation properties of the tensor, we

have an isomorphism

A,B
FOM®N = j F(KA,M)® F(KB,N)® F ® KA ® KB

which is 7 natural in M and N. There are two similar isomorphisms for the other two
vertices of the triangle in the Proposition. By 7‘naturality, the triangle itself transports

across the isomorphisms to the triangle

AB
|7 1®10uk ks

jA’B F(KA,M)® F(KB,N)® F ® KA ® KB j AP (KA, M)® F(KB,N)® KA ® KB ® F

AB AB
[T 1@1®0ug, ®1 |7 101®18ukg

jA’B (KA, M)® F(KB,N)® KA ® F ® KB

which commutes since it is induced on colimits by triangles that commute by hypothesis.

So the triangle of the Proposition commutes. QED

Theorem 3.4 Suppose F is a monoidal V-category such that, for each object F, the
functor F®—: F—— T preserves (weighted) colimits. If the full sub-V-category of F
consisting of the objects with right duals is dense in F then the lax centre of ¥ is equal to
the centre: Z,F=2F.

Proof Let C be the full sub-7category of F consisting of the objects with right duals, and

let K denote the inclusion. Suppose (F,u) is an object of the lax centre of % Let t



correspond to u under the bijection of Proposition 3.2. By Proposition 3.1, t is invertible.

By Proposition 3.2, u is invertible so that (F,u) is in the centre of 7 QED

Corollary 3.5 For any Hopf algebra H, the lax centre of the monoidal category

ComodH of left H-comodules is equal to its centre.

Proof For any coalgebra H, every comodule is the directed union of its finite
dimensional subcomodules (see Section 7 Proposition 1 of [JS2]). It follows that the
comodules which are finite dimensional (as vector spaces) are dense in the category

ComodH. The bialgebra structure on H provides the monoidal structure on ComodH
which is preserved by the underlying functor into vector spaces. Since H is a Hopf algebra,

the objects of ComodH with right duals are those whose underlying vector spaces are

finite dimensional (see Section 9 Proposition 4 of [JS2]). So Theorem 3.4 applies. QED

Corollary 3.6 For any finite dimensional Hopf algebra H, the lax centre of the monoidal
category ModH of left H-modules is equal to its centre.

Proof Since Yoneda embeddings are dense, the object H of ModH (where the action is

the algebra multiplication) is dense in ModH. Since H is finite dimensional, it has a right
dual in ModH. So the objects of ModH with right duals are dense and Theorem 3.4
applies. QED

Theorem 3.7 Suppose an object ¥ of a monoidal TV-category F is equipped with the
structure of monoid in the lax centre Z,¥ of ¥ Then —-®F:F——F isequipped with

the structure of monoidal V-functor.

Proof Let (F,u) be a monoid in Z,F. So we have a monoid structure on F with

multiplication @:F®F——F and unit n:I——>F such that the following two diagrams

commute.
1®uy uy ®1 up
FIFQX— FRIX®F— X®F®F X ——= X®I
v = v
ue®l 1®u n®1 | 1®n
i i v v
F®X > X®F FIX—> X®F
uX uX

The monoidal structure on the functor —®F: F—— ¥ is defined as follows: ¢,:I1——F

isequalto n and ¢p.x y : X®F®YR®F——=X®Y®F is the composite

XQF®YQ®F—2W® xoYoFF—2%" ,Xx®Y®F.

The following diagrams commute:

10



1®uy ®19181 1®910u®181
XOFR®Y®F®Z®F — = X®OYQ®F®F®Z®F — > X®YQ®F®Z®F

v1®1®1®uz®1
18uy @118, XQF®Y®ZQ®F®F
X®F®Y®ZRF®F

% I9ENEL ~ X®Y @ Z @ F OF
19181818y 1®uyez®1®1 X®Y®Z®F®F®F 191018
18181810y

XOF®Y®ZOF — > X®Y®Z®F®F — > X®Y®X®Z®F
1®uygy®1 1®1®10u

1®191®u, ®1 1®1®u, ®1

1®
X®F®F — " = X®F FOY®F Y~ YOF®F "> Y®F
1®1®\\ / :@@\ T1®n%
X®F Y®F

which completes the proof. QED

4. The cartesian example
For this section we take 7= Set and study the lax centre of any category C equipped
with the promonoidal structure defined by P(A,B;C)=C(B,C)xC(A,C) and JC=1. Then
the corresponding convolution monoidal structure on the functor category [C,Set] is
none other than (pointwise cartesian) product.
Consider an object (A,a) of Z,C. In order that the natural family of morphisms
dxy 1 COGY) X C(A,Y)—C(A,Y)x C(X, Y)

should satisfy the second condition for an object of Z,C, it must be determined by its
second projection; that is,
oxy(f,g)= (g, oy (f, 8))
for a unique natural family of morphisms
Ox.y : C(X, Y)xC(A,Y)—C(X,Y).

