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Introduction

I We are concerned with the commutativity of algebraic-type
constructions on certain monoidal 2-categories called Gray monoids
(see Day-Street [Advances, 1997]).

I Our viewpoint is that small symmetric strict monoidal categories are
many-sorted PROPs in the sense of Adams-Mac Lane (1965). (PRO
is short for ‘product’ and the final P indicates the permutations).

I General strict monoidal categories might be called many-sorted PROs
(since they have the product but not the permutations).

I In this way, small Gray monoids T can be thought of as many-sorted
2-PROs: a kind of monoidal 2-theory.

I In that language, the constructions we have in mind take a monoidal
bicategory M to the 2-category Mod(T,M ) of models of T in M .

I However, the twist is that, rather than Mod(T,M ) itself, we are
interested in the two types of lax morphisms between models.
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Having said all that!

I Motivated came from trying to understand the different ways that
tensor products of algebraic structures are constructed.

I A new insight was provided recently by Marek Zawadowski [The
formal theory of monoidal monads, JPAA 2012].

I He raises a question about a more general context for his work. This
talk gives one answer.
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Monads

I The remarkable fact about algebraically constructing a category A
from a nice category X is that the forgetful functor U : A −→X
has a left adjoint F a U and the category A can be reconstructed as
the category X T of Eilenberg-Moore algebras for the monad T = UF
on X .

I The Kleisli category XT is equivalent to the full subcategory of X T

consisting of the free algebras TX ; the adjunction F a U restricts to
an adjunction FT a UT : XT −→X which generates the same
monad T = UTFT.

I From the point of view of the 2-category (or bicategory) Cat of
categories, the constructions taking (X ,T) to X T and XT are dual:
the first is a limit and the second a colimit.
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First motivating example

I Write Abgp for the category of abelian groups. There is an adjunction
F a U : Abgp −→ Set generating a monad T = UF on Set.

I An abelian group structure on a set A amounts to an ‘action’ function
α : TA −→ A; this identification leads to an isomorphism of
categories Abgp ∼= SetT.

I The Kleisli category SetT has objects sets X and morphisms X −→ Y
abelian group morphisms FX −→ FY .

I The cartesian product of sets determines a monoidal structure on
SetT. We think of this construction as easy. The left adjoint
Set −→ SetT is bijective on objects and preserves the monoidal
structure.

I The tensor product of abelian groups determines a monoidal structure
on SetT. This construction involves coequalizers of morphisms
between free T -algebras. Not so easy!
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Second motivating example

I Let H be a bialgebra over a given commutative ring k.

I We obtain a monad H ⊗− on Modk from the algebra structure on
H. The Eilenberg-Moore category is the category ModH of left
H-modules.

I The coalgebra structure of H allows the tensor product of k-modules
to be lifted to H-modules giving a monoidal structure on ModH . An
easy construction! The right adjoint ModH −→ Modk preserves the
monoidal structure.
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Comparison of examples

I The monad T in the first example is monoidal: we have a coherent
natural family of morphisms TX × TY −→ T(X × Y ) and a
compatible distinguished morphism 1 −→ T1. Also the unit and
multiplication are monoidal: that is, they respect the monoidal
structure.

I The monad T = H ⊗− on Modk in the second example is
opmonoidal: we have a coherent natural family of morphisms
T(M ⊗ N) −→ TM ⊗ TN and a compatible distinguished morphism
Tk −→ k . Also the unit and multiplication are opmonoidal: that is,
they respect the opmonoidal structure.
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Monads in 2-categories

I A monad (A, s) in a 2-category K consists of an object A, a
morphism s : A −→ A, and 2-cells η : 1A =⇒ s and µ : ss =⇒ s
making s a monoid in the strict monoidal category K (A,A) whose
tensor product is horizontal composition in K .

I A monad morphism (a, α) : (B, t) −→ (A, s) consists of a morphism
a : B −→ A and a 2-cell α : sa =⇒ at which are compatible with µ
and η.

I In particular, (B, 1B) is a monad for any object B. A monad
morphism (a, α) : (B, 1) −→ (A, s) is called a (generalized) s-algebra.
(When K = Cat and B = 1, (a, α) is an Eilenberg-Moore s-algebra
in the category A.)

I Write MndK for the 2-category of monads, monad morphisms, and
obvious 2-cells, all in K .
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Eilenberg-Moore objects

I The Eilenberg-Moore object As for a monad (A, s) in K is a
universal s-algebra (u, υ) : (As , 1) −→ (A, s).
It can be constructed as a (weighted) limit in the sense of enriched
category theory.

