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Abstract

The purpose of this work is to highlight the notions of lax braiding and lax

centre for monoidal categories and more generally for promonoidal categories.

Lax centres are lax braided.  Generally the centre is a full subcategory of the lax

centre, however we show that it is sometimes the case that the two coincide.

We identify lax centres of monoidal functor categories in various cases.

Introduction

Braidings for monoidal categories were introduced in [JS1] and its forerunners. The

centre    Z X of a monoidal category  X was introduced in [JS0] in the process of proving

that the free tortile monoidal category has another universal property.  The centre of a

monoidal category is a braided monoidal category.  What we now call lax braidings were

considered tangentially by Yetter [Yet]. What we now call the lax centre      Z Xl of  X was

considered under the name "weak centre" by P. Schauenburg [Sch]. 

The purpose of this work is to highlight the notions of lax braiding and lax centre for

monoidal categories  X and more generally for promonoidal categories  C.  Lax centres turn

out to be lax braided monoidal categories.  

Generally the centre is a full subcategory of the lax centre, however it is sometimes the

case that the two coincide.  We have two such theorems under different hypotheses, one i n

the case sufficient dual objects exist in the additive context, and the other in the cartesian

context.  

For a promonoidal category  C,  we relate the lax centre of the [Day] convolution on  C

to the convolution on the lax centre of  C.  Indeed, sometimes these are equivalent.

One reason for being interested in the lax centre of  X is that, if an object  X  of  X is

equipped with the structure of monoid in     Z Xl ,  then tensoring with  X  defines a

monoidal endofunctor   - ƒ X of  X ;  this has applications in cases where the lax centre can

be explicitly identified.

1. Lax braidings for promonoidal categories

Let  V denote a complete cocomplete symmetric closed monoidal category and let  C

be a V-enriched category in the sense of [Kel].  A promagmal structure on  C consists of two

V-functors    P
op op: C C C Vƒ ƒ æ Ææ and    J : C Væ Ææ (called the protensor product and

prounit).  Recall from [Day] that a promonoidal structure on  C is a promagmal structure
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equipped further with V-natural isomorphisms

    
P U C D P A B U P A V D P B C V

U V
( , ; ) ( , ; ) ( , ; ) ( , ; )ƒ æ Æææ ƒÚ Úassoc ,

      
P U A B JU A B

U
( , ; ) ( , )ƒ æ ÆæÚ lun C and    

     
P A V B JV A B

V
( , ; ) ( , )ƒ æ ÆææÚ run C

(called the associativity, left unit and right unit constraints) satisfying two coherence

conditions. 

The importance of promonoidal structures on  C lies in their equivalence to (left-and-

right-) closed monoidal structures on the V-functor category     C V,[ ].  Given a promonoidal

structure on  C,  we obtain a closed monoidal structure on     C V,[ ] where the tensor product

* is defined by the convolution formula

  
M N C P X Y C MX NY

X Y
*( ) = ƒ ƒÚ ( , ; )

,

and the unit is  J .  Conversely, given a monoidal structure on     C V,[ ],  we obtain a

promonoidal structure on  C by defining

    P A B C A B C( , ; ) ( , ) ( , )= - * -( )C C
and taking the unit as the prounit.

By way of example, every monoidal structure on  C determines a promonoidal one by

defining      P A B C B A C( , ; ) ( , )= ƒC and    JC I C= C ( , ).   Another example, for any comonoidal

C,  is defined by      P A B C B C A C( , ; ) ( , ) ( , )= ƒC C and    JC I= ; the comonoidal structure includes

V-functors    C C Cæ Ææ ƒ and    C Iæ Ææ which are used to make  P  and  J  into V-functors

in the  C  variable.  These two examples agree in case  V =   Set (so that every  C is

comonoidal) and where the monoidal structure on  C is coproduct.

Symmetries for promonoidal structures were defined by [Day] and braidings by [JS1].

We generalize this slightly.  A lax braiding for a promonoidal structure on  C is a V-natural

family of morphisms    c P A B C P B A CA B C, ; : ( , ; ) ( , ; )æ Ææ such that the following four

diagrams commute.

  
P U C D P A B U

U
( , ; ) ( , ; )ƒÚ

  
P A V D P B C V

V
( , ; ) ( , ; )ƒÚ

  assoc

  
P A V D P C B V

V
( , ; ) ( , ; )ƒÚ
  1ƒÚ c

V

  assoc   -1

  
P C U D P A B U

U
( , ; ) ( , ; )ƒÚ

  assoc

  1ƒÚ c
W

  
P W B D P C A W

W
( , ; ) ( , ; )ƒÚ

  
P W B D P A C W

W
( , ; ) ( , ; )ƒÚ

  c
U

ƒÚ 1
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P A V D P B C V

V
( , ; ) ( , ; )ƒÚ

  assoc  -1

  c
V

ƒÚ 1

  assoc   -1

  
P U C D P A B U

U
( , ; ) ( , ; )ƒÚ

  
P U C D P B A U

U
( , ; ) ( , ; )ƒÚ

  
P B W D P C A W

W
( , ; ) ( , ; )ƒÚ

  
P B W D P A C W

W
( , ; ) ( , ; )ƒÚ

  1ƒÚ c
W

  assoc
  1ƒÚ c

U

  
P V A D P B C V

V
( , ; ) ( , ; )ƒÚ

  
P U A B JU

U
( , ; ) ƒÚ   c

U
ƒÚ 1

  
P A U B JU

U
( , ; ) ƒÚ

   C ( , )A B
  lun   run

  
P U A B JU

U
( , ; ) ƒÚ  c

U
ƒÚ 1

  
P A U B JU

U
( , ; ) ƒÚ

   C ( , )A B
  lun  run

A braiding is a lax braiding for which each    c P A B C P B A CA B C, ; : ( , ; ) ( , ; )æ Ææ is invertible.  In

particular, by regarding a monoidal category as a promonoidal one in the manner described

above, we obtain the notion of lax braiding and braiding for a monoidal category; by

Yoneda's Lemma in this case, we can regard the lax braiding as a morphism

  c A B B AA B, : ƒ æ Ææ ƒ satisfying four conditions;  then     c B A C A B CA B C, ; : ( , ) ( , )C Cƒ æ Ææ ƒ

is      C ( , ),c CA B .  

