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Various weakenings of monoidal category have been in existence almost as long as the
notion itself.  There are the multicategories of Lambek [Lk], the promonoidal categories of
[D1], and the lax monoidal categories involving n-fold tensor products2 with not-
necessarily-invertible associativity and unit constraints.   There is a diamond

Multicategories

Monoidal categories

Promonoidal categories Lax monoidal categories

in which moving down along a side of gradient 1 imposes invertibility on constraints,
while moving down along a side of gradient Ð1 imposes representability on the
multihoms. A strong form of representability (see Hermida [H]) leads us from the top of
the diamond to the bottom in one step.

Promonoidal categories were introduced to explain a large variety of convolution
monoidal structures on functor categories.  What we want to point out in this paper is that
convolution formulas are available in weaker settings, but, of course, the resultant functor
categories bear weaker monoidal structures too.  

The central general concept on which our work is based is that of lax m o n o i d in a
monoidal bicategory. While it is true that lax monoids can be construed as monoids in a
suitably modified setting, this does not detract at all from the concept.  In making that
modification we move away from the familiar.  Lax monoids themselves are very closely
related to operads in that they abstractly express substitution.

We are particularly interested in lax monoids and comonoids in the monoidal
bicategory  V-Mod⁄⁄.  The extra freedom allowed by laxness means that convolution
structures on functor categories proliferate: we give six such constructions in Section 7.

Monoidal bicategory is precisely the categorical structure in which morphisms can be
rigorously depicted as three-dimensional surface diagrams (see [SV], [MT], [BL1] and [BL2]).   

1

1 The concept of an operad in a Cat-operad was suggested to the second author by Michael Batanin in late
1999.   A prelude to this work was handwritten in January 2000.  The sixth convolution formula in Section 7 was
added to our 11 August 2001 preprint when we became aware of the article [BDK]. 

2 Actually, the lax monoidal categories in the diamond are "normalized" in the sense that their 1-fold
tensor product functor is the identity.



We use the conventions and terminology of [DS], [S5] and [DMS].

¤1. Lax monoids
A ⁄ lax monoid M  in a Gray monoid  M is a strict-monoidal lax functor  

M : ∆∆∆∆ aAM .
The objects of the (algebraicists') simplicial category  ∆∆∆∆ are the ordered sets  n = {1, 2, . . . , n}
and the arrows  ξ : m aAn are the order-preserving functions.  Put  A = M1 so that

Mn =  M(1 + . . . + 1)  =  M1 ⊗ . . . ⊗ M1 =  A⁄⊗ n .

Put  sm =  M(τm⁄⁄)  :  A ⁄⊗ maAA  where  τm⁄ : m aA1 in  ∆∆∆∆ .  Since each  ξ : m aAn has the
form

  τ τm mn1
+ +. . . :  m 1 + . . . + m n

aA 1 + . . . + 1 ,

we see that
M(ξ)  =    s sm mn1

⊗ ⊗. . . :   A⁄⊗ maAA ⁄⊗ n .
For each composable pair  ξ : m aAn ,  ζ : n aAr in  ∆∆∆∆ ,  we have a constraint

µ ξ , ζ :  M(ζ) M(ξ)  aAM(ζ ξ) .

Put

A⊗ m

A⊗ n

A
⇓ µ

ξ

s    ⊗ . . . ⊗ sm1 m n sn

sm

equal to    µξ τ, n :  M(τn⁄⁄) M(ξ)  aAM(τm⁄⁄) .  Since    m n rξ ζ →  → can be written as

    m m n n 1 11 1
1 1+ +  → + +  → + +

+ + + +
. . . . . . . . .. . . . . .

r r
r n nrξ ξ τ τ

,

coherence implies that the general  µ ξ , ζ can be recaptured as

A⊗ m

A⊗ n

A⊗ r

⇓

≅M(ξ) = M(ξ  ) ⊗  . . . ⊗ M(ξ   ) 1  r M(ζ) = s   ⊗  . . . ⊗ s n1 nr

M(ζ ξ) = s   ⊗  . . . ⊗ s m1 rm

 (s  ° M(ξ  )) ⊗  . . . ⊗ (s  ° M(ξ   )) n1 nr1 r

µ    ⊗  . . . ⊗ µ   
ξ ξ1 r

.

There is also the constraint  ηn : 1M(n)
aAM(1n ⁄⁄⁄⁄ ) ;  we put

η :  1A ⇒ s1 equal to  η1 .
We recapture  ηn as  η ⊗ . . . ⊗ η :   1A n⊗ ⇒ s1 ⊗ . . . ⊗ s1 .

A little more work shows that a lax monoid  M  (in the Gray monoid  M )  can equally
be described as consisting of:

an object  A ;
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arrows  sm :    A m⊗ aAA  for all  m⁄⁄∈ ⁄⁄N ;
2-cells  µ ξ :  sn   o (  s sm mn1

⊗ ⊗. . . ) ⇒ sm for all partitions  
ξ : m1 + . . . + mn = m ;   and, 

a 2-cell  η :  1A ⇒ s1 ;
subject to the conditions

A⊗ m A⊗ n

  s sn nr1
⊗ ⊗. . .

A⊗ rA

  sm

  sr

    
s s s s s sn m m n m mn r r r nr1 11 1 1 1

o o( ) ( ). . . . . . . . .⊗ ⊗ ⊗ ⊗ ⊗ ⊗

  s sm mr1
⊗ ⊗. . .

⇓   µ µξ ξ1
⊗ ⊗. . .

r

⇐
µ ζ ξ

≅

  
s s s sm m m mn r r nr11 1 1 1

⊗ ⊗ ⊗ ⊗ ⊗ ⊗. . . . . . . . .

=

A⊗ m
A⊗ n

  s sn nr1
⊗ ⊗. . .

A⊗ rA

  sm

  sr

⇐

⇐

  
s s s sm m m mn r r nr11 1 1 1

⊗ ⊗ ⊗ ⊗ ⊗ ⊗. . . . . . . . .

µ ζ

µ ξ

  sn

(where  ξ , ζ , ζ ξ , ξ ⁄⁄i are the partitions

  m m m mn r r nr11 1 11
+ + + + + +. . . . . . . . . =  m

  n nr1 + +. . . =  n ,         m mr1 + +. . . =  m  ,        m mi i ni1 + +. . . =  m⁄⁄i ) ,

  sn     1sn o ( ). . .η η⊗ ⊗
    s s sn o ( ). . .1 1⊗ ⊗

  sn
  1sn

    
µ 1n and

  sm

  sm

    s sm1 o

  1sm

    η o 1sm

  
µ τ m

.
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The lax monoid is called norma l when  η :  1A ⇒ s1 is invertible3.

  s1

  s 2

  s 2
  s 3

 µ

Surface diagram for   µ ξ where  ξ is  2 + 1 = 3

Notice that each lax monoid  in  M has an underlying monad in  M⁄⁄.  To see this, we
compose the lax functor  M : ∆∆∆∆ aAM with the functor  1 aA∆∆∆∆ which picks out the
singleton ordinal  1⁄⁄;  the resultant lax functor  1aAM amounts to the required monad  s1
on  A⁄⁄. 

Suppose  M  and  N :  ∆∆∆∆ aAM are lax monoids.  A lax monoid m o r p h i s m is defined
to be a strict-monoidal lax natural transformation  θ : M aAN ⁄⁄.  Equally, putting  A = M1 ,
B = N1 ,  sm =  M(τm⁄⁄) ,  tm =  N(τm⁄⁄) ,  and using  µ ξ and  η for both  M  and  N,  a lax
morphism from  A  to  B  consists of a morphism  u : A aAB  together with 2-cells  ρ⁄⁄n :

t⁄⁄n⁄⁄  o ⁄  u n⊗ ⇒ u ⁄⁄  o ⁄⁄s⁄n such that the following two equations hold.