I The Eilenberg-Moore objects provide the values on objects of a right
adjoint to the 2-functor

K −→ MndK , B 7→ (B, 1) .

I A monad in K op is the same as a monad in K . The Kleisli object
As of (A, s) is the Eilenberg-Moore object in K op.

I Put MndopK = (MndK op)op.
Then the Kleisli objects are the values of a left adjoint to the
2-functor

K −→ MndopK , B 7→ (B, 1) .
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Local cosimplicial objects

I Each monad (A, s) determines a coaugmented cosimplicial object

1A
η
// s

sη
//

ηs
//

s2
µ

oo

//

//

//

s3 . . .oo

oo

in the category K (A,A).

I There is a 2-category Σ∆ with one object • whose endohom category
Σ∆(•, •) is the algebraists’ simplicial category ∆; horizontal
composition is ordinal sum.

I Then monads (A, s) are in bijection with 2-functors

Σ∆ −→ K .
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Monoidales
I Monoidales are also called ‘monoidal objects’ or ‘pseudomonoids’.

I A monoidale A in a monoidal 2-category M is an object A equipped
with morphisms p : A⊗ A −→ A and j : I −→ A like a monoid,
however, strict associativity and unicity are not required, only up to
invertible 2-cells α : p(p ⊗ 1A) =⇒ p(1A ⊗ p), λ : 1A =⇒ p(j ⊗ 1A)
and ρ : p(1A ⊗ j) =⇒ 1A; these 2-cells satisfy two axioms.

I For example, a monoidale in Cat (where tensor is cartesian product)
is precisely a monoidal category.

I A monoidal morphism f : A −→ B between monoidales A and B is a
morphism f : A −→ B in M equipped with 2-cells
φ : p(f ⊗ f ) =⇒ fp and φ0 : j =⇒ fj satisfying three axioms. We call
f strong when φ and φ0 are invertible.

I With the obvious notion of monoidal 2-cell, we obtain a 2-category
MonM of monoidales and monoidal morphisms in M .

I There is also the 2-category MoncoM = (MonM co)co of monoidales
and opmonoidal morphisms in M .
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Monoidal and opmonoidal monads

I Monads in MonM are called monoidal monads.

I Monads in MoncoM are called opmonoidal monads.

I For M = Cat, the following is essentially due to Brian Day [On
closed categories of functors II (1974)].

Theorem

If M admits the Kleisli construction then so does MonM .

I For M = Cat, the following is essentially due to Ieke Moerdijk
[Monads on tensor categories (2002)].

Theorem

If M admits the Eilenberg-Moore construction then so does MoncoM .
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Comments on the Theorems

I The two theorems are not duals of each other in any obvious way.

I The constructions in each case are of the easy type.

I Marek Zawadowski [JPAA (2012)] found an underlying principle for
the easy construction to work:

Theorem

If M is a 2-category with finite products then there are natural
isomorphisms

MndopMonM ∼= MonMndopM ,

MndMoncoM ∼= MoncoMndM ,

compatible with the canonical 2-functors.
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The lax-Gray closed monoidal structure

I 2-Cat denotes the category of 2-categories and 2-functors as a
cartesian closed category; the internal hom is the 2-category [A ,B]
of 2-functors A −→ B, 2-natural transformations, and modifications.

I Graylax is the same category 2-Cat but now equipped with the lax
Gray monoidal structure; see John Gray’s book [SLNM 391 (1974)]
and paper [Coherence for the tensor product of 2-categories, and
braid groups (1976)].

I For 2-categories A , B and C , we have isomorphisms

2-Cat(A ,Fun`(B,C )) ∼= 2-Cat(A�B,C ) ∼= 2-Cat(B,Funr (A ,C )) .

I Here Fun`(B,C ) is the 2-category of 2-functors B −→ C , oplax
natural transformations, and modifications; Funr (A ,C ) is the
2-category of 2-functors A −→ C , lax natural transformations, and
modifications; and A�B is the lax-Gray tensor product.
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Generalized symmetries and the main commutativity

I We have natural isomorphisms

Fun`(B,C ) ∼= Funr (Bco,C co)co ,

Fun`(B,C ) ∼= Funr (Bop,C op)op .

