
LOWÐDIMENSIONAL TOPOLOGY 
AND 

HIGHERÐORDER CATEGORIES
Ross Street

Collaborators:

Iain Aitchison now at University of Melbourne
Andr� Joyal Universit� du Qu�bec � Montr�al
Dominic Verity Macquarie University
Todd Trimble Macquarie University
John Power University of Edinburgh (Scotland)
Robert Gordon Temple University (Philadelphia)

Authors of some contributing works:

Roger Penrose (diagrammatic tensor calculus)

G. Max Kelly and M.L. Laplaza (combinatorial string diagrams)
Peter Freyd and David Yetter (category of tangles versus duality)
N.Yu. Reshetikhin and V.G. Turaev (invariants via categories) 
Mei Chee Shum (Macquarie PhD thesis on tangles of ribbons) 

J.S. Carter and M. Saito (movies)

J. E. Fischer  Jr (the monoidal bicategory of 2-tangles)

Good textbook for background applications:

Christian Kassel  Quantum Groups Grad Texts in Math 155 
(Springer-Verlag, 1995)

Page  1



An arrow  f : A ⊗ B aAC ⊗ B ⊗ D  in a monoidal category is
depicted as follows.

A B

C B D

f

Composition  g f : A aAC  of arrows  f : A aAB,  g : B aAC  is
performed vertically up the plane (electronics term: in series):

A

B

C

g f

g

f
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Tensoring  f : A aAB,  f⁄⁄Õ : AÕ aAB⁄Õ  to get  
f ⊗ f⁄⁄Õ : A ⊗ AÕ aA B ⊗ B⁄Õ 

is depicted horizontally from left to right (electronics term: in
parallel): 

f ⊗ f⁄⁄' f⁄⁄'f

The unit for the tensor product is denoted by  I .  An arrow  f : I aaaaAAAAA ⊗⊗⊗⊗ B
would be depicted by:

f
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F

A

A

C

E

G

D

B

hf

g

B

H

The value of the above diagram is a certain arrow  

A ⊗⊗⊗⊗     B ⊗⊗⊗⊗     F ⊗⊗⊗⊗     G  aaaaaaaaaaaaAAAA D ⊗⊗⊗⊗     A ⊗⊗⊗⊗     E ⊗⊗⊗⊗     H.

Theorem (Joyal-Street)  The value of a progressive plane string diagram in
a monoidal category is deformation invariant.
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Example of a monoidal category

Let  B ⁄n be the Artin n string braid group.  Here is an element of  B ⁄5 . 

¥ ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥t = 0

t = 1

1 2 3 4 5

1 2 3 4 5

A presentation for  B ⁄n is given by the generators  s1 , . . . , sn-1 and the relations

(A1) si si+1 si =  si+1 si si+1 for  1 ≤ i ≤ n-2,
(A2) si sj =  sj si for  1 ≤ i < j-1 ≤ n-2.

¥ ¥ ¥ ¥
1 2

¥ ¥n Ð 1i i + 1 n

¥ ¥ ¥ ¥
1 2

¥ ¥
n Ð 1i i + 1 n

s
i
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The braid category B is the disjoint union of the  B ⁄n.  More explicitly, the objects of

B are the natural numbers  0, 1, 2, . . . ,  the homsets are given by

B(m, n) =
B n when m = n
∅ otherwise ,




and composition is the multiplication of the braid groups. 
The category  B is equipped with a strictly associative tensor structure

defined by addition of braids

⊕ :  B⁄m × ⁄ B ⁄n
aaaA B ⁄m+n

which is algebraically described by

si ⊕  sj =  si sm+j .

¥ ¥ ¥ ¥¥ ¥ ¥

¥ ¥ ¥ ¥¥ ¥ ¥

⊕
=

α β α ⊕  β
¥ ¥ ¥

¥ ¥ ¥ ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥
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Model category for cubical set
A cointerval in a monoidal category  V is a diagram

J I

s

t
i s i  =  1  =  t iI

where  I  is the unit for the tensor product.

Can we find a model for the free monoidal category containing a generic
cointerval?

This will be a monoidal category generated by a single object  J  and three
arrows depicted diagrammatically by

s

J

t

J

i

J

subject to the two relations

s

J

t

J

i i

= =  Empty
diagram

Objects will be tensor powers  J ⊗⊗⊗⊗ ⁄⁄n =  J ⊗⊗⊗⊗     J ⊗⊗⊗⊗     ....    ....    ....    ⊗⊗⊗⊗     J  (n terms)  of  J.   