A⊗ m B⊗ m

A⊗ n B⊗ n

A B

⇐

⇐
⇐  sm

    s sm mn1
⊗ ⊗L

    t tm mn1
⊗ ⊗L

  tn  sn

u

  u n⊗

  u m⊗

  ρn

    ρ ρm mn1
⊗ ⊗L

A⊗ m B⊗ m

B⊗ n

A B

⇐⇐  sm

    t tm mn1
⊗ ⊗L

  tn

u

  u m⊗

  
ρmµ ξ µ ξ=

  tm

A B

A B

⇐
η

1
  s1

u

u

  t1
1

A B

A B

⇐
η

  s1

u

u

1

=

⇐  
ρ1

.

4

3 This term comes from a traditional use; however, normality is not usual.



The concept of weak-monoidal pseudofunctor (or weak-monoidal homomorphism)
T : M aAN between Gray monoids was defined in [DS]; see Definition 2] on page 102. The
definition of weak-monoidal lax functor is obtained verbatim by starting with a lax functor
T  instead of the special case of a pseudofunctor (or homomorphism of bicategories).
Suppose  T : ∆∆∆∆ aAM is a weak-monoidal lax functor for which the constraints  

Tm ⊗ Tn aAT(m + n)     and     I aAT0
are equivalences.  It is possible to construct a strict-monoidal lax functor  M : ∆∆∆∆ aAM (that
is, a lax monoid in  M ) and a monoidal pseudo-natural transformation  θ : M aAT  (see
Definition 3 on page 104 of [DS]) such that each component  θn : Mn aATn is an
equivalence and  θ1 is an identity.   

Examples of lax monoids
(1)  Monoids  Let  V be any monoidal category regarded as a locally discrete monoidal

bicategory  M  by taking the only 2-cells to be identities.  A lax monoid in this  M is a
monoid in  V. 

(2)  Pseudo-monoids Each pseudo-monoid  p : A⊗ A aAA ,  j : I aAA , 
α :  p⁄⁄  o ⁄⁄(p⁄⁄⊗ ⁄⁄1A) ≅ p⁄⁄  o ⁄⁄(1A⁄⁄⊗ ⁄⁄p),    λ :  p⁄⁄  o ⁄⁄( j⁄⁄⊗ ⁄⁄1A) ≅ 1A ,    ρ :  p⁄⁄  o ⁄⁄(1A⁄⁄⊗ ⁄⁄j) ≅ 1A ,

on an object  A  of the monoidal bicategory  M determines a lax monoid structure on  A  by
taking

s0 =  j ,     s1 =  1A ,     sm =  p⁄⁄  o ⁄⁄(p⁄⁄⊗ ⁄⁄1A)⁄⁄  o ⁄⁄(p⁄⁄⊗ ⁄⁄1A⁄⁄⊗ ⁄⁄1A)⁄⁄⁄⁄  o ⁄. . .  ,
µ ξ is the invertible 2-cell uniquely induced by  α ⁄, λ ⁄, ρ⁄⁄,

and   η is the identity 2-cell of  1A.
In particular, each monoidal category becomes a lax monoid in the cartesian monoidal 2-
category  Cat ,  and each promonoidal category becomes a lax monoid in  Mod . 

(3)  Lax monoidal categories A lax monoid in the cartesian monoidal 2-category  Cat is
a category  A together with a functor  

  
⊗
n

: A ⁄naAA (called n-fold tensor product), a family

of morphisms
α ⁄⁄ξ :  

  
⊗
n

(
  
⊗ ⊗
m m m n nmA A A A

n
n

1
111 1 1( , . . . , ), . . . , ( , . . . , )) aaA

  
⊗
m m n nmA A A A

n
( , . . . , , . . . , , . . . , )11 1 11

natural in all  Ai j where  ξ : m1 + . . . + mn = m ,  and a family of morphisms
ι :  A aaA

  
⊗
1

A
natural in  A⁄⁄,  such that

α ⁄⁄ζ ⁄⁄⁄ξ   o   
⊗
r

(  α αξ ξ1
, . . . ,

r
)  =  α ⁄⁄ξ   o α ⁄⁄ζ

    
α ι ι α ι1 1 1+ + = ⊗ =⊗ = = ⊗. . . ( , . . . , )n n n n nn

o o .

We call this a lax monoidal category. Notice that  
  
⊗
1

: A aAA is not necessarily the
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identity functor (if it is, we have a norma l lax monoidal category), rather, it is the functor
part of the underlying monad of the lax monoidal category.  A lax monoid in  Cat⁄co is
called an oplax monoidal category.

(4)  Operads Recall from [JS1] that the tensor product  ⊗ : V⁄⁄×⁄⁄V aAV of a braided
monoidal category  V⁄ becomes a strong monoidal functor; so  V can be regarded as a one-
object bicategory  Σ⁄V whose hom-category is  V.  A (non-permutative) operad T  in a
braided (strict) monoidal category  V⁄ is a lax monoid in the "suspension"  Σ⁄V of  V.  W e
also use the term  V-operad for such a  T.

(5)  Multicategories Lax monoids in the monoidal bicategory  Span are precisely
multicategories in the sense of Lambek [Lk; p. 103]; also see Linton [Ln].  Here  Span
denotes the bicategory [B] whose objects are sets and whose arrows are spans;  the monoidal
structure is provided by cartesian product of sets. Recall from [B] that a monad in  Span is a
category;  so the underlying monad of the lax monoid in this case is called the underlying
category of the multicategory.

(6)  Tensor products of lax monoids Suppose  M is a braided Gray monoid [DS].  If  A
and  B  are lax monoids in  M then so is  A ⁄⁄⊗ ⁄⁄B ⁄⁄.  For, let  M  and  N :  ∆∆∆∆ aAM be the strict-
monoidal lax functors corresponding to  A  and  B.  Using the braiding, we obtain a
monoidal structure on the pointwise tensor product  M ⁄⁄⊗ ⁄⁄N of  M  and  N.  Then we can
replace the monoidal lax functor, up to equivalence, by a strict-monoidal lax functor whose
value at  1 is  A⁄⁄⊗ ⁄⁄B.      

¤2. Lax monoids as monads
Suppose our Gray monoid  M has local coproducts (that is, each homcategory has

coproducts preserved by composing with arrows on either side).  There is a bicategory    ′M

defined as follows.  The objects are those of  M ,  while

  ′M (A , B)  =  
    

M ( , )A Bn

n

⊗

≥
∏
0

.

The composite    A
f B g C →  → in    ′M is defined by

    
( ) ( . . . )

. . .
g f g f fm n m m

m m m
n

n

o o= ⊗ ⊗
+ + =

∑ 1
1

.

The identity morphism  1A : A aAA  in    ′M is the initial object  0 = 0A⁄⁄∈ ⁄⁄M(A⁄⊗ n,⁄⁄A)  for

n ≠ 1  and  1A⁄⁄∈ ⁄⁄M(A⁄⊗ n,⁄⁄A)  for  n = 1⁄;  it is clear that this is an identity up to canonical
isomorphisms.  Associativity of composition is proved by the following rather familiar
argument:  

    ( ( ))h g f mo o

=
    

h g f g fk q q
q q m

k
k

o o o( ( ) . . . ( ) )
. . .

1
1

⊗ ⊗
+ + =

∑

6



= 

    

h g f f g f fk n r r n r r
q q m
q r r

n k k kn k
k

i i i n i

o o o( ( . . . ) . . . ( . . . ))
. . .

. . .

1 11 1 1 1
1

1

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
+ + =
= + +

∑

≅

    

h g g f f f fk n n r r r r
q q m
q r r

k n k kn k
k

i i i n i

o o( . . . ) ( . . . . . . . . . )
. . .

. . .

1 11 1 1 1
1

1

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
+ + =
= + +

∑

Making a change of variables in the summation, we put  
n = n1 + . . . + nk ,    mi = r1 ⁄i for  1 ≤ i ≤ n1 ,    mi = n1 + r2 ⁄i for  n1 ≤ i ≤ n1 + n2 , . . .  .  

Then

    ( ( ))h g f mo o

≅

    

h g g f fk n n m m
m m m
n n n

k n
n
k

o o( . . . ) ( . . . )
. . .
. . .