We can easily adjust the results of [Day] on symmetries to obtain the following for lax

braidings.

Proposition 1.1 Let C be a promonoidal V-category and regard      C V,[ ]op ,  under t h e

convolution monoidal structure, as promonoidal.  Then the Yoneda embedding

    Y
op: ,C C Væ Ææ [ ] preserves promonoidal structures.  Moreover, there is a bijection

between lax braidings on  C and those on      C V,[ ]op defined by the requirement that  Y

should preserve lax braidings; the bijection restricts to braidings and to symmetries. 

Example Let  V be the monoidal category of vector spaces over the complex number field

k.  Let  A be an abelian category.  We write  
   Ag for the subcategory of  A with the same

objects yet only the invertible morphisms.  We write        k*Ag for the free V-category on  
    Ag ;

it has the same objects as  
    Ag and its hom vector spaces have the homs of  

    Ag as bases.  A 

promonoidal structure on      k*Ag is obtained by defining    P A B C( , ; ) to have basis

  
f g A C B is a short exact sequence inf g,( ) æ Ææ æ Ææ æ Ææ æ Ææ{ }0 0 A

and defining
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JC

for C
otherwise

=
=Ï

Ì
Ó

k 0
0 .

The associativity constraints come from contemplation of the following   3 3¥ diagram of

short exact sequences.

A A 0

U D C

B V C

A lax braiding is obtained by defining    c P A B C P B A CA B C, ; : ( , ; ) ( , ; )æ Ææ to take the basis

element    f g,( ) to the sum of all those pairs    h k,( ) such that

  
A C B

f

k

g

h

æ Ææ
¨ ææ

æ Ææ
¨ ææ

is a direct sum situation; the abelian category  A must be restricted so that this sum is

finite. This lax braiding is generally not invertible; however, in the case where  A is the

category of finite vector spaces over a fixed finite field, the paper [JS3] proves it really is a

braiding.

In the presence of duals, various unexpected things can be proved invertible; see [JS2;

Section 10, Proposition 8], [Yet; Proposition 7.1], and [JS1; Propositions 7.1 and 7.4]. 

Proposition 1.2 If  C is a right autonomous (meaning that each object has a right dual)

monoidal category then any lax braiding on  C is necessarily a braiding.

Proof If  B  has right dual  C  then the mate of    cA C, is an inverse for    cA B, .  While the

proof of this is in [JS2; Section 10, Proposition 8], we shall repeat it below squeezing out a

little more in the form of our Proposition 3.1 below. QED

We use the terminology of [Kel] so that a monoidal functor    F :C Dæ Ææ is equipped

with a natural family of morphisms    FA FB F A Bƒ æ Ææ ƒ( ) and a morphism    I FIæ Ææ ;

these morphisms satisfy coherence conditions but are not necessarily invertible: in the case

where they are all invertible we say the monoidal functor is strong.

Proposition 1.3 Any lax braiding of a monoidal V-category C equips the tensor product

V-functor      ƒ ƒ æ Ææ:C C C with a monoidal structure.  Since monoidal functors preserve

monoids, it follows that the tensor product of two monoids in  C is again a monoid.
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2. The lax centre of a promonoidal category

For each promonoidal V-category  C,  we shall construct a promagmal V-category    Z Cl
which we call the (left) lax centre of  C.  It is quite often canonically promonoidal in which

case it is lax-braided. 

The objects of      Z Cl are pairs    A, a( ) where  A  is an object of  C and  a is a V-natural

family of morphisms    aX Y P A X Y P X A Y; : ( , ; ) ( , ; )æ Ææ such that the following two diagrams

commute.

  assoc  -1   assoc   -1

  assoc

  
P A V Z P X Y V

V
( , ; ) ( , ; )ƒÚ   a ƒÚ 1

V

  
P U Y Z P A X U

U
( , ; ) ( , ; )ƒÚ

  
P X W Z P Y A W

W
( , ; ) ( , ; )ƒÚ

  1ƒÚ a
W

  1ƒÚ a
U

  
P U Y Z P X A U

U
( , ; ) ( , ; )ƒÚ

  
P V A Z P X Y V

V
( , ; ) ( , ; )ƒÚ

  
P X W Z P A Y W

W
( , ; ) ( , ; )ƒÚ

  lun  run
  

P A U X JU
U

( , ; ) ƒÚ   a ƒÚ 1
U

  
P U A X JU

U
( , ; ) ƒÚ

    C ( , )A X

The hom object        Z Cl A B, , ,a b( ) ( )( ) is defined to be the equalizer in  V of the two composed

paths around the following square.

    C ( , )A B   P

  
P X B Y P X A Y

X Y
( , ; ), ( , ; )

,
[ ]Ú

  
P B X Y P A X Y

X Y
( , ; ), ( , ; )

,
[ ]Ú

  P

  
P B X Y P X A Y

X Y
( , ; ), ( , ; )

,
[ ]Ú

  1,a[ ]

  b,1[ ]
Composition in      Z Cl is defined so that we have the obvious faithful V-functor

Z C Cl æ Ææ taking    A, a( ) to  A.

