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Themes

1. Relationships to others, not molecules, are what define one.
(Anonymous, 2016)

2. “One important lesson we have learned from topological quantum field
theory is that describing dynamics using group representations is only
a special case of describing it using category representations.”
(Baez-Dolan, 1995)
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Generalized spaces

Riemann laid foundations for
topology, differential geometry,
relativity, and analytic number
theory. For example, he foresaw
that continuity was not dependent
on a metric.

In 1914, to define

CONTINUOUS FUNCTIONS

in general, Felix Hausdorff invented

TOPOLOGICAL SPACES
(although the modern meaning is a little more general).

Bernhard Riemann 1826 – 1866
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Groups define geometries

Klein observed (Erlangen Program 1872)
that each branch of geometry is defined
by its group of symmetries and that that
geometry is the study of invariants under
the group’s action.
For example, the group for congruence
geometry consists of invertible
metric-preserving functions;
the group for similarity geometry consists
of invertible angle-preserving functions;
the group for differential geometry
consists of smoothly invertible smooth
functions.

Felix Klein 1849 – 1925
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Algebraic structures as invariants

I In Phys, Nöther’s First Theorem
deduces a conservation law from
certain symmetries of a classical
physical system. A decade and a half
before coming to Macquarie, John
Clive Ward (1924 – 2000) obtained a
quantum version.
{I shall return to this at the end.}

I In Math, Nöther emphasised
algebraic structures as the
fundamental invariants of spaces: the
numerical invariants can be obtained
as dimensions or ranks of those
structures.

Emmy Nöther 1882 – 1935
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Founders of Category Theory 1945

What precisely is

NATURALITY

in Mathematics?

For that they needed

FUNCTORS.

For that they defined

CATEGORIES.

Samuel Eilenberg
1913 – 1998

Saunders Mac Lane
1909 – 2005
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Just for fun

Eilenberg at 72 at Macquarie Mac Lane at 90 in Portugal
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Set Theory
I By the 20th Century, Mathematics was expressed in terms of SETS.
I The Euclidean plane is R2 = {(x1, x2) : x1, x2 ∈ R}.
I Many sets of interest are subsets of Euclidean space.
I A torus:

can be seen as a subset of R3:

T2 = {((3 + 2cosu1)cosu2), (3 + 2cosu1)sinu2, 2sinu1) : u1, u2 ∈ R}

or as a subset of R4:

S1 × S1 = {x = (x1, x2, x3, x4) : x2
1 + x2

2 = 4, x2
3 + x2

4 = 9} .
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Mathematical Structures and Functions

I Continuous functions lead us to topological spaces. Any subset of
Euclidean space of any dimension is a topological space in an obvious
way.

I Smooth functions lead us to manifolds. The torus is locally like R2

and so is a 2-dimensional manifold (surface).
I Linear functions lead us to vector spaces. Any subset of Rn which

contains the plane determined by any two of its points and the origin
is a vector space. Linear functions preserve linear combinations.

I The lesson is that each kind of mathematical structure brings with it
particular functions which relate to that structure. Klein emphasised
the invertible such functions so that groups were central. In category
theory, we look at all the specified functions.
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Arrows
I Since the early 20th century, functions between sets were often

denoted by arrows. Thus

f : X −→ A

is a name for a specific rule which assigns to each element x ∈ X an
element f (x) ∈ A.

I If X and A were topological spaces, we would be interested in when f
was continuous.

I If X and A were vector spaces, we would be interested in when f was
linear.

I Arrows f : X −→ A, g : A −→ K of these given types compose to give
an arrow g ◦ f : X −→ K of the same type; first apply f then apply g .

I Each set X has an identity function 1X : X −→ X defined by
1X (x) = x .
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Definition of Category

A category C consists of a collection of objects and, for each pair of
objects A,B , a set C (A,B) of morphisms f : A −→ B , together with an
associative composition rule ◦ with identities 1A : A −→ A.

A
h◦(g◦f ) //

f

��

g◦f

��

D

B g
// C

h

OO A
(h◦g)◦f //

f

��

D

B g
//

h◦g

??

C

h

OO A
f //

f=1B◦f
��

B

1B

��
g=g◦1B
��

B g
// C
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Commutative Diagrams

In a category, we can speak of commutative diagrams:

Y
g

  
X

f
>>

u

��

w
// Z

h
��

V v
//W

h ◦ w = v ◦ u and g ◦ f = w , so v ◦ u = h ◦ g ◦ f .
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Examples of categories

I The category Set has objects sets and morphisms functions.
I The category Vect has objects vector spaces and morphisms linear

functions.
I The category Top has objects topological spaces and morphisms

continuous functions.
I The category ∆ has objects the ordinals n = {0, 1, . . . , n − 1} and

morphisms order-preserving functions.
I The category Mat has objects the natural numbers 0, 1, 2, . . . and

morphisms a : n −→ m the m × n matrices; composition is matrix
multiplication.
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An example from knot theory

The category Tang of tangles was defined by David Yetter c.1985.
I The objects are words −+ +−−+ in symbols + and −
I Morphisms are tangles

− − − + + + −

− + −

vv

22
ZZ

DD

��

22

I Composition is vertical gluing of tangles
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New categories from old

I The opposite or dual of a category C is the category C op whose
objects are the same as for C however a morphism f : A→ B in C op

is a morphism f : B → A in C . The composite g ◦ f in C op is f ◦ g in
C .