I As with any closed monoidal structure, there is an isomorphism

Funr (A ,Fun`(B,C )) ∼= Fun`(B,Funr (A ,C ))

in 2-Cat. Call this our main commutativity.

I Grayps denotes the category 2-Cat with the pseudo-Gray tensor
product A �B. This structure is symmetric closed monoidal. A
Gray monoid is a monoid M in Grayps .
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Models and lax morphisms

I Mor(M ,N ) denotes the 2-category of Gray monoid morphisms
M −→ N (that is, 2-functors which strictly preserve the tensor
product), monoidal 2-natural transformations, and modifications.

I Mor`(M ,N ) denotes the 2-category of Gray monoid morphisms
M −→ N , monoidal oplax natural transformations, and
modifications.

I Morr (M ,N ) denotes the 2-category of Gray monoid morphisms
M −→ N , monoidal lax natural transformations, and modifications.

I We would like these last two 2-categories to be Gray monoids so that
we might restrict the main commutativity by replacing Fun by Mor
throughout. Of course this is absurd since monoid morphisms
between two given monoids do not form a monoid unless the
codomain is commutative.
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Pointwise tensor

I Suppose N is a braided Gray monoid in the sense of [DaySt1997].
We attempt to define the tensor product in Mor`(M ,N ) pointwise
by (S ⊗ T )M = SM ⊗ TM, however, this is only a pseudofunctor in
M. When it comes to preservation of tensor, we must use the
braiding and consequently end up with preservation up to equivalence.

I This suggests we look at the Gray monoid SMPs`(M ,N ) of strong
monoidal pseudofunctors M −→ N , monoidal opnatural
transformations, and modifications; the tensor product is pointwise.

I Similarly, let SMPsr (M ,N ) be the Gray monoid of strong monoidal
pseudofunctors M −→ N , monoidal natural transformations, and
modifications; the tensor product is pointwise.
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Embeddings

There are fully faithful inclusion 2-functors

Mor`(M ,N ) −→ SMPs`(M ,N )

and
Morr (M ,N ) −→ SMPsr (M ,N )

which allow us to define

Morr (L ,Mor`(M ,N ))

and
Mor`(M ,Morr (L ,N ))

as follows.
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The way around the problem

Suppose the 2-category F is supplied with a fully faithful 2-functor K into
a Gray monoid X . Define the 2-categories Mon`(L ,F ) to be the
following pullback of 2-categories.

Mor`(L ,F ) //

��

Fun`(L ,F )

Fun`(1L ,K)
��

Mor`(L ,X )
forget

// Fun`(L ,X )

Similarly define Morr (L ,F ) as a pullback with the ` subscripts replaced
by r subscripts.
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Main result

Proposition

For Gray monoids L and M , and a braided Gray monoid N , restriction
of the ‘main commutativity’ yields a natural isomorphism of 2-categories

Θ : Morr (L ,Mor`(M ,N )) ∼= Mor`(M ,Morr (L ,N )) .

Moreover, the following triangle commutes, expressing compatibility with
evaluation evM at any object M of M .

Monr (L ,Mon`(M ,N ))

Monr (1L ,evM) **

Θ //Mon`(M ,Monr (L ,N ))

evMtt
Monr (L ,N )
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The monad example

I Let FΣ∆ denote the free Gray monoid on the 2-category Σ∆ so that
there is a natural bijection between Gray monoid morphisms
FΣ∆ −→ N into the Gray monoid N and monads in the underlying
2-category of N . Moreover, we obtain isomorphisms of 2-categories

Morr (FΣ∆,N ) ∼= Funr (Σ∆,N ) ∼= Mnd(N ),

where Mnd(N ) is the 2-category of monads and monad morphisms
in the underlying 2-category of N .

I We also have

Mor`(FΣ∆op,N ) ∼= Mndop(N ).
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The monoidale example

I Steve Lack [A coherent approach to pseudomonads (2000)]
constructed a Gray monoid ∆′ such that monoid morphisms
∆′ −→M are in natural bijection with monoidales in the Gray
monoid M . Indeed, we have

Morr (∆′,N ) ∼= Mon(N ),

the 2-category of monoidales and monoidal morphisms in N .

I As ∆′ is locally an equivalence relation (that is, locally posetal and
locally groupoidal) we have ∆′ co = ∆′. So

Mon`(∆′,N ) ∼= Monco(N ) .

I Zawadowski’s commutation result is an example of our main result
with L and M taken to be ∆′ and FΣ∆ irrespectively.
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