The promagmal structure on  Z Cl is defined by taking    P A B C, , , ; ,a b g( ) ( ) ( )( ) to be the

equalizer of the two composed paths around the following square in which the top and left

sides are transforms under the tensor-hom adjunction of the associativity constraint and

its inverse.
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  P A B C( , ; )
  

P C Y Z P A X Z P B Y X
X

( , ; ), ( , ; ) ( , ; )ƒÈ
ÎÍ

˘
˚̇Ú

  
P C Y Z P X A Z P Y B X

X
( , ; ), ( , ; ) ( , ; )ƒÈ

ÎÍ
˘
˚̇Ú

  
P Y C Z P X A Z P Y B X

X
( , ; ), ( , ; ) ( , ; )ƒÈ

ÎÍ
˘
˚̇Ú

  g ,1[ ]

  
1, a bƒÈ

ÎÍ
˘
˚̇Ú

X

We take    J A, a( ) to be the equalizer of the two legs around the following triangle in which

the top side and left side come from the unit constraints.

  J A    P A X Y X Y( , ; ), ( , )C[ ]

    P X A Y X Y( , ; ), ( , )C[ ]   a X Y; ,1[ ]

It is frequently the case that  Z Cl is promonoidal in such a way that the forgetful V-

functor     Z C Cl æ Ææ is strong promonoidal.  For example, if  C is monoidal then so too is

    Z Cl and      Z C Cl æ Ææ is strong monoidal.

The lax braiding on  Z Cl is defined by taking the unique  
  
c c A B C= ( ) ( ) ( ), , , ; ,a b g such that

the following square commutes.

  P A B C, , , ; ,a b g( ) ( ) ( )( )   P A B C( , ; )

  P B A C, , , ; ,b a g( ) ( ) ( )( )   P B A C( , ; )

  c a

  equalizer

  equalizer

The centre of  C is the full sub-V-category  ZC of  Z Cl consisting of the objects    A, a( )
for which each    aX Y P A X Y P X A Y; : ( , ; ) ( , ; )æ Ææ is invertible.   

There is a fully faithful V-functor    Y : ,Z C Z C Vl l( ) æ Ææ [ ]op defined by

  
Y A A A F F AF, ( , ), ( , ) ( , )a

q( ) = - - * æ Ææ * -Ê
Ë

ˆ
¯C C C

where  

  
q

a
F

U U
P A U FU P U A FU

U FU
U

= - ƒ
Ú

æ Ææ æ æ ææ - ƒ
Ê

Ë
Á

ˆ

¯
˜Ú Ú

- ƒ
( , ; ) ( , ; )

; 1
. 

In fact, the promagmal structure on  Z Cl is obtained by restriction along  Y  of the

promonoidal (actually monoidal) structure on        Z C Vl ,[ ].  The following diagram of V-

functors and V-categories is a pullback. 
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      Z Cl( )op

    Z C Vl ,[ ]Y

    C op
    C V,[ ]

  Yoneda

The V-functor  Y induces an adjunction   

    

Z C V Z C Vl l, ,
~

[ ]
¨ ææ
æ Ææ [ ]

Ÿ
Y

Y
defined by

  
Y Y
Ÿ ( )

= ( ) ƒ ( )Ú( ) , ,
,

G G A A
A

a a
a

and        Y Y
~

( , ) , , , ,( , )F A A Fq a a q( ) = [ ] ( )( )Z C Vl ;

this last object can be obtained as the equalizer of two morphisms out of    F A( ).  In later

sections we shall see that this adjunction can be a lax-braided monoidal equivalence.

3. The lax centre of a monoidal category

Let  C denote a monoidal V-category.  As already taken for granted, the lax centre     Z Cl
of  C is the lax centre of  C as a promonoidal category with promonoidal structure defined

by  

    JC I C= C ( , ) and       P A B C B A C( , ; ) ( , )= ƒC .

Using the Yoneda lemma, we identify objects of    Z Cl with pairs    A u,( ) where  A  is an

object of  C  and  u  is a V-natural family of morphisms    u A B B CB : ƒ æ Ææ ƒ such that the

following two diagrams commute.

  A Iƒ   u I
  I Aƒ

A
@ @

  A B Cƒ ƒ   B C Aƒ ƒ  uB Cƒ

  B A Cƒ ƒ
  u B Cƒ1   1 B Cuƒ

In the case where  V =   Set and  C is monoidal, the lax centre of  C, under the name

"(left) weak centre", was used in Section 4 of [Sch] where it is shown to be related to Yetter-

Drinfeld modules. 

We shall see that the lax centre can be equal to the centre. As a preliminary to this we

note the following result which implies Proposition 1.2 since every object of a lax braided

monoidal category is equipped with a canonical structure of object in the lax centre.  

Proposition 3.1 If    A u,( ) is an object of the lax centre of a monoidal V-category C and X

is an object of  C with a right dual    X
* then the mate of    u A X X A

X* ƒ æ Ææ ƒ* *: is a n

inverse for    u A X X AX : ƒ æ Ææ ƒ .