I The product of two categories A and X is the category A ×X
whose objects are pairs (A,X ) where A is an object of A and X is an
object of X . The morphisms (f , u) : (A,X )→ (B,Y ) consist of a
morphism f : A→ X in A and a morphism u : B → Y in X .
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The release from curly brackets
I No longer do we define an object in terms of its elements.
I Each object is determined by how it is observed, via morphisms, by

other objects of the category.
I The one-element set 1 as an object of Set has exactly one morphism

X → 1 from any other object. Such an object is called terminal in the
category. The zero vector space {0} is terminal in Vect.

I The zero vector space is also initial in Vect: there is exactly one linear
function {0} → V into any other vector space V .

I However, the one-element set 1 is not initial in Set. In fact, functions
1→ X can be identified with elements of X .

I Morphisms U → A in a category C can be thought of generalized
elements or U-elements of A. Categories naturally permit us to think
also of U-coelements A→ U of A.

I Objects in quite different categories can exhibit similar categorical
properties.
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Isomorphisms

A morphism f : A→ B in a category C is invertible or an isomorphism
when there exists a morphism g : B → A in C such that g ◦ f = 1A and
f ◦ g = 1B . The morphism g can be proved to be unique and so is denoted
by f −1.

When an invertible morphism exists A→ B , we write A ∼= B . This is an
equivalence relation.

An invertible morphism f : A→ A is called an automorphism of A. Every
group arises as a group AutC (A) of automorphisms in some category C ;
we can regard the group as a subcategory of C with one object A and
automorphisms as morphisms.
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Functors

Categories are themselves mathematical structures: so we should look at
morphisms between them.

A functor T : C −→H assigns
I an object TA of H to each object A of C ,
I a morphism Tf : TA −→ TB in H to each f : A −→ B in C ,

such that
T1A = 1TA and T (g ◦ f ) = Tg ◦ Tf .

So categories (with some restriction on size) form a category Cat with
functors as the morphisms.
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Examples of functors

A functor is a construction of objects of a category from the objects of
another category which allows induced morphisms.

I There is a functor R− : Mat→ Vect taking each n to Rn and each
matrix to the linear function represented by that matrix.

I There is a functor C : Topop → Vect taking each space X to the
vector space C(X ) of continuous functions from X into R.

I For each object U of any category C , there is a functor EU : C → Set
taking each object A to the set of U-elements of A.

I Cartesian product is a functor −×− : Set× Set→ Set.
I A functor R : AutC (A) −→ Vect is precisely a linear representation of

the group AutC (A).

Ross Street (Macquarie University) The natural transformation in mathematics 27 September 2016 19 / 35



Natural transformations

I Suppose S : A →X and T : A →X are functors.
I A natural transformation θ : S =⇒ T consists of a morphism

θA : SA −→ TA

in X for each object A in A , subject to commutativity of the
following square for every morphism f : A→ B in A .

SA

Sf
��

θA // TA

Tf
��

SB
θB

// TB
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Yoneda Lemma

I Suppose T : C → Set is any functor and t ∈ TU is any element.
There is a natural transformation θ : EU =⇒ T defined by

θA(a) = (Ta)(t)

for all a : U → A.
I The Yoneda Lemma says that these natural transformations are

distinct for distinct t and that they are the only natural
transformations EU =⇒ T .
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Functor categories

I Let R,S ,T : A →X be functors. If φ : R =⇒ S and θ : S =⇒ T are
natural transformations then, by composing components, we obtain a
composite natural transformation θ ◦ φ : R =⇒ T .

I Therefore we obtain a category [A ,X ] of functors from A to X
where the morphisms are natural transformations.

I The functor category [C op,Set] shares many properties with the
category Set and, as a consequence of Yoneda, faithfully contains C
itself.
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Monoids

I A monoid is a set M with binary operation m(a, b) = a · b and a
distinguished element i such that the operation is associative and the
element acts as an identity.

I We can write the binary operation and element as functions
m = − · − : M ×M → M and i : 1→ M. We can express the
associativity and identity laws as commutative diagrams.

I

M ×M ×M

1M×m
��

m×1M // M ×M

m

��
M ×M m

// M

M × 1

pr1 %%

1M×i // M ×M

m
��

1×M

pr2yy

i×1Moo

M
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Monoidal categories

I Many categories A have a canonical choice of functor

−⊗− : A×A −→ A ,

which is associative up to components

αA,B,C : (A⊗ B)⊗ C ∼= A⊗ (B ⊗ C ) ,

of a natural isomorphism, and for which there is an object I with
natural isomorphisms having components I ⊗ A ∼= A ∼= A⊗ I .

I With a couple of axioms, this defines monoidal category
(aka “tensor category”).

I Sometimes there is a choice of a natural commutativity isomorphism
cA,B : A⊗ B −→ B ⊗ A .