The first condition on o then follows automatically from naturality. Now we can apply
the Yoneda Lemma to see that such families @ are in bijection with dinatural

transformations ¢ (in the sense of [DuSt]) from the representable functor C(A,-), thought

of as constant in a contravariant variable, to the hom functor C(—,~):C°° xC——>Set of C.
In other words, we have a family ¢ of functions ¢y :C(A,X)——C(X,X) such that, for all

f:X——>Y in C the following diagram commutes.

11



A= C(X,X)\Cilx,f)
C(14,1) C(X,Y)

In other words, fo¢x(u) = ¢y(fu)f for all morphisms f:X——>Y and u:A——X. The
bijection is obtained by oy.y(f,u)=(u,dy(u)f). We therefore identify objects of Z,C with
pairs (A,0¢). A morphism g:(A,0)—(A’,¢’) in Z,C is amorphism g:A——A’ in C
such that ¢yx(vg)=0%(v) forall v:A"—>X.

For a moment let us look at the special case where C has finite coproducts. Then, in

the above notation, Oy.y : C(X,Y)xC(A,Y)——C(X,Y) is determined by its composite with
the natural bijection C(X+A,Y) = C(X,Y)xC(A,Y) so that the Yoneda Lemma can be

applied. Thus we have a bijection between the o and the natural transformations
0:(-)——(-)+ A defined by the equations
Ox = Oix,x4 (O, COPLy ) = dx, 4 (copry )copr : X—— X+ A.
We therefore identify objects of Z,C with pairs (A,6); morphisms g:(A,8)——(A’,6)
are morphisms g:A——A’ in C such that 6% =(1x +g) 6x.
For a category X with finite products, we can take C =X°F in the above to see that the

lax centre Z,X = (Zex Op)Op of the cartesian monoidal category X has objects pairs (A,0)

where 6:(-)xA——(-) is anatural transformation. The tensor productin Z,6X is given

by
(A,0)®(A”,0)= (A X A (=) x Ax A28 ()% A'e—'>(—)).

The lax braiding c(4 g) (a,e): (A/0)®(A%,8)—(A%,0)®(A,0) is the morphism
(047, P1): (AXA”B(0x15))—(A"XA,B(6"x1,)) .

The core Cjy of the category X in the sense of [Fr]is precisely a terminal object in

Z,X; it may not exist in general. Although we shall often write C, for the underlying
object of X, as an object of Z,X it is equipped with a natural transformation
(-)xCyx——(-); however, it is also a monoid in X whose multiplication is the

morphism Cy xCy——Cy into the terminal object in Z,X. If the core exists, we have

the identification of the lax centre with a slice category:

12



Z[X = X/CX
The monoid structure on C, defines an obvious monoidal structure on the slice category
and the isomorphism is in fact monoidal. If X is cartesian closed (with internal hom

written as [X,Y]), we have the formula
Cr=[ [XX];
but in general this end may not exist either.
Proposition 4.1 If X isa complete cartesian closed category and K:D——X isa dense
functor from a small category ‘D then X has a core Cy EID[KD’KD]'

Proof The denseness of K amounts to the natural isomorphism

X(X,Y) = ID Set(X(KD, X), X(KD, Y)).
Since D is small and X is complete, .[D[KD, KD] exists. We have the calculation:
X(Z,JD[KD,KD]) = ij(z,[KD,KD]) = ij(KD,[z,KD])
= J.X,DSet(X(KD,X),X(KD,[Z,X])) = jxx(x,[z,x]) = jxx(z,[x,x]),
from which it follows that JX[X,X] exists and is isomorphic to J.D [KD,KD]. QED

We return now to our arbitrary small category C, equipped with the promonoidal
structure defined by P(A,B;C)=C(B,C)xC(A,C) and JC=1, so that the corresponding
convolution monoidal structure on the functor category [C,Set] is product. Recall that

the internal hom for [C,Set] is given by the formula

[F,GI(A) = || Set(C(A,V)xFV,GV).