Proof The mate of    uX* is the composite
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  X A X A X X X X A X A XX A X X X A X
u

ƒ æ Ææ æ ææ ƒ ƒ ƒ æ Ææ æ æ ææ ƒ ƒ ƒ æ Ææ æ ææ ƒƒ ƒ * ƒ ƒ * ƒ ƒ*1 1 1 1 1 1h e

where  h and  e are the unit and the counit for the duality  X J  X
*.   The proof that this is a

right inverse uses the naturality of  u  with respect to the morphism    h : I X Xæ Ææ ƒ* and

the axioms for    uI and    uX X* ƒ :   

  X Aƒ   X A X Xƒ ƒ ƒ*

  X X A Xƒ ƒ ƒ*

  A Xƒ  X Aƒ

  X X X Aƒ ƒ ƒ*

  1 1X Aƒ ƒ h

  1 1X X Xuƒ ƒ*

  e ƒ ƒ1 1A X

  uX

  1X Aƒ   1 1X X Xuƒ ƒ*

  1X X X
uƒ * ƒ

  1 1X Aƒ ƒh

  e ƒ ƒ1 1X A

Alternatively, we can prove it using string diagrams:

X A

  X
*

X A

=

X A

Similarly, the proof that the mate of    uX* is a left inverse uses the naturality of  u  with

respect to the morphism    e : X X Iƒ æ Ææ* and the axioms for    uI and    uX Xƒ * . QED

Proposition 3.2 Suppose  F is a monoidal V-category such that, for each object  F,  t h e

functor      F ƒ - æ Ææ: F F preserves (weighted) colimits.  If     K : C Fæ Ææ is a dense V-

functor then, for each object  F  of  F and endo-V-functor T  of  F,  restriction along K

provides a bijection between V-natural transformations 

    u F T: :ƒ - fi æ ÆæF F

and V-natural transformations

  t F K TK: :ƒ - fi - æ ÆæC F .

The components of u  are induced on colimits by the components of the corresponding  t ;

so that, if t  is invertible, so is u.

Proof The density of  K  means that each  M  in  F is the     F K M-( ), -weighted colimit

  co K M Klim , ,F -( )( ) of  K.  Since      F ƒ - æ Ææ: F F preserves colimits, we have  

  F M co K M F Kƒ @ -( ) ƒ -( )lim , ,F .
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It follows that V-natural families of morphisms    u F M TMM : ƒ æ Ææ are in bijection with

V-natural families of morphisms     F FK M F K TM-( ) æ Ææ ƒ -( ), , which, by Yoneda, are i n

bijection with V-natural families of morphisms    t F KA TKAA : ƒ æ Ææ . QED

Proposition 3.3 Suppose  F is a monoidal V-category such that, for each object  F,  t h e

functors    - ƒ F and    F ƒ - æ Ææ: F F preserve (weighted) colimits.  If    K : C Fæ Ææ is a

dense V-functor and      u F F: :ƒ - fi - ƒ æ ÆæF F is a V-natural transformation then, i n

order for the triangle

  F M Nƒ ƒ   M N Fƒ ƒ

  M F Nƒ ƒ

  uM Nƒ

  u M Nƒ1   1 M Nuƒ

to commute for all M  and N in  F,  it suffices that it commute for all M  and N equal t o

values of  K.

Proof Using the density of  K  and the colimit preservation properties of the tensor, we

have an isomorphism

  
F M N KA M KB N F KA KB

A B
ƒ ƒ @ ƒ ƒ ƒ ƒÚ F F( , ) ( , )

,

which is  V-natural in  M  and  N.  There are two similar isomorphisms for the other two

vertices of the triangle in the Proposition.  By V-naturality, the triangle itself transports

across the isomorphisms to the triangle

   
F F( , ) ( , )

,
KA M KB N F KA KB

A B
ƒ ƒ ƒ ƒÚ    

F F( , ) ( , )
,

KA M KB N KA KB F
A B

ƒ ƒ ƒ ƒÚ

   
F F( , ) ( , )

,
KA M KB N KA F KB

A B
ƒ ƒ ƒ ƒÚ

  1 1ƒ ƒ ƒÚ uKA KB
A B,

  1 1 1ƒ ƒ ƒÚ uKA
A B,

  1 1 1ƒ ƒ ƒÚ uKB
A B,

which commutes since it is induced on colimits by triangles that commute by hypothesis.

So the triangle of the Proposition commutes. QED

Theorem 3.4 Suppose  F is a monoidal V-category such that, for each object  F,  t h e

functor      F ƒ - æ Ææ: F F preserves (weighted) colimits. If the full sub-V-category of  F

consisting of the objects with right duals is dense in  F then the lax centre of  F is equal t o

the centre:   Z F ZFl = .

Proof Let  C be the full sub-V-category of  F consisting of the objects with right duals, and

let  K  denote the inclusion. Suppose    F u,( ) is an object of the lax centre of  F.  Let  t
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correspond to  u  under the bijection of Proposition 3.2.  By Proposition 3.1,  t  is invertible.

By Proposition 3.2,  u  is invertible so that    F u,( ) is in the centre of  F. QED

Corollary 3.5 For any Hopf algebra  H,  the lax centre of the monoidal category

  Co Hmod of left H-comodules is equal to its centre.

Proof For any coalgebra  H,  every comodule is the directed union of its finite

dimensional subcomodules (see Section 7 Proposition 1 of [JS2]). It follows that the

comodules which are finite dimensional (as vector spaces) are dense in the category

  Co Hmod .  The bialgebra structure on  H  provides the monoidal structure on    Co Hmod
which is preserved by the underlying functor into vector spaces.  Since  H  is a Hopf algebra,

the objects of    Co Hmod with right duals are those whose underlying vector spaces are

finite dimensional (see Section 9 Proposition 4 of [JS2]).  So Theorem 3.4 applies. QED

Corollary 3.6 For any finite dimensional Hopf algebra  H,  the lax centre of the mono ida l

category     ModH of left H-modules is equal to its centre.