1 1
1
1

⊗ ⊗ ⊗ ⊗
+ + =
+ + =

∑

=
    

( ) ( . . . )
. . .

h g f fn m m
m m m

n
n

o o
1

1

⊗ ⊗
+ + =

∑

=         (( ) )h g f mo o .
Coherence for these associativity and identity constraints also holds.

There is an obvious inclusion  M aA  ′M which is the identity on objects and
identifies a morphism  u : A aAB  in  M with the sequence  (un⁄⁄)  defined by taking  un to

be the initial object of  M(A⁄⊗ n,⁄⁄B)  for  n ≠ 1  and taking  u1 = u⁄⁄.

Proposition 2.1 A lax monoid in  M is the same as a monad in   ′M .

In other words, strict-monoidal lax functors  ∆∆∆∆ aAM are the same as lax functors
1aA  ′M .

There is another viewpoint on    ′M when  M has global coproducts.  Since  M already
has local coproducts, the global coproducts are (bicategorical) direct sums and the
coprojections have right adjoints [S2].  Define a pseudofunctor

D : M aAM
by the geometric series

DA  =  
  

A n

n

⊗

≥
∑
0

.

This gives a pseudomonad using  jA ,   mA defined by

A DA

=

  
A n

n

⊗

≥
∑
0

copr1

  D A2 DA

=

  
A n

n

⊗

≥
∑
0

≅

  
A Am

m m

m

r

r⊗ ⊗⊗ ⊗∑ 1

1

. . .
, . . . ,

  A m mr⊗ + +( . . . )1

copr
  m mr1 , . . . ,

copr
  m mr1+ +. . .

.

  mA
  jA
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A lax algebra for the pseudomonad  (D⁄⁄, m ⁄⁄, j)  is precisely a lax monoid in  M⁄⁄.  Again from

[S2] we know that  jA ,   mA have right adjoints    jA
∗ : DA aAA ⁄⁄,    mA

∗ : DA aAD⁄2A .  It

follows that we have a pseudocomonad  D ,   j
∗ ,   m∗ on  M .   Then

  ′M ≅ M(D, j*, m*) ,
the Kleisli bicategory for this pseudocomonad.  The particular case where  M is the
bicategory  Span of sets and spans was considered by Burroni [Bu], Hermida [H] and
Leinster [Lr]  to show that multicategories could be regarded as monads in an appropriate
bicategory (see Section 1, Example 5).  

Remark There are general principles involved here.  Suppose (T⁄⁄,⁄⁄m ⁄⁄,⁄⁄j)  is a pseudomonad

on any bicategory  K⁄⁄.  If  m : T ⁄⁄T aAT  and  j : 1 aAT  have right adjoints    m∗ ,   j
∗ then we

obtain a pseudocomonad  (⁄T ⁄⁄,  j
∗ ,⁄⁄  m∗)  on  K⁄⁄;  moreover, to give a lax algebra for  (T⁄⁄,⁄⁄m ⁄⁄,⁄⁄j)  is

to give a monad in the Kleisli bicategory for  (⁄T ⁄⁄,  j
∗ ,⁄⁄  m∗).   

¤3. Pseudo-operads
Regarding  Cat as a cartesian monoidal category, we know what is meant by a Cat-

operad, or operad in  Cat ;  it is a V-operad (Section 1 Example 4) with  V = Cat .  However,
because of the 2-category structure on  Cat ,  there is a more general notion which we call a
"pseudo-operad" in Cat⁄⁄.  Consider the 2-category  Cat/N of sequences  T = (Tn⁄⁄)  of
categories  Tn ; it is the countable product of copies of the 2-category  Cat⁄⁄.  There is a
"substitution" monoidal structure on the 2-category defined by

(T⁄⁄  o ⁄⁄S)n =  
  

T S Sm n n
n n n

m
m

× × ×
+ + =

∑ 1
1

. . .
. . .

.

An operad in  Cat is a monoid in this monoidal 2-category  Cat/N ⁄⁄, whereas a pseudo-
operad in  Cat is a pseudomonoid in  Cat/N ⁄⁄.  For the substitution operation

  T T T Tm n n n nm m
× × ×  → + +1 1

. . . . . .

of a pseudo-operad  T,  we maintain the notation    ( , , . . . , )x y ym1
jaA

  x y ym[ , . . . , ]1 .
We can define the notion of operad in a pseudo-operad T  in the sense that we have

sn ∈ Tn for all  n ∈ N and arrows
µ ξ :  sn [⁄⁄  s sm mn1

, . . . , ]  aAsm in  Tm,

η : 1 aAs1 in  T1 ,
satisfying the obvious three conditions.  

For example, each object  A  in a Gray monoid  M gives a pseudo-operad  T  in  Cat by
defining

Tn =  M (  A
n⊗ , A) ,

and defining substitution

8



  T T Tn m mn
× × ×

1
. . . aATm ,    for      m mn1 + +. . . =  m ,

by   
g [  f f n1 , . . . , ]  =  g   o (  f f n1⊗ ⊗. . . ) ;

also,   1 ∈ T1 is the identity arrow of  A.  We shall denote this pseudo-operad  T  by  M⁄⁄(A).
Clearly each lax monoid  M  in  M defines an operad in the pseudo-operad  M⁄⁄(A)  where
A = M1.  

Conversely, suppose  T  is any pseudo-operad in  Cat⁄⁄.  There is a monoidal bicategory
M⁄T (the "2-prop" of the pseudo-operad) defined as follows.  The objects are the natural
numbers.  The homcategories are defined by

M⁄T (m , n)   =  
  

T Tm m
m m m

n
n

1
1

× ×
+ + =

∑ . . .
. . .

.

Composition
M⁄T (n , r) × M⁄T (m , n)  aaAM⁄T (m , r)

takes  (  t t t tn n m mr n1 1
, . . . , , , . . . , ) ∈   T T T Tn n m mr n1 1

× × × × ×. . . . . . to
( 

  
t t t t t t t t tn m m n m m n m mn n n n r n nr n1 1 1 2 1 1 1 2 1
[ , . . . , ] , [ , . . . , ] , . . . , [ , . . . , ]

+ + − +
) 

where       m mn1 + +. . . =  m  and    n nr1 + +. . . =  n .  The tensor product for  M⁄T is given on
objects by addition of natural numbers and on homcategories

M⁄T (m , n) × M⁄T (i , j)  aaAM⁄T (m + i , n + j)
by  ( (  t tm mn1

, . . . , ) , (
  
t ti i j1
, . . . , ) )  jaA(  t tm mn1

, . . . , , 
  
t ti i j1
, . . . , ) .  

Clearly  M⁄T (1) = T .  Moreover, each operad  ( sn )  inside  T  gives a lax monoid
structure on  1 ∈ M⁄T . 

Batanin [Ba1; page 88] constructed an operad h in  Cat whose algebras are normal lax
monoidal categories.  In conversation Batanin has also given a description of  h in terms
of the plane trees of [Ba2] (also see [S4]). A (rooted plane) tree  T  of height  m  is a diagram

  T T T Tm m
m mξ ξ ξ ξ

 →  →  →  →−
−

1 1 0
1 2 1. . .

in  ∆∆∆∆ with  T0 a singleton whose element is called the root. The elements of  Tk are called
nodes of height  k. We obtain a directed graph by constructing an edge from each node of
positive height  k  to its image under the function  ξ ⁄⁄k⁄⁄.  The arity of a node is the number of
edges into it⁄.  A leaf is a nullary node (that is, of arity 0);  in particular, all nodes of
maximum height  m  are leaves Ñ we call these the top leaves and all other leaves are
called lower. The objects of the category  hn are those trees  T  with no unary nodes except
perhaps the root, and with precisely n top leaves.  In fact,  hn is a partially ordered set: the
reflexive transitive relation is the smallest such that there is an arrow  T aAT'  if  T'  is
obtained from  T  by contracting an edge (identifying the nodes that the edge joins and
moving down all the nodes above to one less height) or by deleting a lower leaf, where, i n
the case where the deleted leaf has an edge to a binary node, the other edge must be
contracted (to maintain no unary nodes).  Let  sn ∈ hn denote the tree  ξ ⁄⁄k : n aA1 which
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Todd Trimble calls the n-sprout. There is a unique structure of normal operad in  h  on the
sequence of sprouts; in fact,  h together with  (sn⁄⁄)  is the free Cat operad containing a
normal operad.  Moreover, for any object  A  of a Gray monoid  M,  an operad morphism  h
aAM⁄⁄(A)  is a normal lax monoid structure on  A.    