A typical arrow   J ⊗⊗⊗⊗ ⁄⁄15 aaaaaaaaAAAA J ⊗⊗⊗⊗ ⁄⁄11   is depicted below. 
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s s t s t t s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i i i

1 2 3 4 5 6 7 8 9 10 11

This diagram can be interpreted as a function  
ξξξξ        ::::        < 15 > aaaaaaaaAAAA< 11 >  where

< k>  =  { Ð, + , 1, 2, . . . , k} 
as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+Ð

1 2 3 4 5 6 7 8 9 10 11+Ð
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So our model category  I has objects the bi-pointed sets  < k>  and arrows 

ξξξξ        ::::        < m> aaaaaaaaAAAA< n> 
those functions which preserve  Ð, +  and have

i <  j     iff   ξξξξ (i) < ξξξξ(j) 
whenever  ξξξξ (i), ξξξξ (j) ∈∈∈∈     {1, 2, . . . , n}.  The tensor product is given by

< m> ⊗⊗⊗⊗         < n>   =  < m +  n>

  
(ξ ⊗ ζ )(i) =

ξ(i) for 0 < i ≤m
ζ(i) for m < i ≤m + n





The cointerval in  I  is

< 1> < 0>

s

t
i

which is generic in the sense that the tensor-preserving functors  T  from  I

into  any monoidal category  V  are in natural bijection with cointervals in

V.  The bijection takes  T  to the image of the generic cointerval under  T. 

A cubical set, as used in algebraic topology, is precisely a functor 
X  :  I  aaaaaaaaAAAASet .  
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Braided monoidal categories
A braiding for a monoidal category is a natural family

cA
⁄⁄

,
⁄⁄

B :  A ⊗⊗⊗⊗ B aaaakkkkaaaaAAAAB ⊗⊗⊗⊗ A

of isomorphisms compatible with the tensor product in the sense that the
following two diagrams commute.

A ⊗⊗⊗⊗  B ⊗⊗⊗⊗  C C ⊗⊗⊗⊗  A ⊗⊗⊗⊗  B

A ⊗⊗⊗⊗  C ⊗⊗⊗⊗  B

c
A ⊗⊗⊗⊗  B , C

1 ⊗⊗⊗⊗  c B , C c      ⊗⊗⊗⊗  1 
A , C

A ⊗⊗⊗⊗  B ⊗⊗⊗⊗  C B ⊗⊗⊗⊗  C ⊗⊗⊗⊗  A

B ⊗⊗⊗⊗  A ⊗⊗⊗⊗  C

c
A, B ⊗⊗⊗⊗  C 

1 ⊗⊗⊗⊗  c A , C
c      ⊗⊗⊗⊗  1 

A , B

A braided monoidal category is a monoidal category with a 
selected braiding.

Example  The braid category B  is braided monoidal. A braiding is given
by the elements

c = c m
⁄⁄⁄⁄

,
⁄⁄⁄⁄⁄⁄⁄⁄

n :  m⁄⁄⁄⁄ ⁄⁄⁄⁄+ ⁄⁄⁄⁄⁄⁄⁄⁄ ⁄⁄n aaaaaaaaAAAA n ⁄⁄⁄⁄⁄⁄⁄⁄+ ⁄⁄⁄⁄⁄⁄⁄⁄m

illustrated by the following figure.

m n

Theorem [JS]    The braid category  B  is the free braided monoidal

category generated by a single object.
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c  
A , B

A B

B A

A ⊗⊗⊗⊗  B ⊗⊗⊗⊗  C

A ⊗⊗⊗⊗  C ⊗⊗⊗⊗  B

B ⊗⊗⊗⊗  A ⊗⊗⊗⊗  C

c
A, B ⊗⊗⊗⊗  C 

1 ⊗⊗⊗⊗  c A , C

c      ⊗⊗⊗⊗  1 
A , B

B ⊗⊗⊗⊗  C ⊗⊗⊗⊗  A

C ⊗⊗⊗⊗  B ⊗⊗⊗⊗  A

C ⊗⊗⊗⊗  A ⊗⊗⊗⊗  B

c
A, C ⊗⊗⊗⊗  B 

naturality

c      ⊗⊗⊗⊗  1 
B , A

c      ⊗⊗⊗⊗  1 
A , C

1 ⊗⊗⊗⊗  c B , C 1 ⊗⊗⊗⊗  c A , B

c

c

c

A B C

A

A

B

B

C

C

c

c

c

A
BC

A

A

B

B

C

C

=
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Enter  3  Dimensions

Braid relation, Yang-Baxter equation, 
or Reidemeister move  III

A

B
C

A

B
C

=

Theorem (Joyal-Street)  The value of a progressive 3D string diagram in a
braided monoidal category is deformation invariant.
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Duality in monoidal categories
A left dual for an object  A  of a monoidal category consists of an object