Proof Since Yoneda embeddings are dense, the object  H  of    ModH (where the action is

the algebra multiplication) is dense in    ModH.  Since  H  is finite dimensional, it has a right

dual in    ModH.  So the objects of    ModH with right duals are dense and Theorem 3.4

applies. QED

Theorem 3.7 Suppose an object F  of a monoidal V-category F is equipped with t h e

structure of monoid in the lax centre      Z Fl o f F.  Then      - ƒ æ ÆæF : F F is equipped wi th

the structure of monoidal V-functor.

Proof Let    F u,( ) be a monoid in  Z Fl .  So we have a monoid structure on  F  with

multiplication    m : F F Fƒ æ Ææ and unit    h : I Fæ Ææ such that the following two diagrams

commute.  

  F F Xƒ ƒ   X F Fƒ ƒ

  F Xƒ   X Fƒ

  mƒ1   1ƒm

  F X Fƒ ƒ

  uX

  1ƒuX   uX ƒ1
  I Xƒ

  F Xƒ

  X Iƒ

  X Fƒ

  1ƒ h  hƒ1

  uX

  uI

@

The monoidal structure on the functor    - ƒ æ ÆæF : F F is defined as follows:    f0 : I Fæ Ææ

is equal to  h and    f2; , :X Y X F Y F X Y Fƒ ƒ ƒ æ Ææ ƒ ƒ is the composite

  X F Y F X Y F F X Y FuYƒ ƒ ƒ æ Ææ ææ ƒ ƒ ƒ æ Ææ ææ ƒ ƒƒ ƒ ƒ ƒ1 1 1 1 m .

The following diagrams commute:
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  X F Y F Z Fƒ ƒ ƒ ƒ ƒ   X Y F F Z Fƒ ƒ ƒ ƒ ƒ   1 1 1 1ƒ ƒ ƒ ƒm
  X Y F Z Fƒ ƒ ƒ ƒ

  X Y Z F Fƒ ƒ ƒ ƒ

  X Y Z Fƒ ƒ ƒ

  X F Y Z F Fƒ ƒ ƒ ƒ ƒ

  X F Y Z Fƒ ƒ ƒ ƒ   X Y Z F Fƒ ƒ ƒ ƒ

  X F Y Z F Fƒ ƒ ƒ ƒ ƒ

  X Y Z F F Fƒ ƒ ƒ ƒ ƒ

  1 1ƒ ƒƒuY Z

  1 1 1 1ƒ ƒ ƒ ƒuY

  1 1 1ƒ ƒ ƒm

  1 1 1ƒ ƒ ƒm  1 1 1 1ƒ ƒ ƒ ƒm

  1 1 1 1ƒ ƒ ƒ ƒm

  1 1 1 1ƒ ƒ ƒ ƒm

  1 1 1 1ƒ ƒ ƒ ƒuY

  1 1 1ƒ ƒ ƒƒuY Z

  1 1 1 1ƒ ƒ ƒ ƒuZ

  1 1 1 1ƒ ƒ ƒ ƒuZ

  1 1 1ƒ ƒ ƒuZ  1 1 1 1ƒ ƒ ƒ ƒuZ

  X F Fƒ ƒ   F Y Fƒ ƒ   Y F Fƒ ƒ   Y Fƒ

  Y Fƒ
  hƒ ƒ1 1   1 1ƒ ƒh

  1ƒm

  1 1ƒ

  uY ƒ1
  X Fƒ

  X Fƒ
  1 1ƒ

  1ƒm

  1 1ƒ ƒ h

which completes the proof. QED

4. The cartesian example

For this section we take  V =   Set and study the lax centre of any category  C equipped

with the promonoidal structure defined by    P A B C B C A C( , ; ) ( , ) ( , )= ¥C C and    JC = 1.  Then

the corresponding convolution monoidal structure on the functor category    C ,Set[ ] is

none other than (pointwise cartesian) product. 

Consider an object    A, a( ) of  Z Cl .  In order that the natural family of morphisms   

  aX Y X Y A Y A Y X Y; : ( , ) ( , ) ( , ) ( , )C C C C¥ æ Ææ ¥

should satisfy the second condition for an object of  Z Cl ,  it must be determined by its

second projection; that is,

  a aX Y X Yf g g f g; ;, , ,( ) = ( )( )
for a unique natural family of morphisms  

  aX Y X Y A Y X Y; : ( , ) ( , ) ( , )C C C¥ æ Ææ .

The first condition on  a then follows automatically from naturality.  Now we can apply

the Yoneda Lemma to see that such families  a are in bijection with dinatural

transformations  f (in the sense of [DuSt]) from the representable functor      C ( , )A - , thought

of as constant in a contravariant variable, to the hom functor    C C C( ,~) :- ¥ æ Ææop Set of  C.

In other words, we have a family  f of functions      fX A X X X: ( , ) ( , )C Cæ Ææ such that, for all

  f X Y: æ Ææ in  C,  the following diagram commutes.
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   C ( , )A X   fX
    C ( , )X X

   C ( , )X Y

    C ( , )A Y    C ( , )Y Y
  fY

    C ( , )1A f
    C ( , )1X f

    C ( , )f Y1

In other words,    f u f u fX Yf f( ) ( )= for all morphisms    f X Y: æ Ææ and    u A X: æ Ææ .  The

bijection is obtained by    a fX Y Yf u u u f; , , ( )( ) = ( ).  We therefore identify objects of Z Cl with

pairs    A, f( ).  A morphism    g A A: , ,f f( ) æ Ææ ¢ ¢( ) in  Z Cl is a morphism    g A A: æ Ææ ¢ in  C

such that    f fX Xvg v( ) ( )= ¢ for all    v A X: ¢ æ Ææ .