Batanin has also described to us an explicit construction (in terms of structured trees)

of a Cat operad      
)
h whose algebras are lax monoidal categories (not merely the normal

ones); operad morphisms      
)
h aAM⁄⁄(A)  amount to lax monoid structures on  A.  Indeed,     

)
h

together with a particular operad  s  in it, is the free Cat operad containing an operad.  W e
can also consider the free Gray monoid  F containing a lax monoid  L⁄⁄;  the pseudo-Cat

operad  F(L)  is equivalent to      
)
h.  

¤4. Extension and lifting of structure
In ordinary universal algebra, a familiar process is the transport of structure supported

by an object  A  across to an object  B ⁄ by means of an isomorphism  A aAB ⁄⁄.  The term is
also used in homotopy theory to cover the case where  A aAB  is a homotopy
equivalence.  In 2-dimensional categorical universal algebra, it is used when  A aAB  is an
equivalence in a 2-category: the types of structures that so transport exhibit an aspect of
flexibility (in the sense of [BKP]).  We can also contemplate transport of structure across an
adjunction  A aAB ⁄⁄;  the lax functor generated by an adjunction, as described in [S0], is an
example.  

Extension of structure is a generalization of transport of structure. The basic idea
appeared in [S1] where the extension of a monad along a morphism was described.  In any
bicategory, given a monad  s  on an object  A  and a morphism  u : A aAB, the right
extension  t : B aAB  of  u ⁄⁄  o ⁄⁄s  along  u  (provided it exists) becomes a monad in such a way
that  u ⁄⁄,  together with the 2-cell  ρ : t⁄⁄  o ⁄⁄u ⇒ u ⁄⁄  o ⁄⁄s  which exhibits the right extension, is a
monad morphism.  If  f Ju : A aAB  is an adjunction with counit  α : f u ⇒ 1A then the
right extension exists as  t = u⁄⁄  o ⁄⁄s⁄⁄  o ⁄⁄f   with  ρ = u⁄⁄  o ⁄⁄s⁄⁄  o ⁄⁄α ⁄⁄.

Proposition 4.1 In any monoidal bicategory M⁄⁄,  suppose A  is a lax monoid and u : A
aAB  is a morphism.  Assume that, for all n ≥ 0, the right extension t⁄⁄n :   B n⊗ aAB  o f

    u sno :   A n⊗ aAB  along    u n⊗ :   A n⊗ aA  B n⊗ exists, exhibited by the 2-cell  ρ⁄⁄n : t⁄⁄n⁄⁄  o ⁄  u n⊗ ⇒

    u sno .  Then there exists a structure of lax monoid on  B  consisting of the morphisms  t⁄⁄n :

  B n⊗ aAB  and the unique 2-cells  µ ξ and η such that u ⁄⁄,  together with the 2-cells  ρ⁄⁄n⁄⁄,  is
a lax monoid morphism. ⁄⁄

Proof In the case where  M has local coproducts, the result follows from the result of [S1],

on extension of monads, applied in the bicategory  M⁄⁄' .  For, it is easy to see that the
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sequence  ρ of 2-cells  ρ⁄⁄n exhibits  t  as a right extension of  u ⁄⁄  o ⁄⁄s  along  u  in  M⁄⁄' .  So  t
becomes a monad in  M⁄⁄' and hence a lax monoid in  M as required.

In writing out the proof for the general case, the authors found it convenient to write
the data for a lax monoid and the 2-cells  ρ⁄⁄n as rewrite rules:

    

s s

s

n i m

m

i
o ⊗

Ð Ð Ð Ðµξ ,            

  

1

1

A

s
Ð Ðη ,          

    

t u

u s

n
n

n

n

o

o

⊗

Ð Ð Ð Ðρ ,

and the axioms as equalities between derivations

    

s s s

s s s

s s

s

r i n i j m

r i n j m

i
r i m

m

i i j

i i j

i

i

o o

o o

o

⊗ ⊗

≅
⊗ ⊗

⊗

⊗

,
Ð Ð Ð Ð Ð Ð

( )

Ð Ð Ð Ð

Ð Ð Ð Ð

µ

µ

ξ

ζ ξ

=      

    

s s s

s s

s

r i n i j m

n i j m

m

i i j

i j

o o

o

⊗ ⊗

⊗

,

,

Ð Ð Ð Ð

Ð Ð Ð Ð

µ

µ

ξ

ξ

,     

    

s

s s

s

n
n

n
n

n
n

Ð Ð

Ð Ð

η

µ

⊗

⊗o 1
1

=   

  

s

s

n

n

Ð Ð= ,                     

    

s

s s

s

m

m

m
m

Ð Ð

Ð Ð

η

µτ

1 o =   

  

s

s

m

m

Ð Ð= . 

The data for the lax monoid  B  consists of  t  together with  µξ and  η defined, using the
universal property of right extension, by the following equations.

    

t t u

t u s

t u s

u s s

u s

n i m
m

i m

n i m

n
n

i m

n

n i m

m

i
i

i

i

i

i

o o

o o

o o

o o

o

⊗

⊗

⊗

≅
⊗

⊗

⊗

⊗

( )
Ð Ð Ð Ð

( )
Ð Ð Ð Ð Ð Ð

Ð Ð Ð Ð Ð Ð

Ð Ð Ð Ð Ð Ð

ρ

ρ

µξ

=    

    

t t u

t t u

t u

u s

n i m
m

n i m
m

m
m

m

m

i
i

i

o o

o o

o

o

⊗

≅
⊗

⊗

⊗

⊗

( )
Ð Ð Ð Ð Ð Ð

Ð Ð Ð Ð Ð Ð

Ð Ð Ð Ð Ð Ð

µ

ρ

ξ
,         

    

u

t u

u s

Ð Ð

Ð Ð

η

ρ
1

1

1

o

o

=   

    

u

u s
Ð Ðη

o 1

.

The proof that the lax monoid axioms hold for  B  now consists of three sequences of
equations between derivations using the above equations and the properties of a monoidal
bicategory. We leave this to the reader to reconfirm.  What we have not done, but would be
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nice, is to draw the surface diagrams for these calculations. q. e. d.

¤5. Multi-lax-functors
Some notation will be helpful.  We write  X¥ for the list  X1 , . . . , Xn and  X¥¥ for the

list  X1¥ , . . . , Xn¥ of lists    Xi 1 , . . . , 
  
Xi m i

(i = 1, . . . , n).  We now also write    ⊗nX¥ for  X1 ⊗ .
. . ⊗ Xn .  Write  ⊗ ξ ⁄X¥¥ for the list    ⊗m1

X1¥ , . . . ,   ⊗mn
Xn¥ where  ξ is the partition  m 1 + . . .

+ m n = m ⁄⁄.  Write    ⊗n,ξX¥¥ for    ⊗n ⊗ ξ ⁄X¥¥ .   We use the same kind of notation for arrows  f
in place of objects  X⁄⁄.           

Let  M and  N be Gray monoids.  A multi-lax-functor from  M to  N is a lax functor
L : M aAN equipped with an oplax natural transformation  sn :   ⊗n L aAL   ⊗n for each
natural number  n⁄⁄,  and with modifications  η : 1L

aAs1 : L aAL  and  
µξ ⁄ :  

  
sn,⊗ ξ

  o   ⊗ •n ms aA

  
sm n, ⊗ ⊗ξ

:    ⊗n,ξ L aAL   ⊗n,ξ for   ξ : m1 + . . . + mn = m ,

subject to the obvious three axioms as in the definition of lax monoid.  The data for  sn is
displayed in the diagram

  ⊗nLX
s n , X

L(      X  )  ⊗n

  ⊗nLY s n , Y
L(      Y  )  ⊗n

Lf L(      f  )  ⊗n⇒
s n , f

¥ ¥

 ¥  ¥

 ¥  ¥

 ¥

 ¥

 ¥
 . 