A∗∗∗∗         together with arrows

εεεε        ::::        A∗∗∗∗         ⊗⊗⊗⊗         A   aaaaaaaaAAAA I , ηηηη        ::::        I   aaaaaaaaAAAA A ⊗⊗⊗⊗         A ∗∗∗∗

such that

εεεε

ηηηη

=

A
A

A∗∗∗∗

∗∗∗∗

A∗∗∗∗

εεεε

ηηηη

=

A

A A A∗∗∗∗

,

=

,

=

For monoidal categories with duality on both sides, this leads to string
diagrams in the plane which have winding, 
and, for braided monoidal categories with duality, this leads to tangles
(these include both braids and links). 

Again, each such diagram has a deformation invariant value.
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String diagrams for monoidal categories are in fact appropriate for
bicategories in the sense of B�nabou. A monoidal category is a bicategory
with one object (in the same way as a monoid is a category with one object).
What are called arrows of the monoidal category are called 2-cells in the
bicategory; what are called objects of the monoidal category are called 1-cells
in the bicategory; the one object (or 0-cell) of the bicategory never rates a
mention in the monoidal category. However, in the string diagram, we
should really think of this single 0-cell as labelling the plane regions
between the strings. 

The more usual diagrams for bicategories have been called pasting
diagrams . The passage from pasting diagrams to string diagrams is via
planar Poincar� duality.  For example, consider the pasting diagram below.

A

A

C

C E

⇑

B

D⇑

⇑a

a

b

c

d e

f

g

h

φ

θ

ψ

E

b

The corresponding string diagram is obtained by replacing 2-cells by nodes,
1-cells by edges, and 0-cells by plane regions, while preserving the incidence
relations.

C

A

A

C
E

E

D

B
ad e h

a b

f

g

c b

φ

θ

ψ
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String diagrams have an advantage over pasting diagrams especially
when identity 1-cells are involved. 

Identity arrows occur in some of the basic concepts in bicategories.  As
an example, consider a pair of adjoint arrows u : A aaaaAAAAX ⁄⁄⁄⁄⁄⁄⁄⁄,  f : X aaaaAAAAA  in a
bicategory.  This means that there are 2-cells  εεεε, ηηηη

A A

X

u f

1

⇑ε

X X

A

⇑η

1

f u

(called the counit and unit) satisfying the two conditions that the pasting
composites

A A

X

u
f

1

⇑ε

X
⇑η

1

u

X X

A

⇑η

1

f u

A

f

1

⇑ε

are equal to the identity 2-cells of  u⁄⁄⁄⁄, f⁄⁄⁄⁄,  respectively.  In terms of string
diagrams, these conditions become the following two equations between
values.

η

ε f
u

u
u=

η

ε

f
u =

f
f

Adjoints in bicategories generalize duals in monoidal categories and lead to
diagrams with winding as before; but now 2D regions are labelled by
objects.

We shall later consider diagrams for higher adjoints.
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Alternative view of braidings
Commutativity can be expressed by saying the

operation is a homomorphism.
An abelian monoid ÒisÓ a monoidal category with one

object; that is, a bicategory with one object and only an
identity arrow.

A braided monoidal category is a monoidal category for
which the tensor product preserves the tensor product up to
coherent natural isomorphism. That is, it is a monoidal
bicategory with one object. That is, it is a tricategory with
one object (= 0-cell) and only an identity arrow (= 1-cell).

Diagrams for n-th order categories belong in n-
dimensional Euclidean space.

This is the explanation of why diagrams for monoidal
categories are 2D and those for braided monoidal categories
are 3D.  

Symmetric monoidal categories are one object, one
arrow, one 2-cell tetracategories.  Diagrams for
tetracategories belong in 4D.  In fact, diagrams for
symmetric monoidal categories belong in 4 and all higher
dimensions: they are combinatorial.
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Surfaces in 3D  and  tricategories
The starting point is a 3-dimensional generalization of the Penrose 

notation.  A 3-cell in a tricategory

A B

f

g

α β
a

transformations via 3D Poincar� duality to

a

g

f

β

α
A

B

Consider  the case where both  αααα and  g  are identities; the picture has
one single 3D region  A  and no specific distinguished plane.

a β

Page  17



Cube Example

Pasting version

a
⇑

⇑
⇑

⇑
⇑

⇑α

β

γ

δ

ε

ζ

f

g

h

u

v

w

p
r

q x

y

z

g

f h

u

v

w

Movie version

a

α

γ
ζ

δh

p

r

v

z

h

u

g

ff
g h

β

f
g

u

w

q

u v
w

ε

v
w

x

y
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3D version

Take the following three planes in xyt-space:

  

Λ : x + y + t = 0
Π : x − y = 0
Σ : x + y − t = 0 .