For a moment let us look at the special case where  C has finite coproducts. Then, i n

the above notation,     aX Y X Y A Y X Y; : ( , ) ( , ) ( , )C C C¥ æ Ææ is determined by its composite with

the natural bijection    C C C( , ) ( , ) ( , )X A Y X Y A Y+ @ ¥ so that the Yoneda Lemma can be

applied. Thus we have a bijection between the a and the natural transformations

  q : -( ) æ Ææ -( ) + A defined by the equations

  q a fX X X A X Acopr copr copr copr X X A= ( ) = ( ) æ Ææ ++ +; , :1 2 2 1 .

We therefore identify objects of Z Cl with  pairs    A,q( ) ;  morphisms    g A A: , ,q q( ) æ Ææ ¢ ¢( )

are morphisms    g A A: æ Ææ ¢ in  C such that    ¢ = +( )q qX X Xg1 .

For a category  X with finite products, we can take     C X= op in the above to see that the

lax centre  
      
Z X Z Xl l= ( )op op

of the cartesian monoidal category  X has objects pairs    A,q( )

where    q : -( ) ¥ æ Ææ -( )A is a natural transformation.  The tensor product in      Z Xl is given

by

  
A A A A A A AA, , ,q q q q( ) ƒ ¢ ¢( ) = ¥ ¢ -( ) ¥ ¥ ¢ æ Æææ -( ) ¥ ¢ æ Ææ -( )( )¥ ¢¢1 .

The lax braiding  
  
c A A A AA A, , , : , , , ,q q q q q q( ) ¢ ¢( ) ( ) ƒ ¢ ¢( ) æ Ææ ¢ ¢( ) ƒ ( ) is the morphism

  q q q q q¢ ¢( ) ¥ ¢ ¢ ¥( )( ) æ Ææ ¢ ¥ ¢ ¥( )( )A A Apr A A A A, : , ,1 1 1 .  

The core     CX of the category  X in the sense of [Fr] is precisely a terminal object i n

    Z Xl ; it may not exist in general. Although we shall often write      CX for the underlying

object of  X ,  as an object of    Z Xl it is equipped with a natural transformation

    -( ) ¥ æ Ææ -( )CX ;  however, it is also a monoid in  X whose multiplication is the

morphism      C C CX X X¥ æ Ææ into the terminal object in     Z Xl .  If the core exists, we have

the identification of the lax centre with a slice category:
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      Z X X Xl @ / C

The monoid structure on      CX defines an obvious monoidal structure on the slice category

and the isomorphism is in fact monoidal.  If  X is cartesian closed (with internal hom

written as    X Y,[ ]), we have the formula

    
C X X

XX @ [ ]Ú , ;

but in general this end may not exist either. 

Proposition 4.1 If X is a complete cartesian closed category and    K : D Xæ Ææ is a dense

functor from a small category  D t h e n X has a core  
    
C KD KD

DX @ [ ]Ú , .

Proof The denseness of  K  amounts to the natural isomorphism

    
X X X( , ) ( , ), ( , )X Y Set KD X KD Y

D
@ ( )Ú .

Since  D is small and  X is complete,  
  

KD KD
D

,[ ]Ú exists.  We have the calculation:

    
X X XZ KD KD Z KD KD KD Z KD

D D D
, , , , , ,[ ]Ê

Ë
ˆ
¯ @ [ ]( ) @ [ ]( )Ú Ú Ú

  
@ ( ) [ ]( )( ) @ [ ]( ) @ [ ]( )Ú Ú ÚSet KD X KD Z X X Z X Z X X

X D X X
X X X X, , , , , , , ,

,
,

from which it follows that  
  

X X
X

,[ ]Ú exists and is isomorphic to  
  

KD KD
D

,[ ]Ú . QED

We return now to our arbitrary small category  C, equipped with the promonoidal

structure defined by    P A B C B C A C( , ; ) ( , ) ( , )= ¥C C and    JC = 1, so that the corresponding

convolution monoidal structure on the functor category     C ,Set[ ] is product.  Recall that

the internal hom for      C ,Set[ ] is given by the formula

    
F G A Set A V FV GV

V
, ( ) ( , ) ,[ ] @ ¥( )Ú C .

Applying Proposition 3.1 with  K  equal to the Yoneda embedding     C Cop Setæ Ææ [ ], ,  we

obtain

    
C A Set A V W V W V Set A V V VSet W V VC C C C C C, ,

( ) ( , ) ( , ), ( , ) ( , ), ( , )[ ] @ ¥( ) @ ( )Ú Ú
where the second isomorphism uses the Yoneda Lemma.  In other words, interpreting the

last end and using our previous notation,  we have a connection between the core of

  C ,Set[ ] and the lax centre of  C:

      
C A A is an object ofSetC Z C, ( ) ,[ ] @ ( ){ }f f l .
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The canonical function  
    
C A F A F ASetC , ( ) ( ) ( )[ ] ¥ æ Ææ takes    f,a( ) to    F aA Af 1( )( )( ).  The

monoid structure   * on the functor  
    
C SetC ,[ ] is given by    f f f f* ¢( ) ( ) = ( ) ¢ ( )U U Uh h h .