When the lax functor  L : M aAN is a 2-functor, we use the term multi-2-functor⁄⁄,
and these are all that we require in the present paper.  In particular, a multi-2-functor
1 aAM is precisely a lax monoid in  M⁄⁄.  A general multi-lax-functor  1 aAM gives rise
to a lax monoid  A  in  M together with an extra monad on  A  and a distributive law with
the monad  s1 .   

Multi-lax-functors do not compose in general; however, if either one is a multi-2-
functor, there is a natural choice of multi-structure on the composite lax functor.  The
reader will easily see the general problem and provide the structure in the special cases. 

Multi-lax-functors take lax monoids to lax monoids; in fact, the image of a lax monoid
under a multi-lax-functor includes not only a lax monoid structure but a distributive law
of the kind alluded to above.  

Suppose  M and  N are Gray monoids with local coproducts.  For each multi-lax-
functor  L : M aAN⁄⁄⁄,  we shall define a lax functor    ′L :   ′M aA

  ′N .  On objects    ′L agrees
with  L⁄.  The functor    ′L :   ′M (A⁄⁄,⁄⁄B) aA  ′N (  ′L A ⁄⁄,⁄⁄  ′L B)  on hom-categories is defined to be
the composite functor   

    
M ( , )A Bn

n

⊗

≥
∏
0

  
L

n
∏

 →
    

N ( ( ), )L A LBn

n

⊗

≥
∏
0

    
M ( , ),s LBn A

n
∏

 →
    

N (( ) , )LA LBn

n

⊗

≥
∏
0

.

The composition constraint  ω2 :   ′L (g)   o   ′L (f⁄) aA  ′L (g   o f⁄⁄)  is the composite
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(  ′L (g)   o   ′L (f⁄))m =
    

′ ′ ⊗ ⊗ ′
+ + =

∑ L g L f L fn m m
m m m

n
n

( ) ( ( ) . . . ( ) )
. . .

o
1

1

=
    

L g s L f s L f sn n B m m A m m A
m m m

n n
n

( ) (( ( ) ) . . . ( ( ) )), , ,
. . .

o o o o
1 1

1

⊗ ⊗
+ + =

∑

=
    

L g s L f L f s sn n B m m m A m A
m m m

n n
n

( ) ( ( ) . . . ( )) ( . . . ), , ,
. . .

o o o
1 1

1

⊗ ⊗ ⊗ ⊗
+ + =

∑

  
" ",sn f• →

    
L g L f f s s sn m m n A m A m A

m m m
n n

n

( ) ( . . . ) ( . . . ), , ,
. . .

o o o
1 1

1

⊗ ⊗ ⊗ ⊗
+ + =

∑

    
" "ω µξ2 o

 →
    

L g f f sn m m m A
m m m

n
n

( ( . . . )) ,
. . .

o o
1

1

⊗ ⊗
+ + =

∑

  canon. →
    
L g f f sn m m m A

m m m
n

n

( ( . . . ) ),
. . .

o o
1

1

⊗ ⊗
+ + =

∑ ,

while the identity constraint  ω0 :   1 ′L A
aA  ′L (1A)  is the unique 2-cell in all components

n ≠ 1  and is  ω0   o η : 1A
aAL(1A)   o s1, A in component  n = 1.  The coherence conditions

for a lax functor do hold.
As you would expect from the last paragraph, if  M and  N also have global coproducts

then a multi-structure on a lax functor  L : M aAN equips the lax functor with the
structure of the appropriate kind of morphism from the pseudocomonad  D  on  M to the
pseudo-comonad  D  on  N⁄⁄⁄.

Recall that lax functors take monads to monads and that monads in    ′M are lax
monoids in  M⁄⁄.  It follows that, if   L : M aAN is a multi-lax-functor, then each lax
monoid  A  in  M determines a lax monoid    ′L A  in  N⁄⁄⁄. 

A monoidal pseudofunctor  F : M aAN between Gray monoids amounts to a multi-
lax-functor for which the underlying lax functor  F  is a pseudofunctor, each  sn is pseudo-
natural, and the modifications  η and  µξ ⁄ are all invertible.  Of course, it is usual to take
the basic data to be  s0 and  s2 ,  to define  s1 to be the identity,  and to inductively define  sn
for  n > 2 .           

¤6. Enriched lax promonoidal categories
Let  M be a monoidal bicategory which admits right liftings through morphisms  a : I

aAA ⁄⁄.  Put  V = M(I⁄⁄,⁄⁄I⁄)  as a monoidal category whose tensor product is horizontal

composition (or equally, up to unit constraints, tensor product of morphisms) in  M⁄⁄.  Then
V is braided and closed.  Indeed,  for all objects  A  of  M⁄⁄,  the category   M(I⁄⁄,⁄⁄A ⁄)  is a V-
category, which we denote by   M[I⁄⁄,⁄⁄A ⁄],  with the V-valued hom  A[a⁄⁄,⁄⁄b] : I aAI  of  a  and  b
: I aAA  defined to be the right lifting of  b  through  a;  the right lifting comes equipped
with a canonical 2-cell  ρ : a⁄⁄  o ⁄⁄A[a⁄⁄,⁄⁄b] aAb  in  M⁄⁄.
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We write  V-CAT for the usual monoidal 2-category of V-categories (the sets of objects
of these V-categories need not be small).  From the last paragraph we see that the usual
hom pseudofunctor  M(I⁄⁄,⁄⁄Ð ⁄) : M aACAT lifts to a pseudofunctor  M[I⁄⁄,⁄⁄Ð ⁄] : M aAV-CAT.
(These pseudofunctors are actually 2-functors when  M is a Gray monoid.)  Moreover,
M[I⁄⁄,⁄⁄Ð ⁄]  is a monoidal pseudofunctor.  To see this we must supply a "comparison" V-
functor

M[I⁄⁄,⁄⁄A ⁄] ⊗ M[I⁄⁄,⁄⁄B ⁄] aAM[I⁄⁄,⁄⁄A ⁄⁄⊗ ⁄⁄B ⁄]
for all objects  A  and  B  of  M⁄⁄.  The value of the  V-functor on the object  (a⁄⁄,⁄⁄b)  is  a⁄⁄⊗ ⁄⁄b.
The effect on homs is the 2-cell  A[a⁄⁄,⁄⁄a'] ⊗ B[b⁄⁄,⁄⁄b'] aA(A⁄⁄⊗ ⁄⁄B ⁄)[a⁄⁄⊗ ⁄⁄b⁄⁄,⁄⁄a '⁄⁄⊗ ⁄⁄b'],  corresponding
under the right lifting property and the canonical isomorphism  

(a⁄⁄⊗ ⁄⁄b)⁄⁄  o ⁄⁄(A[a⁄⁄,⁄⁄a']⁄⁄⊗ ⁄⁄B[b⁄⁄,⁄⁄b'])  ≅ ⁄(a⁄⁄⊗ ⁄⁄A[a⁄⁄,⁄⁄a'])⁄⁄⁄  o ⁄⁄⁄(b⁄⁄⊗ ⁄⁄B[b⁄⁄,⁄⁄b'])⁄,
to the 2-cell  ρ⁄⁄⊗ ⁄⁄ρ : (a⁄⁄⊗ ⁄⁄A[a⁄⁄,⁄⁄a'])⁄⁄⁄  o ⁄⁄⁄(b⁄⁄⊗ ⁄⁄B[b⁄⁄,⁄⁄b']) aAa '⁄⊗ ⁄⁄b'.  It is easily seen that these
comparison V-functors form the components of a pseudonatural transformation

M⁄[I⁄⁄,⁄⁄Ð ⁄] ⊗ M⁄[I⁄⁄,⁄⁄? ⁄] aAM⁄[I⁄⁄,⁄⁄Ð ⁄⁄⊗ ⁄⁄? ⁄]  :  M × M aaAV-CAT.
(This is still only pseudonatural and not generally 2-natural even when  M is a Gray
monoid.)  We must also provide a V-functor  

IaAM[I⁄⁄,⁄⁄I⁄]
where  I is the one object V-category which acts as unit for the tensor product of V-
categories; of course, this is the V-functor whose value at the one object of  I is the identity
morphism of  I⁄⁄.  These data are easily seen to satisfy the axioms required to make  M⁄[I⁄⁄,⁄⁄Ð ⁄] :
M aAV-CAT monoidal.