I With conditions expressing cA⊗B,C in terms of cA,C and cB,C , and
expressing cA,B⊗C in terms of cA,B and cA,C , we have a braiding.

I If further cB,A ◦ cA,B : A⊗ B → A⊗ B is the identity then we have a
symmetry.
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Examples of monoidal categories
I Set becomes symmetric monoidal using cartesian product A× B .
I The cartesian product of two vector spaces is a vector space so Vect

becomes symmetric monoidal using cartesian product. However, here
it is written as direct sum V ⊕W since, for finite dimensional vector
spaces,

dim(V ⊕W ) = dimV + dimW .

I There is also tensor product V ⊗W of vector spaces defining a
different symmetric monoidal structure on Vect. For finite V ,W ,

dim(V ⊗W ) = dimV × dimW .

I Tang becomes braided monoidal: the tensor product of two words in
+ and − is juxtaposition and, of tangles, is horizontal placement.
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Abstract monoids

I Looking back at the categorical definition of monoid, we can see that
we can define monoids in any monoidal category C by replacing × by
the abstract ⊗ of C .

I Now M is an object of C and we have morphisms m : M ⊗M → M
and i : I → M in C subject to some commuting diagrams.

I A monoid in Vect is called an algebra.
I ∆ becomes monoidal via ordinal sum with unit object I equal to 0.

The object 1 becomes a monoid via the unique morphisms
1 + 1 = 2→ 1 and 0→ 1.

Theorem
Let C be a monoidal category. The category of functors F : ∆→ C , which
preserve tensor and unit object up to coherent isomorphism, is equivalent
to the category of monoids in C .
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Other such theorems

I The previous Theorem means that ∆ is produced when you want to
freely generate a monoidal category containing a monoid. Every
morphism of ∆ can be obtained from the monoid structure on 1 by
tensoring and composing. The equality of any two morphisms
obtained by this process is a consequence of the monoid axioms.

I There are many structures that can be defined in a monoidal category
and even more in a braided monoidal category.

I Commutative monoids make sense in a braided monoidal category. An
important viewpoint on this is that monoids in a braided monoidal
category C form a monoidal category MonC . Monoids in MonC are
precisely the commutative monoids in C .
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Frobenius monoids
A monoid A in a monoidal category C is called Frobenius when it is
equipped with a morphism e : A→ I for which there exists a morphism
r : I → A⊗ A satisfying the following commutative diagrams.

A
r⊗A //

A⊗r
��

A⊗ A⊗ A

A⊗m
��

A⊗ A⊗ A
m⊗A

// A⊗ A

I
r //

r

��

i

""

A⊗ A

A⊗e
��

A
e⊗A

// A

As mentioned, when the monoidal category is symmetric, we can also speak
of commutative monoids: the condition is

A⊗ A

m
""

cA,A // A⊗ A

m
||

A .
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Cobordisms

A 2D-cobordism Γ from natural
number m to natural number n is a
compact surface with boundary
consisting of m + n circles, m of which
are allocated as inputs and n of which
are allocated as outputs.

Let 2Cob be the category whose
objects are natural numbers and whose
morphisms are input/output-preserving
topological isomorphism classes of
cobordisms. Composition is done
vertically by sewing output circles of
the first to input circles of the second.

Cobordism example
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2D-Topological Quantum Field Theories

The category 2Cob is symmetric monoidal. The tensor product on objects
is addition of natural numbers and on morphisms is induced by horizontal
placement of surfaces.

Definition
A 2D-topological quantum field theory (2DTQFT) is a
symmetry-and-tensor-preserving functor

T : 2Cob −→ Vect .
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Birth, death and marriage

The object 1 is a commutative Frobenius
monoid in 2Cob.

The monoid and Frobenius structural
morphisms

i : 0→ 1 , e : 1→ 0 ,

m : 2→ 1 , r : 0→ 2

are as shown on the right.

A comultiplication d : 1→ 2 can be
constructed, as we will now see.

Cobordism example
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How some axioms look
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Classification of 2DTQFTs

Theorem
The category of 2DTQFTs is equivalent to the category of commutative
Frobenius algebras. The equivalence takes T : 2Cob→ Vect to T1.

I The physicist would see this as a construction for 2DTQFTs from a
commutative Frobenius algebra.

I The mathematician obtains from it invariants for compact closed
surfaces Σ (since Σ: 0→ 0 in 2Cob, so TΣ is a scalar).
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3DTQFTs, 2DCFTs and modular tensor categories

I Ed Witten showed that the space of conformal
blocks of a 2D Conformal Field Theory can be
identified with the space of states of a 3DTQFT.

I Modular tensor categories define 3DTQFTs via a
Reshetikhin-Turaev surgery construction.

I The category of representations of the chiral vertex
algebra of a rational CFT is a modular tensor
category.

I The part of the CFT beyond its chiral aspect
involves a consistent system of correlators for the
fields.

I Symmetries strongly constrain the possible
correlators owing to the Ward identities.

John Ward
1924 – 2000;
MqU days
1967 – 1984
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Thank you!
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