Recall from folklore that the category     el F of e l ements of a functor     F Set:C æ Ææ has

objects pairs    A a,( ) where  A  is an object of  C and  a  is an element of    F A( );  a morphism

  g A a B b: , ,( ) æ Ææ ( ) is a morphism    g A B: æ Ææ in  C such that    F g a b( )( ) = .  There is an

equivalence of categories

    C el, / ~ ,Set F F Set[ ] æ Ææ [ ]
taking each object    r : T Fæ Ææ over  F  to the functor whose value at    A a,( ) is the fibre of

the component function    rA T A F A: ( ) ( )æ Ææ over    a F AŒ ( ).  If  F  is a monoid in      C ,Set[ ]
(that is a functor from  C to the category   Mon of monoids) then the obvious monoidal

structure on      C , /Set F[ ] transports to a monoidal structure on     el F Set,[ ] which is obtained

by convolution from the promonoidal structure on    el F defined by

  
P A a B b C c A C B F u a F v b cu v, , , ; , ( )( ) ( )( )( ) ( ) ( )( ) = æ Ææ ¨ ææ * ={ }

where  * is multiplication in the monoid    F C( ).

As a particular case, we see that the category of elements of  
    
C SetC ,[ ] is      Z Cl and the

monoid structure on  
  
C SetC ,[ ] corresponds to the promagmal structure on  Z Cl . 

Putting all this together, we have proved the following result.

Theorem 4.2 For any small category  C equipped with the promonoidal structure w h o s e

convolution gives the cartesian monoidal structure on    C ,Set[ ],  there are an equivalence

and an isomorphism of categories:

      
Z C C Z CCl l,

~
, / ,,Set Set C SetSet[ ] -æ Ææ [ ] @æ Ææ [ ][ ] .

The promagmal category  Z Cl is lax-braided promonoidal resulting in a lax-braided

convolution monoidal structure on        Z Cl ,Set[ ] for which the above composite equivalence

is lax-braided monoidal.

The objects of  
    
C C, / ,Set C Set[ ] [ ] can also be interpreted in terms of dinatural

transformations.  A natural transformation  
  
F C Setæ Ææ [ ]C , has components

    
FA Set A U U U

U
æ Ææ Ú ( ( , ), ( , ))C C

which are in natural bijection with families of morphisms

   C C( , ) ( , ( , ))A U Set FA U Uæ Ææ

natural in  A  and  dinatural in  U.  By Yoneda, these families are in natural bijection with
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families of morphisms

    rU FU U U: ( , )æ Ææ C

dinatural in  U.  Write  
    
HomC for the Set-valued hom functor of the category  C.

Proposition 4.3 For any small category  C,  the lax centre        Z Cl ,Set[ ] of the cartesian

monoidal category      C ,Set[ ] is equivalent to the category of dinatural transformations

    
r : F Homæ Ææ C over  

    
HomC .  Given such a dinatural  r, the corresponding object o f

      Z Cl ,Set[ ] is    F u,( ) w h e r e

  u F M M FM : ¥ æ Ææ ¥

is defined by    ( )( , ) ( ) ( ) ,u U x m M x m xM U= ( )( )r for all  x  in    FU and  m  i n   MU .

Theorem 4.4 If  C is a category in which every endomorphism is invertible then the lax

centre        Z Cl ,Set[ ] of the cartesian monoidal category      C ,Set[ ] is equal to the centre

    Z C ,Set[ ].  Moreover,       Z C Z Cl = .

Proof Notice in Proposition 4.3 that each    rU x( ) is an endomorphism, so under the

present hypotheses, an inverse for    uM is defined by  

  
( )( , ) , ( ) ( )u U m x x M x mM U

- -= ( )( )1 1r .

The second sentence follows by restriction to representables.  QED

Before closing this section, let us consider the case where  C is a groupoid. Then the

equation    f u f u fX Yf f( ) ( )= can be rewritten    f u f f uX Yf f( ) ( )- =1 so that

  f fX A Af f f( ) ( )= -1 1.

In other words, objects of      Z Cl can be identified with automorphisms    s A A: æ Ææ ;  the

corresponding  f is defined by the conjugation formula    fX f f s f( ) = -1.  So        Z C Cl = Z is

the category of automorphisms in  C.  As described in Example 9 of [DaSt], the promonoidal

structure is defined by

  
P A s B t C r A C B s t ru v u v, , , ; , )( ) ( ) ( )( ) = æ Ææ ¨ ææ ={ }. 

The lax braiding    P A s B t C r P B t A s C r, , , ; , ) , , , ; , )( ) ( ) ( )( ) æ Ææ ( ) ( ) ( )( ) takes    u v,( ) to  
  

u sv u,( ) . The

family of morphisms     aX Y X Y A Y A Y X Y; : ( , ) ( , ) ( , ) ( , )C C C C¥ æ Ææ ¥ corresponding to the  f

corresponding to  s  is then defined by  
  
aX Y f u u usu f; , ,( ) = ( )-1 which is obviously invertible

(the inverse takes    u g,( ) to  
  
us u g u- -( )1 1 , ).  This implies that the lax centre of  C is equal to

the centre of  C and that the lax braiding is a braiding.  It also follows that  
   
C AutSetC C,[ ] =
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where      Aut SetC C: æ Ææ is the functor taking the object  A  to    C ( , )A A and the morphism

f  to conjugation by  f .

Theorem 4.5 If  C as in Theorem 4.2 is a groupoid then 

      Z C Z C Cl = = Z ,             Z C Z Cl , ,Set Set[ ] = [ ],      
   
C AutSetC C,[ ] =

and there is a  braided monoidal  equivalence   

    
Z C C,

~
,Set Set[ ] æ Ææ [ ]- Z .