Applying Proposition 3.1 with K equal to the Yoneda embedding C°° ——|C,Set], we

obtain
Cleser)(B) = [, Set(C(A, V)X C(W, V), C(W, V) = [ Set(C(A, V),C(V,V))

where the second isomorphism uses the Yoneda Lemma. In other words, interpreting the

last end and using our previous notation, we have a connection between the core of

[C,Set] and the lax centre of C:
C[C,Set](A) = {4) | (A,¢) is an object of ZEC},

13



The canonical function C[C,Set](A)xF(A)—>F(A) takes (¢,a) to F(q)A(lA))(a). The
monoid structure * on the functor Clc,set] s given by (0%0")y(h) = du(h)oy(h).

Recall from folklore that the category elF of elements of a functor F:C——Set has
objects pairs (A,a) where A isan object of C and a is an element of F(A); a morphism
g:(A,a)—(B,b) is a morphism g:A——B in C such that F(g)(a)=b. There is an
equivalence of categories

[C,Set] /| F—=—[e[F, Set]
taking each object p:T——F over F to the functor whose value at (A,a) is the fibre of

the component function p, :T(A)——>F(A) over aeF(A). If F is amonoid in [C,Set|

(that is a functor from C to the category Mon of monoids) then the obvious monoidal
structure on [C,Set]/F transports to a monoidal structure on [e/F,Set| which is obtained
by convolution from the promonoidal structure on e/F defined by
P((A,a),(B,b);(C, 0)) ={A—15Ce—B| F(u)(@)*F(v)(b)=c |
where * is multiplication in the monoid F(C).
As a particular case, we see that the category of elements of Cic gy is Z,C and the

monoid structure on Cle,set] corresponds to the promagmal structure on Z,C.

Putting all this together, we have proved the following result.

Theorem 4.2 For any small category C equipped with the promonoidal structure whose
convolution gives the cartesian monoidal structure on [C,Set|, there are an equivalence

and an isomorphism of categories:

[2,C, Set] —=[C, Set] / Cie gy ———Z4[C. Set]
The promagmal category Z,C is lax-braided promonoidal resulting in a lax-braided
convolution monoidal structure on [Z,C,Set] for which the above composite equivalence

is lax-braided monoidal.
The objects of [C,Set]/C[C,Set] can also be interpreted in terms of dinatural
transformations. A natural transformation F—Clc seq) has components
FA— [ Set(C(A,U),C(U,U))

which are in natural bijection with families of morphisms

C(A,U)——>Set(FA,C(U,U))

natural in A and dinatural in U. By Yoneda, these families are in natural bijection with
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families of morphisms
Pu FUHC(U,U)

dinatural in U. Write Hom . for the Set-valued hom functor of the category C.

Proposition 4.3 For any small category C, the lax centre Z,[C,Set] of the cartesian

monoidal category [C,Set] is equivalent to the category of dinatural transformations

p:F%HomC over HomC. Given such a dinatural p, the corresponding object of

Z,[C,Set] is (F,u) where
up FXM——MXF
is defined by (upU)(x,m) = (M(pU(x))(m),x) for all x in FU and m in MU.
Theorem 4.4 If C isa category in which every endomorphism is invertible then the lax

centre  Z,[C,Set] of the cartesian monoidal category |[C,Set] is equal to the centre
Z|C,Set]. Moreover, Z,C=2ZC.

Proof Notice in Proposition 4.3 that each py(x) is an endomorphism, so under the

present hypotheses, an inverse for uy, is defined by
(upfU)m,%) = (x, M(py ()~ )(m)).
The second sentence follows by restriction to representables. QED

Before closing this section, let us consider the case where C is a groupoid. Then the

equation foy(u) = ¢y(fu)f can be rewritten fq)x(u)f_1 = ¢y (fu) so that

Ox(f) = fop (1)
In other words, objects of Z,C can be identified with automorphisms s:A——>A; the
corresponding ¢ is defined by the conjugation formula o¢y(f) = fsf'. So Z,C=C% is

the category of automorphisms in C. As described in Example 9 of [DaSt], the promonoidal

structure is defined by

P((A,9),(B,0)(C,1)) = { A—>Ce—B | ¥s Vt=r}.
The lax braiding P((A,s),(B,t);(C,1)))——P((B,t),(A,s);(C,1))) takes (u,v) to (usv, u). The
family of morphisms oy.y : C(X,Y)xC(A,Y)——C(A,Y)xC(X,Y) corresponding to the ¢
corresponding to s is then defined by oiy.y(f,u)= (u, usu_lf) which is obviously invertible

(the inverse takes (u,g) to (us_lu_lg, u)). This implies that the lax centre of C is equal to

the centre of C and that the lax braiding is a braiding. It also follows that Cj g = Autc
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where Aut.: C——Set is the functor taking the object A to C(A,A) and the morphism

f to conjugation by f.