Corollary 6.1 If  A is a lax monoid i n M then  M⁄[I⁄⁄,⁄⁄A ⁄]  is a lax monoid i n V-CAT with

the structure induced by the monoidal structure of  M⁄[I⁄⁄,⁄⁄Ð ⁄].

We are going to examine applications of our results to enriched category theory.
Suppose  V is a complete, cocomplete, symmetric, closed, monoidal category. We remind
the reader that our notation from [DMS] and [KLSS] is that a V-module  p : A aAB  is

identified with a V-functor  p :  B ⁄op⁄⁄⊗ ⁄⁄A aAV and that the composite of  p : A aAB  and
q : B aAC  is defined by the coend formula

    
( )( , ) ( , ) ( , )q p c a p b a q c b

b
o = ⊗∫

(which certainly exists when  B  is small).  We write  V-Mod for the monoidal bicategory
whose objects are small V-categories, whose morphisms are V-modules (composed
according to the formula above), whose 2-cells are module morphisms, and whose tensor
product is the usual tensor product of V-categories [Ky].  Write  V-Mat for the monoidal
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full subbicategory of  V-Mod consisting of the discrete V-categories (which we can identify

with small sets).  Notice that there is a monoidal biequivalence  V-Mat⁄op ∼ V-Mat.  In the

case of  V = Set we just write  Mat for  V-Mat⁄;  there is a monoidal biequivalence  Mat⁄ ∼
Span.  

In view of example (5) of Section 1, we define a V-multicategory to be a lax monoid i n
V-Mat.  We do not really need to restrict this definition to the case where the supporting set
of the V-multicategory is small: there are other cases where the particular coproducts
(required for the matrix composites involved in the definition) exist for other reasons.
Every V-multicategory  A  has an underlying V-category  (A⁄⁄,⁄⁄s1)  since monads in  V-Mat
are V-categories.  Any full sub-V-category of a V-multicategory becomes a V-multicategory
by restriction.  

In Proposition 6.3, we shall identify lax monoids in  V-Mod but first we obtain a useful
fact about them.

Lemma 6.2 In  V-Mod, each lax monoid structure o n X "restricts" along any V-functor j :
A aAX  to give a lax monoid structure on  A  with j  becoming a lax monoid morphism. 

Proof The structure on  A  is defined by    s b a an n( ; , . . . , )1 =   s jb ja jan n( ; , . . . , )1 and taking
µ ⁄⁄⁄ξ to be the composite

  
⊗ ⊗  → ⊗ ⊗  →• • • • ••∫ ∫i m i i n

a a canon
i m i i n

x x
ms ja ja s ja ja s x ja s ja x s ja ja

i
n

i
n( ; ) ( ; ) ( ; ) ( ; ) ( ; ), . . . , . , . . . ,1 1 µξ

where the arrow labelled "canon." is induced by the coprojections for  xi = jai .  The lax
monoid axioms can directly be seen to hold; however, we can also apply Proposition 4.1
with  u  equal to the V-module  j* : X aAA  defined by  j*(a⁄⁄,⁄⁄x) = X(ja⁄⁄,⁄⁄x). q. e. d.

A lax promonoida l V-category is a V-functor  η : A aAM ⁄⁄,  which is the identity on
objects, together with a V-multicategory structure on  M⁄⁄.       

Proposition 6.3 The lax promonoida l V-categories  η : A aAM  are in bijection with lax

monoid structures on A  in  V-Mod⁄.

Proof Given a lax monoid  A  in  V-Mod⁄,  we can apply the monoidal pseudofunctor  ob :

V-Mod aAV-Mat to obtain a V-multicategory  M  with the same objects as  A ⁄⁄.  The V-
functor  η : A aAM  is defined to be the identity on objects and to have its effect on homs
equal to the component  η : A(a⁄⁄,⁄⁄b) aAs1(a⁄⁄,⁄⁄b) = M(a⁄⁄,⁄⁄b)  of  η : 1A ⇒ s1 at  a, b.  This defines
a lax promonoidal V-category.  On the other hand, given a lax promonoidal V-category  η :
A aAM ⁄⁄,  we can apply Lemma 6.2 to obtain a lax monoid structure on  A  in  V-Mod⁄.
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These processes are easily seen to be mutually inverse. q. e. d.

We therefore see, for example, that each lax monoidal V-category (that is, lax monoid
in V-CAT⁄⁄) becomes a lax promonoidal V-category by regarding the V-functors  sn as V-
modules in the usual way.

We merely write  A  for a lax promonoidal V-category, identifying it with the
corresponding lax monoid in  V-Mod⁄.  Explicitly, the structure consists of V-modules  sn :

A  ⊗n aAA,  which we identify with V-functors  sn : A ⁄op ⊗ A  ⊗n aAV,  and V-natural
families

η :  A(a⁄⁄,⁄⁄a')  aaA s1(a⁄⁄,⁄⁄a')        and
µ ξ :    s a a a s a a a s a a an n m m m n n nmn

( ; , . . . , ) ( ; , . . . , ) . . . ( ; , . . . , )1 1 11 1 11 1 1
⊗ ⊗ ⊗

aaA

  s a a a a am m n nmn
( ; , . . . , , . . . , , . . . , )11 1 11

satisfying the three axioms.  We will call a V-category  B  lax procomonoidal when  B ⁄op is
lax promonoidal.  In some ways, lax procomonoidal is the more familiar concept since it is
natural to think of    s b b bn n( , . . . , ; )1 as the V-object of "multimorphisms" from    b bn1, . . . ,
to  b.  

Each monoidal V-category  A  (including ⁄⁄V⁄⁄ itself) becomes a lax promonoidal V-
category by defining  

  s a a an n( ; , . . . , )1 = A(a⁄⁄,⁄⁄  a an1 ⊗ ⊗. . . );  

but, since  A ⁄op is also monoidal,  A  also becomes a lax procomonoidal V-category by
defining 

  s a a an n( , . . . , ; )1 = A(  a an1 ⊗ ⊗. . . , a).    

¤7. Convolution
We are interested in lax promonoidal structures on the V-category  [A⁄⁄,⁄⁄B]  of V-

functors from  A  to  B.  Recall (for example, from [Ky]) that the V-valued hom for  [A⁄⁄,⁄⁄B]  is
"the V-object of V-natural transformations from  f  to  g" defined by the end formula

[A⁄⁄,⁄⁄B](f⁄⁄,⁄⁄g⁄)  =  
  
B fa ga
a
( , )∫

(which certainly exists when  A  is small). 

The first convolution structure we wish to distinguish makes  [A⁄op, V⁄]  into a lax

monoidal V-category for any small lax promonoidal V-category  A.  The structure is
obtained merely by applying Corollary 6.1 to V-Mod⁄⁄.  For, notice that  M⁄[I⁄⁄,⁄⁄A ⁄]  is precisely

the V-category  [A⁄op, V⁄⁄];  the hom called  A[f⁄⁄,⁄⁄g⁄]  above is precisely  [A⁄op, V⁄⁄](f⁄⁄,⁄⁄g⁄)  =

  
[ , ]fa ga
a∫ where  [u,v]  is the internal hom of  V.  To be explicit, the V-functor
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⊗
n

:  [A⁄op, V⁄⁄]  ⊗n aA[A⁄op, V⁄⁄] 

is defined by the coend formula

  
⊗ = ⊗ ⊗ ⊗∫n n

a a
n n n nf f a f a f a s a a a

n
( , . . . , )( ) . . . ( ; , . . . , )

, . . . ,
1 1 1 1

1
. 