Then the 1-cells  u, r, x, h  label parts of the plane  ΛΛΛΛ,  the 1-cells  v, p, z, g
label parts of the plane  ΠΠΠΠ,  and the 1-cells  w, q, y, h  label parts of the plane
ΣΣΣΣ⁄⁄⁄⁄.  The 2-cells  αααα , ζζζζ label parts of the line  ΠΠΠΠ ⁄⁄⁄⁄⁄⁄⁄⁄∩∩∩∩ ⁄⁄⁄⁄ΣΣΣΣ,  the 2-cells  ββββ , εεεε label parts
of the line  ΣΣΣΣ ⁄⁄⁄⁄⁄⁄⁄⁄∩∩∩∩ ⁄⁄⁄⁄ΛΛΛΛ,  and the 2-cells  γγγγ, δδδδ label parts of the line  ΛΛΛΛ ⁄⁄⁄⁄∩∩∩∩ ⁄⁄⁄⁄ΠΠΠΠ .  Of
course, the 3-cell  a  labels the point  ΛΛΛΛ ⁄⁄⁄⁄∩∩∩∩ ⁄⁄⁄⁄ΠΠΠΠ ⁄⁄⁄⁄∩∩∩∩ ⁄⁄⁄⁄ΣΣΣΣ⁄⁄⁄⁄⁄⁄⁄⁄.

y

t

x

y = Ð1 y = +1

y = 0

¥ ¥ ¥

Λ

Π Σ
ΛΛ

Π
Π

Σ

Σ

This relates to the Zamolodchikov tetrahedra equations.
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Lax adjunctions in tricategories

A lax adjunction in a tricategory consists of 
objects  A ,  X ,
arrows  u : A aaaaAAAAX⁄⁄⁄⁄⁄⁄⁄⁄,  f : X aaaaAAAAA , 
2-cells  εεεε, ηηηη

A A

X

u f

1

⇑ε

X X

A

⇑η

1

f u

and 3-cells  n, e

A A

X

u
f

1

⇑⇑⇑⇑εεεε

X
⇑⇑⇑⇑ηηηη

1

u

A A

X

u

1

X

⇑⇑⇑⇑

1

u1
n

X X

A

⇑⇑⇑⇑ηηηη

1

f u

A

f

1

⇑⇑⇑⇑εεεε e

X X

A

⇑⇑⇑⇑

1

f

A

f

1

1

satisfying the following two conditions:

Page  20



X X

A

⇑⇑⇑⇑ηηηη
1

f u
A

f

1

⇑⇑⇑⇑ εεεε

X1

1 u

X X

A

⇑⇑⇑⇑ηηηη
1

f
u

A1

⇑⇑⇑⇑
X1

1

u⇑⇑⇑⇑ηηηη

f

X X

A

⇑⇑⇑⇑
1

f

A1

X1

u⇑⇑⇑⇑ηηηη

n ηηηη

e ηηηη

1

A A

X

⇑⇑⇑⇑εεεε
1

u f
X

u

1

⇑⇑⇑⇑ ηηηη

A1

1 f

A A

X

⇑⇑⇑⇑εεεε
1

u
f

X1

⇑⇑⇑⇑
A1

1

f⇑⇑⇑⇑εεεε

u

A A

X

⇑⇑⇑⇑
1

u

X1

A1

f⇑⇑⇑⇑εεεε

εεεε    n

1

εεεε    e
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Movie for  n

nu

u

f

u

ηηηη

εεεε

Movie for  e

e f
f

uf
ηηηη

εεεε f

f
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Surface for  n

n

εεεε

ηηηη

Surface for  e

e

εεεε

ηηηη
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Movie for lax adjunction axiom

e

ηηηη

εεεεηηηη

ηηηη

n

ηηηη ηηηη

εεεε

ηηηη ηηηη

ηηηη

Surface diagram for axiom

en
εεεε

ηηηη ηηηη
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Example from Blute-Cockett-Seely-Trimble

They expressed the logic of their Òweakly distributive categoriesÓ in terms of
string diagrams and then used rewrite rules on them to find normal forms.

×××× ∗∗∗∗data

rewrites
××××

∗∗∗∗

r

;

∗∗∗∗

××××

s

××××

axiom
s

××××

∗∗∗∗

××××

r

××××

is the identity
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ÒThe Cockett PocketÓ  (Verity)

∗∗∗∗××××

××××

r

∗∗∗∗ ××××

s

∗∗∗∗

∗∗∗∗

××××

××××

××××====
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