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An arrow f: A0 B —C0O BUO D in a monoidal category is
depicted as follows.

Composition gf: A— C ofarrows f:A— B, g:B—C is
performed vertically up the plane (electronics term: in series):
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Tensoring f: A— B, £": A”— B’ to get

fO0t:AOA"— BOB’
is depicted horizontally from left to right (electronics term: in
parallel):

EINGCENNG

The unit for the tensor product is denoted by I. An arrow f:I—A 0 B
would be depicted by:
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The value of the above diagram is a certain arrow

AOBOFOG DOAOEOH.

Theorem (Joyal-Street) The value of a progressive plane string diagram in

a monoidal category is deformation invariant.
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Example of a monoidal category

Let B, be the Artin n string braid group. Here is an element of By .

f—1 1 2 3 4 5
NN
)
IEAUENSURN
1 2 3 4 5

A presentation for B_ is given by the generators S1,-++,8,1 and the relations

(Al) Si Si+1 Si = Si+1 Si Si+1 for 1 < 1 < n—2,

(A2) s, 5 = 58 for 1<i<j-1<n-2.
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The braid category B is the disjoint union of the B . More explicitly, the objects of

B are the natural numbers 0, 1, 2, ..., the homsets are given by

., Wwhen m=n
B(m, n) = .
[ otherwise

/

and composition is the multiplication of the braid groups.

The category B is equipped with a strictly associative tensor structure
defined by addition of braids

J:B,xB, — B

m-+n

which is algebraically described by

[N N
DS

adp
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Model category for cubical set
A cointerval in a monoidal category 7/ is a diagram

S

-

] < I si=1=ti

where I is the unit for the tensor product.

Can we find a model for the free monoidal category containing a generic
cointerval?

This will be a monoidal category generated by a single object ] and three

arrows depicted diagrammatically by

® ®

J J J

subject to the two relations

® ®

_  Empty
J —  diagram J

@® ®

Objects will be tensor powers ] Un=jojJo...0J (nterms) of J.

A typical arrow J U15—— JUI1 jg depicted below.
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1 2 3 4 5 6 7 8 9 10 11

ONONONONO ® ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This diagram can be interpreted as a function
§:<15> —— <11> where

<k>={-+,12,...,k}
as follows.

N
N

-+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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So our model category I has objects the bi-pointed sets < k> and arrows
E:<m> ——<n>

those functions which preserve —, + and have
i<j iff & ()< &(G)

whenever & (i), §(j) O {1, 2, ..., n}. The tensor product is given by

<m> 0 <n> =<m+ n>
0 &(i) for 0<i<m
[] 1) =
(€006 H ((i) for m<i<m+n

The cointerval in I is

<1l> < < 0>

which is generic in the sense that the tensor-preserving functors T from I
into any monoidal category ‘7 are in natural bijection with cointervals in

V. The bijection takes T to the image of the generic cointerval under T.

A cubical set, as used in algebraic topology, is precisely a functor

X : I —— Set.
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Braided monoidal categories

A braiding for a monoidal category is a natural family

CAB:AEIB = BOA

of isomorphisms compatible with the tensor product in the sense that the

following two diagrams commute.

‘a0, cC “aBOC
AOBOC ——CUOADOB AOBOC ———BOCOA
IDCK %Cﬂl CA,BE\\ %CA,C
AOCOB BOAOC

A braided monoidal category is a monoidal category with a
selected braiding.

Example The braid category B is braided monoidal. A braiding is given
by the elements

Theorem [JS] The braid category B is the free braided monoidal
category generated by a single object.
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AOCOB

> BOCOA
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Enter 3 Dimensions

Braid relation, Yang-Baxter equation,
or Reidemeister move III

Theorem (Joyal-Street) The value of a progressive 3D string diagram in a

braided monoidal category is deformation invariant.
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Duality in monoidal categories

A left dual for an object A of a monoidal category consists of an object
AU together with arrows
e: AlDA — 1, n:1I —— A 0O AU
such that

For monoidal categories with duality on both sides, this leads to string
diagrams in the plane which have winding,
and, for braided monoidal categories with duality, this leads to tangles
(these include both braids and links).

