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BRAIDED MONOIDAL CATEGORIES 

by 

Andr~ JoyaZ and Ross Street 

Introduction 

Categories enriched with tensor products , called monoidal categories 

[ 11], occur in various branches of mathematics. Large examples such as 

the categories of abelian groups and of banach spaces are important for 

studying mathematical st ructures. Small examples, as found in algebraic 

topology, are important as mathematical structures in their own right . 

Monoidal categories with commutative tensor product deserve special 

attention as do commutative rings in ring theory . Natural examples of 

commutativity are not strict in the sense A ® B = B ® A. Rather, natural 

isomorphisms c : A ® B ~ B ® A exi st . 
A,B 

With a view to known exampl es 

and Mac Lane ' s coherence theorem [ 25] , it has been consistently felt that 

the symmetry condition 

s. c c = 1 
BA AB A®B 

shoul d be assumed . Together with a condition expressing c 
A,B®C 

in 

terms of cA, B ' cA,C ' which we call Bl (see Section l below) , this is 

the notion ofasymnetry for a monoidal category [11]. 

The point of the present paper is to show that a somewhat weaker 

notion , cal l ed a braiding, admits important new examples (especially in 

homotopy and cohomology theories) , occurs natura l ly i n the theoretical 
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context of further multiplications on a monoidal category, has an 

adequate coherence theorem, and , is as versatil e as symmetry. A braiding 

consists of natural isomorphisms satisfying Bl 

and condition B2 which expresses in terms of c , c . 
A,C B,C 

A symmetry is exactly a braiding which also satisfies the symmetry 

condition S; but not every braiding is a symmetry. 

A braided monoidaZ category is a monoidal category with a chosen 

braiding. In Section 1 further diagrams B3 -B7 are shown to commute. 

The first three of these show that the identity functor enriches to a monoidal 

equivalence between the monoidal category and the same category with the 

reverse tensor product. The last two are essential for later sections. 

Section 2 provides a wealth of examples of braidings which are not 

symmetries. For the usual monoidal structure on the category of graded 

modules over a commutative ring K, braidings are in bijection with 

invertible element s k of K; for a symmetry k
2 

1 i s required. 

Our second example m is the groupoid whose objects are natural 

numbers and whose arrows n + n are elements of the braid group lB • 
n 

This example is at the heart of the whole theory of braided monoidal 

categories as appears two sections later. 

A non-example suggested by F.E.J . Linton and related to lB shows 

that BS, B6, B7 do not imply any of Bl-B4. Actuall y , B3 , B4 , B6 

a.re equivalent to Bl, B2 (this is the essence of Section 3). Even in 

the presence of S , conditions B3, B4, BS do not imply Bl (see 

Kasangian-Rossi [14]). It is also easy to give examples to show that 

Bl and B2 are independent and to show that B3, B4, B7 do not imply 

Bl or B2. 
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The obvious analogy between homotopies and natural transformations 

has deeper consequences than one might first expect [29,30]. The analogues 

of topological groups are categorical groups (or groups in Cat) and 

these amount to crossed modu l es as occur in homotopy theory [35]. A 

crossed module is a group homomorphism a: N + E together with an action 

of E on N subject to some axioms. A categorical group is an example 

of a strict monoidal category arising from the crossed module by taking 

elements e of E as objects, by taking arrows u: e + e' to be elements 

u of N with e = cr(u)e', and by obtaining the tensor product from the 

action of E on N. A braiding for this categorical group amounts to a 

familiar notion in homotopy theory, namely, a bracket operation 

{ , }: E x E + N for the crossed module; the properti es of this are 

those of an "abstract commutator". 

When the tensor product is stric tly associative and is v iewed as 

add ition, axioms Bl, B2 express bilinearity. This is made precise in 

the construction of braided monoidal categories from bil inear functions 

in general and ring multiplications in particular. 

The final example in Section 2 points out that the convolution of 

Day [6], when applied to a small braided (pro-) monoidal category, yields 

a braided monoidal category of presheaves which is closed, complete and 

cocomplete. 

Section 3 gives a generalization of the argument of Eckmann- Hilton 

[9] behind the commutativity of the higher homotopy groups. Recall that, 

if M is a monoid and f: M x M + M is a monoid homomorphism such that 

f(l,x) = f(x,l) = 1, then f(x,y) = xy = yx for all x,y E M; so the 

monoid ;is :~commutative. This argument applies to monoids in any category 
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and so to monoids in the category Cat of small categories. However, 

when M is a monoid in Cat (that i s , a strict monoidal cat egor y ), 

there is the possibility of considering fun ctors f: M x M + M which are 

not homomorphisms but merely preserve the multiplication (or tensor 

product) of M up t o isomorphism subject to appropriate conditions; that 

is, we can cons ider f to be a strong monoidal functor, not necessarily 

strict. It turns out in this case t hat f(x , y) ~ xy and a braidi ng is 

obtained for M. It is shown more generally that, fo r any monoidal category 

V (not necessary -strict), an extra "multiplication" on V l eads to a 

braidings also each braiding l eads to a multiplication. Th i s gives a 

natural explanation for briadings as opposed to symmetries . 