The V-natural transformation  µ ξ :  sn   o (  s sm mn1
⊗ ⊗. . . ) ⇒ sm has components

  
⊗ ⊗





⊗








⊗• •
• ••

∫ i j i j i j m i i
a a

nf a s a a s b a
i
( ; ) ( ; )

,
aaA

  
⊗ ⊗

• •

∫ ••i j i j
a

i j mf a s b a( ) ( ; )

isomorphic to

  
1⊗

• •

∫ µ ξ
a

:  
  

⊗ ⊗ ⊗ ⊗
• • •

∫ ∫ • •i j i j
a

i j i m i i
a

nf a s a a s b a
i

( ) ( ; ) ( ; ) aaA
  

⊗ ⊗
• •

∫ ••i j i j
a

i j mf a s b a( ) ( ; ) ,

while  η : 1[Aop, V ⁄] ⇒ s1 is the composite

  
f b fa A b a fa s b a

a a
a

≅ ⊗
∫

 → ⊗∫ ∫
⊗

( , ) ( , )
1

1
η

.

What we notice in this construction is that we could actually reverse the  µ and  η of

A  and find that the structure on  [A⁄op, V⁄⁄]  also has its  µ and  η reversed;  the reversed
arrows are called  δ and  ε as with coalgebras and comonads.  In other words, if  A  is a lax

monoid in  V-Mod⁄co (that is, an oplax promonoidal V-category) then  [A⁄op, V⁄⁄]  is an oplax
monoidal category.  In fact, if we go ahead with that reversal we see that we only need the
oplax direction for  V.  

All told, we obtain our second convolution construction. We start with any (small)
oplax promonoidal V-category  A  and any cocomplete oplax monoidal V-category  C⁄,  and

obtain an oplax monoidal V-category  [A⁄op, C⁄].    Explicitly, the V-functor

  
⊗
n

:  [A⁄op, C⁄]  ⊗n aA[A⁄op, C⁄] 

is defined by the coend formula

  
⊗ = • ⊗∫n n n n

a a

n n nf f a s a a a f a f a
n

( , . . . , )( ) ( ; , . . . , ) ( ,. . . , )
, . . . ,

1 1 1 1
1

where  v ⁄⁄• ⁄⁄c  denotes the tensor of  v ⁄⁄∈ ⁄⁄V with  c⁄⁄∈ ⁄⁄C  (which exists since  C  is cocomplete).

The components of  δ for  [A⁄op, C⁄]  are given by composites

  
⊗ = • ⊗

∫
 →•• •• •• ••

•••
••

∫m m
a

mf a s a a f a
a

( )( ) ( ; ) ( )
δ δ

  
s a a s a a f a an

a a

n m n m
canon( ; ) ( ; ) ( ( ))( ), .

• • •• •• •• •
•• •

• •
∫ ⊗ ⊗ • ⊗ ⊗  →

  
s a a s a a f a s a a f an

a

n m m m n n m n n
aa

n n

n( ; ) ( ( ; ) , . . . , ( ; ) )• • • • • • •
• ••∫ ∫∫• ⊗ • ⊗ • ⊗

1 1

1
1 1 1 1
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=    
  
⊗ ⊗ ⊗• • • •n m mn n nf a f a a( , . . . , )( )

1
1 1 ,

where the arrow labelled "canon." is the usual comparison from the colimit of a functor at
a diagram to the functor at the colimit of the diagram, and the components of  ε are given
by

  
⊗ = • ⊗

∫
 → • ≅••

•

∫ ∫1 1 1 1 1 1 1 1 1
1

1
1( )( ) ( ; ) ( ) ( , )f a s a a f a A a a f a f aa a

a ε ε
.

A dual of this second construction is obtained by noting that  ( )⁄op reverses 2-cells but not
morphisms in ⁄V-Cat .  So we replace  C  by  X⁄op where  X  is any complete lax monoidal V-

category, and we obtain a lax monoidal structure on  [A⁄, X⁄]  =  [A⁄op, C⁄]⁄op.  The formula for
the V-functor

  
⊗
n

:  [A⁄, X⁄]  ⊗n aA[A⁄, X⁄] 

is defined by the end formula

  
⊗ = ⊗∫n n n na a n n nf f a s a a a f a f a

n
( , . . . , )( ) { ( ; , . . . , ) , ( ,. . . , )}

, . . . ,1 1 1 1
1

,

where  {v⁄⁄,⁄⁄x}  denotes the cotensor product of  v⁄⁄∈ ⁄⁄V with  x⁄⁄∈ ⁄⁄X⁄⁄.  
Our third convolution construction starts with  A  a lax procomonoidal V-category

and  B  a lax promonoidal V-category, both small, and produces a lax promonoidal
structure on  [A⁄⁄,⁄⁄B].  This is obtained by applying Lemma 6.2 to the V-functor  j : [A⁄⁄,⁄⁄B]
aA[⁄B ⁄op⁄⁄⊗ ⁄⁄A, V⁄⁄⁄]  defined by  

j ⁄(f⁄⁄)(b⁄⁄,⁄⁄a)  =  B(b⁄⁄,⁄⁄⁄f⁄(a)).

By Example 6 of Section 1 we know that  B ⁄op⁄⁄⊗ ⁄⁄A = (A⁄op⁄⁄⊗ ⁄⁄B)⁄op is a lax promonoidal V-
category, so, by our first convolution construction, we have a lax monoidal V-category

[⁄B ⁄op⁄⁄⊗ ⁄⁄A, V⁄⁄⁄].  The formula for the V-module  sn : [A⁄, B ⁄]  ⊗naA[A⁄, B ⁄]  can be  calculated as
follows :

  s f f fn n( ; , . . . , )1 =

  
B b fa B b f a B b f a s a a a s b b bn n n n n n n

a a b b

a b
n n( , ) , ( , ) . . . ( , ) ( , . . . , ; ) ( ; , . . . , )

, . . . , , , . . . ,

, 1 1 1 1 1
1 1 ⊗ ⊗ ⊗ ⊗



∫∫

=  
  

B b f a B b f a s a a a s fa b bn n n n n n
a a b b

a n
n n ( , ) . . . ( , ) ( , . . . , ; ) ( ; , . . . , ), . . . , , , . . . ,

1 1 1 1 1
1 1 ⊗ ⊗ ⊗ ⊗∫∫

=
  

s a a a s fa f a f an n n
a a

a n n
n ( , . . . , ; ) ( ; , . . . , ), . . . ,

1 1 1
1 ⊗∫∫ .

This last expression holds even when  B  is not small and clearly still yields a lax
promonoidal structure on  [A⁄⁄,⁄⁄B].  In particular, this can be applied when  A  is replaced by

A ⁄op and  B  by  V
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  s f f fn n( ; , . . . , )1 =
  

s a a a fa f a f an n
a a

a
n n

n ( ; , . . . , ) [ , . . . ], . . . ,
1 1 1

1 ⊗ ⊗ ⊗∫∫

which is different from the first convolution construction on  [A⁄op, V⁄]  in general; it does
agree when each  f⁄⁄(a)  has a dual in  V,  however there is much more to be said when duals
exist, and we do not wish to pursue that here. 

A fourth construction can be obtained by applying Lemma 6.2 to the same V-functor  j :

[A⁄⁄,⁄⁄B] aA[⁄B ⁄op⁄⁄⊗ ⁄⁄A, V⁄⁄⁄]  making use of the dual second construction on [⁄B ⁄op⁄⁄⊗ ⁄⁄A, V⁄⁄⁄]  (here

X = V⁄⁄).  We start this time with  A  oplax promonoidal and  B  oplax procomonoidal (both
small) to obtain the following lax monoidal structure on  [A⁄⁄,⁄⁄B]:

  s f f fn n( ; , . . . , )1 =

  
s a a a s b b fa B b f a B b f an n n n n n na a a b bn n
( ; , . . . , ) ( , . . . , ; ) , ( , ) . . . ( , )

; , . . . , ; , . . . , 1 1 1 1 1
1 1

⊗ ⊗ ⊗[ ]∫ .