Again, each such diagram has a deformation invariant value.
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String diagrams for monoidal categories are in fact appropriate for
bicategories in the sense of Bénabou. A monoidal category is a bicategory
with one object (in the same way as a monoid is a category with one object).
What are called arrows of the monoidal category are called 2-cells in the
bicategory; what are called objects of the monoidal category are called 1-cells
in the bicategory; the one object (or 0-cell) of the bicategory never rates a
mention in the monoidal category. However, in the string diagram, we
should really think of this single 0-cell as labelling the plane regions
between the strings.

The more usual diagrams for bicategories have been called pasting
diagrams . The passage from pasting diagrams to string diagrams is via

planar Poincaré duality. For example, consider the pasting diagram below.

NN
\ yAY4

The corresponding string diagram is obtained by replacing 2-cells by nodes,

1-cells by edges, and 0-cells by plane regions, while preserving the incidence

relations.
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String diagrams have an advantage over pasting diagrams especially
when identity 1-cells are involved.

Identity arrows occur in some of the basic concepts in bicategories. As
an example, consider a pair of adjoint arrows u: A—>X, f:X—> A ina

bicategory. This means that there are 2-cells €, 1

A—>A

NG/ /\

(called the counit and unit) satisfying the two condltlons that the pasting

composites
1 1
A———A A—>A
f
el : el ]
X ——X XT>X

are equal to the identity 2-cells of wu, f, respectively. In terms of string
diagrams, these conditions become the following two equations between

values.

Adjoints in bicategories generalize duals in monoidal categories and lead to
diagrams with winding as before; but now 2D regions are labelled by

objects.

We shall later consider diagrams for higher adjoints.

Page 15



Alternative view of braidings

Commutativity can be expressed by saying the
operation is a homomorphism.

144

An abelian monoid “is” a monoidal category with one
object; that is, a bicategory with one object and only an
identity arrow.

A braided monoidal category is a monoidal category for
which the tensor product preserves the tensor product up to
coherent natural isomorphism. That is, it is a monoidal
bicategory with one object. That is, it is a tricategory with

one object (= 0-cell) and only an identity arrow (= 1-cell).

Diagrams for n-th order categories belong in n-

dimensional Euclidean space.

This is the explanation of why diagrams for monoidal
categories are 2D and those for braided monoidal categories
are 3D.

Symmetric monoidal categories are one object, one
arrow, one 2-cell tetracategories. Diagrams for
tetracategories belong in 4D. In fact, diagrams for
symmetric monoidal categories belong in 4 and all higher

dimensions: they are combinatorial.
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Surfaces in 3D and tricategories

The starting point is a 3-dimensional generalization of the Penrose

notation. A 3-cell in a tricategory

Consider the case where both a and g are identities; the picture has

one single 3D region A and no specific distinguished plane.
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Cube Example

\
h

W
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Movie version

Pasting version
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3D version

Take the following three planes in xyt-space:

N:x+y+t =0
MN: x-y=0
2:x+ty-t=0

Then the 1-cells u, r, x, h label parts of the plane A, the 1-cells v, p, z g
label parts of the plane [, and the 1-cells w, q, y, h label parts of the plane
2. The 2-cells a, { label parts of the line MnZ, the 2-cells B, € label parts
of the line X nA, and the 2-cells Yy, 8 label parts of the line AnTll. Of
course, the 3-cell a labels the point A nlnZ.

This relates to the Zamolodchikov tetrahedra equations.
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Lax adjunctions in tricategories

A lax adjunction in a tricategory consists of
objects A, X,

arrows u:A — X, f: X —A,
1
A——A A
el
u f f u
\ / %D\
X XT)X

A_>A

\ oy >y

2-cells €, N

and 3-cells n, e

}\——————a»A. AL——I———>nA
Y.
XT>X XT>X

satisfying the following two conditions:
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}\——————a»A_ Am—————+>}k

/D\ \ — /EI\D/IZI\

L
\ VEYY
/ \ o

\”/ = \”/rﬂ\”/
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Movie for n

Movie for e
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Surface for n
e |
—

Surface for e

==




10N axXi1om

Movie for lax adjunct

10

Surface diagram for ax
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Example from Blute-Cockett-Seely-Trimble

They expressed the logic of their “weakly distributive categories” in terms of
Yy €xp g Yy g

string diagrams and then used rewrite rules on them to find normal forms.

- é

rewrites

<

.
4

axiom > —— is the identity
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“The Cockett Pocket” (Verity)

X
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