5. The central hypocomonad

The lax centre of a monoidal V-category  X can be, in very special cases, monadic over

X or comonadic over  X .  However, with the mere assumption of left closedness, we find

that the lax centre     Z Xl is the V-category of coalgebras for a "hypocomonad", a concept we

shall now define. 

Let  DD denote the category whose objects are finite ordinals     n n= { }1 2, , ,K and whose

morphisms are order-preserving functions. It becomes strict monoidal under the tensor

product defined by ordinal sum:   m n m n+ = + .  Recall that a comonad on the V-

category  X can be identified with a strict monoidal functor      G : ,DDop æ Ææ [ ]X X where the

endo-V-functor category      X X,[ ] is monoidal under composition.

A hypocomonad o n X is a monoidal functor       G : ,DDop æ Ææ [ ]X X .  More explicitly, it is

an augmented simplicial endo-V-functor 

    

G G G0 1 2

0

1

0

0

1

1

2

e

e

d

e

e

d

e

d

e

¨ ææ
¨ ææ

æ Ææ
¨ ææ

¨ ææ
æ Ææ
¨ ææ
æ Ææ
¨ ææ

L

on  X together with V-natural transformations  
    g 2; , :m n m n m nG G Go æ Ææ + and

    g 0 01: X æ Ææ G satisfying naturality of    g 2; ,m n in    m and    n ,  plus associativity and unit

conditions.  A hypocomonad is called norma l when    g 0 01: X æ Ææ G is invertible.

A coalgebra for  G is an object  A  of  X together with a morphism    a : A G Aæ Ææ 1

(called the coaction) such that the following two diagrams commute.

  A   G A1

  G A0

a

  e A
  g 0;A

  A   G A1
a

  G A1

a

  G A2  d A

  G G A1 1

  G1a

  g 2 1 1; , ;A

Such a coalgebra gives rise to an extended simplicial diagram on the value of    G at  A;  we
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omit the details.  A coalgebra m o r p h i s m is a morphism in  X which commutes with the

coactions.  We obtain a V-category     X G of G-coalgebras by taking the obvious equalizer i n

V to define the V-valued homs.

We now turn to our principal example of a hypocomonad.  Suppose  X is a left-closed

monoidal V-category.  For each natural number  n ,  define the endo-V-functor    Gn of  X
by the end formula

  
G A X X X X An n nX Xn

= ƒ ƒ ƒ ƒ ƒ[ ]Ú 1 1
1

K K
K

,
, ,

,

where the square brackets denote the left internal hom.  The end exists when, for example,

we assume  X is complete, right closed, and has a small dense full sub-V-category.

(Alternatively, we could avoid the internal homs and these size problems by looking at

modules (= distributors) from  X to  X rather than functors.)

The functor        G : ,DDop æ Ææ [ ]X X is defined as follows. The value at the object    n is of

course    Gn .  Let    x : m næ Ææ be an order-preserving function and suppose the fibre of  x

over    k nŒ has cardinality    mk.  The V-natural transformation    G G Gn mx : æ Ææ has its

component at  A  defined by commutativity of the triangle

  G An   G Am

    
Y Y Y Y Am m1 1ƒ ƒ ƒ ƒ ƒ[ ]K K,

  
projY Ym1, ,K

  G Ax

  
proj Y Ym Ym m Ymn1 11

ƒ ƒ - + ƒ ƒK K K, ,

for all choices of objects  
    
Y Ym1 , ,K .   

We now describe the monoidal structure on the functor  G .  In fact, it is normal; there

is an obvious canonical V-natural isomorphism    g 0 01: X æ Ææ G . The component of the V-

natural transformation    g 2; , :m n m n m nG G Go æ Ææ + at  A  is defined by commutativity of

the diagram 

    
ƒ ƒ ƒ ƒƒ ƒÈ

ÎÍ
˘
˚̇

È
ÎÍ

˘
˚̇ÚÚ m m n n

AY Y X X
XY

, ,   g 2; ,m nA

    
ƒ ƒ ƒ ƒƒ ƒÈ

ÎÍ
˘
˚̇

È
ÎÍ

˘
˚̇Ú m m n n

AY Y X X
Y

, ,

    1 1, ƒ[ ]Ú projXY

    
ƒ ƒ ƒ ƒƒ ƒÈ

ÎÍ
˘
˚̇

È
ÎÍ

˘
˚̇m m n n

AY Y X X, ,

    projY

    projY X,

    
ƒ ƒ ƒ ƒƒ ƒ ƒÈ

ÎÍ
˘
˚̇Ú m n m n

AY X Y X
Y X

,
,

    
ƒ ƒ ƒ ƒƒ ƒ ƒÈ

ÎÍ
˘
˚̇m n m n

AY X Y X,

    
ƒ ƒ ƒ ƒƒ ƒÈ

ÎÍ
˘
˚̇

È
ÎÍ

˘
˚̇m n m n

AY X Y X, ,

@

  1,canon[ ]

for all objects  
    
Y Y X Xm n1 1, , , , ,K K ,  where    canon Y X Z X Y Z: , ,ƒ [ ] æ Ææ ƒ[ ] corresponds,
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under the tensor-hom adjunction to    1 ƒ ƒ [ ] ƒ æ Ææ ƒeval Y X Z X Y Z: , .

Proposition 5.1 Let  X be a complete closed mono ida l V-category with a small dense sub-

V-category. The structure just defined on       G : ,DDop æ Ææ [ ]X X makes it a normal hypoco-

monad for which      X G is equivalent to the lax centre of  X .
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