The fifth convolution construction again starts, as in case three, with  A  a lax
procomonoidal V-category and  B  a lax promonoidal V-category, both small,  and produces
a lax promonoidal structure on  [A⁄⁄,⁄⁄B].  This time we begin with the V-module

u : A⁄op⁄⁄⊗ ⁄⁄B aA[A⁄⁄,⁄⁄B]
defined by  u(f⁄⁄,⁄⁄a⁄⁄,⁄⁄b) = B(fa⁄⁄,⁄⁄b).  We apply Proposition 4.1 to extend the lax monoid structure
from  A ⁄op⁄⁄⊗ ⁄⁄B  to  [A⁄⁄,⁄⁄B].  Using the formula for right extension along V-modules and using
the Yoneda lemma, we obtain           ⁄

  s f f fn n( ; , . . . , )1 =

  
B f a b B f a b s a a a s b b b B fa bn n n n n

a b
n n

a a b bn n
( , ) . . . ( , ), ( , . . . , ; ) ( ; , . . . , ) ( , )

,

, . . . , , , . . . ,
1 1 1 1 1

1 1
⊗ ⊗ ⊗ ⊗



∫∫

=   
  a a n n

a
n n n

n
s a a a s fa f a f a

1
1 1 1, . . . ,

( , . . . , ; ) ( ; , . . . , )∫ ∫ ⊗ .

Our sixth4 and final construction is added in the light of the article [BDK] which came
to our notice after completion of the rest of the paper.  For this we take  A  to be a small lax
procomonoidal V-category and obtain a lax procomonoidal V-category structure on
[A⁄op⁄⁄,⁄⁄V⁄]  defined by

  
s f f f f a f a s a a a f an n n n n n

a
a an

( , . . . , ; ) . . . , ( , . . . , ; )
, . . . ,1 1 1 1
1

= ⊗ ⊗ ⊗



∫∫ .

There are several ways to understand that this formula works. One way is to directly
calculate the substitution structure on the    s f f fn n( , . . . , ; )1 induced by that on the

  s a a an n( , . . . , ; )1 .  Another way is to apply Lemma 6.2 to the V-functor

Φ =   ∃Y :  [A⁄op⁄⁄,⁄⁄V⁄] aA[ [A⁄⁄,⁄⁄V⁄] , V⁄⁄]
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defined by left Kan extension along the Yoneda embedding  Y : A ⁄op aA[A⁄⁄,⁄⁄V⁄]⁄⁄;  this is
given  explicitly by the formulas

      
( ) [ , ]( , )Φ f h A a h f a

a
= ⊗∫ V Y =  

  
ha f a
a

∫ ⊗ .

In order to apply Lemma 6.2 we require a lax V-procomonoidal structure on  [ [A⁄⁄,⁄⁄V⁄] , V⁄⁄];
indeed, we obtain a representable such structure: we actually make  [ [A⁄⁄,⁄⁄V⁄] , V⁄⁄]  into an
oplax monoidal V-category.  To obtain this we first note that the first convolution
construction gives  [A⁄⁄,⁄⁄V⁄]  as a lax monoidal V-category:

  
⊗ = ⊗ ⊗ ⊗∫n n

a a
n n n nh h a h a h a s a a a

n
( , . . . , )( ) . . . ( , . . . , ; )

, . . . ,
1 1 1 1

1
.

Then we can apply the first convolution construction again to obtain an oplax monoidal V-
category  [⁄⁄[A⁄⁄,⁄⁄V⁄]⁄⁄,⁄⁄V⁄⁄]  defined by

    
⊗ = ⊗ ⊗ ⊗ ⊗∫n n

h h
n n n nr r h r h r h A h h h

n
( , . . . , )( ) . . . [ , ]( ( , . . . , ), )

, . . . ,
1 1 1 1

1
V .

There is a small word of warning here: the coend over    h hn1,. . . , ∈ ⁄⁄[A⁄,⁄⁄V⁄⁄]  may not exist i n
general because  [A⁄,⁄⁄V⁄]  is not small.  However, as you will see, the coends we need do
exist5. Let us calculate the lax procomonoidal V-category structure on  [A⁄op⁄⁄,⁄⁄V⁄]  obtained by
restriction along  Φ according to Lemma 6.2:

    
s f f f A f f fn n n n( , . . . , ; ) [ [ , ] , ]( ( , . . . , ), )1 1= ⊗V V Φ Φ Φ ≅

      
[ , ]( , ) . . . [ , ]( , ) [ , ]( ( , . . . , ), ) , ( )

, , . . . ,
A a h f a A a h f a A h h h f h

a a
n n n n n nh h h

n

n
V V V1

1
1 1 1 1 1∫ ∫∫ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗





Y Y Φ

≅     
      

f a f a A a a h f hn n n nh a an 1 1 11
⊗ ⊗ ⊗ ⊗



∫ . . . [ , ]( ( , . . . , ), ) , ( )

, , . . . ,
V Y Y Φ

≅     
  

f a f a f s a an n n na an 1 1 1
1

⊗ ⊗ −[ ]∫ . . . , ( ) ( , . . . , ; )
, . . . ,

Φ

≅     
  

f a f a s a a a fan n n n
a

a an 1 1 1
1

⊗ ⊗ ⊗



∫∫ . . . , ( , . . . , ; )

, . . . ,
.

The advantage of this viewpoint is that we have a fully faithful lax V-comonoidal
embedding  Φ of  [A⁄op⁄⁄,⁄⁄V⁄]  into  [ [A⁄⁄,⁄⁄V⁄] , V⁄⁄].  In the case where  A  is a "premonoidal" V-
category in the sense of [D1], we have that  [A⁄⁄,⁄⁄V⁄]  becomes a closed monoidal V-category
under convolution; so, by the same result again, the structure on  [ [A⁄⁄,⁄⁄V⁄] , V⁄⁄]  is monoidal,
and we have a lax comonoidal embedding  Φ of our lax comonoidal  [A⁄op⁄⁄,⁄⁄V⁄]  into a
genuinely monoidal category. 

A third (perhaps more conceptual or abstract) way of obtaining this sixth construction
is to revisit the material at the beginning of Section 6.  We can exploit the fact that the
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comparison  M[I⁄⁄,⁄⁄A ⁄] ⊗ M[I⁄⁄,⁄⁄B ⁄] aAM[I⁄⁄,⁄⁄A ⁄⁄⊗ ⁄⁄B ⁄]  is actually a V-functor to replace it by its
right adjoint V-module  M[I⁄⁄,⁄⁄A ⁄⁄⊗ ⁄⁄B ⁄] aAM[I⁄⁄,⁄⁄A ⁄] ⊗ M[I⁄⁄,⁄⁄B ⁄]  and so obtain a comonoidal
pseudo-functor  M[I⁄⁄,⁄⁄Ð ⁄] : M aAV-MOD 6.  So this  M[I⁄⁄,⁄⁄Ð ⁄]  takes lax comonoids to lax
comonoids.  Applying this in the case  M = V-Mod gives the desired lax comonoidal
structure on  [A⁄op⁄⁄,⁄⁄V⁄].

The special case of this sixth construction of prime importance in [BDK] (see their page
24) has  V the monoidal category of vector spaces and  A ⁄op a Hopf algebra  H⁄⁄; this implies
that  [A⁄op⁄⁄,⁄⁄V⁄]  is the V-category of left H-modules with the V-multicategory structure given
by

    
s m m m H m m H mn n

n
n

n
H

( ,. . ., ; ) [ , ]( . . . , )1 1= ⊗ ⊗ ⊗⊗ ⊗V .
Actually [BDK] makes use of the action of the symmetric groups on   s m m mn n( ,. . ., ; )1 but
we will leave it to a later paper to discuss symmetric lax monoids in symmetric monoidal
bicategories and the like.
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