Theorem 4.5 If C as in Theorem 4.2 is a groupoid then
Z,C=2C=C*  Z|CSet]=Z[C,Set],  Ci¢ o= Autc

and there is a braided monoidal equivalence

Z[C,Set]——|C7 Set]

5. The central hypocomonad

The lax centre of a monoidal V-category X can be, in very special cases, monadic over
X or comonadic over X. However, with the mere assumption of left closedness, we find
that the lax centre Z,X is the 7category of coalgebras for a "hypocomonad", a concept we
shall now define.

Let A denote the category whose objects are finite ordinals (n)={1,2,...,n} and whose
morphisms are order-preserving functions. It becomes strict monoidal under the tensor
product defined by ordinal sum: (m)+(n)=(m+n). Recall that a comonad on the 7+
category X can be identified with a strict monoidal functor G:A°° ——[X, X| where the
endo-V-functor category [X,X] is monoidal under composition.

A hypocomonad on X isa monoidal functor G:A°° ——[X, X]. More explicitly, it is

an augmented simplicial endo-¥-functor

on X together with 9inatural transformations v, ., ,:Gy G, —>Gy,, and
Yo:1x — Gy satisfying naturality of v,..,, in (m) and (n), plus associativity and unit
conditions. A hypocomonad is called normal when vy,:1y —— G is invertible.

A coalgebra for G is an object A of X together with a morphism o:A——GjA

(called the coaction) such that the following two diagrams commute.

o o
A—> Glﬁg A—>GA \Glxa
To;A ¢ A (X‘L / GiGA
GpA GlA;)SA GyA " Y2114

Such a coalgebra gives rise to an extended simplicial diagram on the value of G at A; we
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omit the details. A coalgebra morphism is a morphism in X which commutes with the

coactions. We obtain a P category X € of G-coalgebras by taking the obvious equalizer in

V to define the 7*valued homs.
We now turn to our principal example of a hypocomonad. Suppose X is a left-closed
monoidal Pcategory. For each natural number n, define the endo-7-functor G, of X

by the end formula
GnA = | [X,®..® X, X;®..® X, ®A],
X1, Xn

where the square brackets denote the left internal hom. The end exists when, for example,

we assume X is complete, right closed, and has a small dense full sub-7*category.

(Alternatively, we could avoid the internal homs and these size problems by looking at

modules (= distributors) from X to X rather than functors.)

The functor G:A°* —[X, X] is defined as follows. The value at the object (n) is of
course G,. Let &:(m)——(n) be an order-preserving function and suppose the fibre of &

over ke(n) has cardinality m. The 7%natural transformation Ge: G, —— Gy, has its

component at A defined by commutativity of the triangle

GéA
G, A = G, A

projy 19--®Ym, __.,Ymmn+1N i POy, ,Ym

[Y,® . ®Y,, Y,®..8Y, ®A]

for all choices of objects Y, ..., Y, .

We now describe the monoidal structure on the functor G. In fact, it is normal; there

is an obvious canonical ¥-natural isomorphism v, :1y ——G,. The component of the 7~

natural transformation v, ., ,: Gy oG, —> Gy, at A is defined by commutativity of

the diagram

Iy{gY’§Y®jx[@x’@x® A

A
2, m, I [®Y®®X,®Y®®X®A}
Y, X m n m n

Y

jY[1,1®pr0jX] ¢ ¢ PrOjy,x

IY[CI?Y'%)Y@)[QSDX'@X@)AI [(I?Y@(?X,%)Y@(?X@A}
[g;) Y,g:{ cj [6;) x,C?x ® Aﬂ 1 canon] - {(3}1) Y[(? X, gy_@ @x ® Aﬂ

for all objects Y, ..., Y, X X,, where canon:Y®[X,Z]—[X,Y®Z] corresponds,

m’ 17 «-r n-’
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under the tensor-hom adjunction to 1®eval : Y®[X, Z|®X—Y® Z.

Proposition 5.1 Let X be a complete closed monoidal V-category with a small dense sub-

V-category. The structure just defined on G:A°° ——[X,X]| makes it a normal hypoco-

monad for which XS is equivalent to the lax centre of X.
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