The free braided monoidal category on the category 1 (with one 

object and one arrow) i s the b r aid category lB described above. This 

is the main result of Section 4 . It follows from work of Kelly [ 17] on 

"clubs " that we have an explicit description of the monad on Cat whose 

a l gebras are brai ded strict monoidal categories and whose pseudo- algebras 

are braided monoi dal categories. In other words JB represents the 

"theory" in an appropriat e sense . The permutation category IP p l ayed 

the corresponding role in the case of symmetric monoidal categori es . A 

coherence result for braided monoidal cat egori es is obt a ined : a diagram, 

built up from instances of associativity and the braiding using t e nsor 

product and composition , commutes if the associ a t ed braids are equal. 

When deve l oping t he theory of categories enriched over a 

monoidal category, Eil enberg- Kelly [ll]found it necessary to i nvoke 

symmetry to define opposite (or dual) enriched categories and to define 

tensor products of e nriched categories . In Section 5 we show that a 
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brai ding suffices . The constructions are the same as in [11] , however, 

where Mac Lane 's coherence theorem i s used in the symmetric case , we make 

do with Bl - B7. 

Section 6 gives a treatment of the 3 - d imen sional cohomology of 

groups from the viewpoint of categories with structure. The usual inter-

pretation theorem invol ving exact sequences 

of groups i s s hown to be a consequence of a result expre ssed in terms of 

2- categories [21]. Just as sets with a particular kind of structure form 

a category, categories with a structure form a 2-category: not only are 

there arrows between objects, but 2-cell s between the arrows (because 

of the n a tural transformati ons between fun ctors ). Because we are only 

interested in set s up to isomorphism, we a r e only interested in categori es 

up to equi valence ; hence we are only interested in 2-categories up to 

biequivaZence (a concept which ignores the insertion of extra equivalent 

objects). 

A 2- category H3 
is described whose objects (G,M,h) consist 

o f a group G, a G-module M, and , a normalized 3-cocycle h: G
3 

-+ M. 

This 2 - category holds the information of a ll the cohomology groups 

3 
H (G,M) and 

2 
H (G, M). A very simple construction yie lds, for each 

object of H3
, a monoidal category T(G,N, h ) for which the associa t ivity 

comes from h. A more c omplicat ed constructi on involving free groups 

and coming d i rectly from Eilenberg- Mac Lane l eads to a strict monoidal 

category S(G , M, h ) where t his time h enters into the tensor product. 

Yet we p r ove an equivalence 
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T'(G,M,h) S(G , M,h) 

of monoidal categories. 

Each S(G,M , h) is in fact a categorical g roup. While this is 

not true of T(G,M,h) unless h = O, each arrow in the underlying 

category is invertible and there i s an inverse - like operation on the 

objects. 

A category is a groupoid when every arrow is invertib le. A 

monoidal category is called compact when there is a "duality operation", 

taking an object A to A*, suitably axiomatized. It turns out that 

a monoidal groupoid is compact if and only if, for each object A, t here 

i s an object A* with A ® A* isomorphic to the identity I for tensor 

product ®· Alternatively , a monoidal groupoid is compact if and only 

if it i s closed in the sense of [11]. 

It is shown that T gives a biequivalence between H3 
and the 

2- category CMG of compact monoidal groupoids, strong monoidal functors , 

and, monoidal natural transformations. Hence , a compact monoidal 

groupoi d det ermines, and is determined up to equivalence by, a group , 

a module on which it acts, and a 3-cocycle. 

It follows that 
3 

S : H + CMG is also a biequivalence . So every 

compact monoidal groupoid i s equi valent to a categorical group and so 

essenti ally amounts to a crossed module . The interpretation theorem for 

3 
H (G ,M) (see K. Brown [4]) comes out of this. 

In conclusion, Section 7 shows that a compact braided monoidal 

groupoid is classified by a pair of abeZian groups G, M and a quadratic 
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function t: G + M. Here G is the group of isomorphism classes of objects 

under tensor product, M is the group of automorphisms of the identity 

for tensor product under composition; and, t is obtained from the 

trace of the braiding. Every quadratic function is so obtained. Compact 

braided monoidal groupoids with isomorphic quadratic functions are 

equivalent. However, bhi s is not part of a biequivalence of 2-categories; 

the failure is measured by abelian group extensions. 

Compact syrronetric monoidal groupoids are classified by quadratic 

functions t: G + M with 2t(x) = 0 for all x E G. 

This last section uses the work of Eilenberg-Mac Lane [24,10, 12] 

on the cohomology of abelian groups. The connection is that, not only is 

the 3- cocycle condition a pentagon condition for associativity , but the 

extra datum for an abelian 3-cocycle amounts precisely to a braiding. 

Two previous works had an impact on this paper. Joint work of 

M. Tierney and the firs t author on homotopy 3-types showed that 

arc-connected, simply connected spaces could be represented by what we 

would call braided categorical groups. It should be noted that the joint 

work makes use of the 2-groupoid version of a tensor product of Gray 

[13] and that Gray used the braid groups to prove the pentagon conditions 

for associativity of his tensor product. 

The second work involves categories enriched over bicategories. 

Results of Street [32] show that operations on enriched categories, if 

they are t o be compatible with modules, must exist a lready on a suitable 

base bicategory. In particular, if we are to have tensor products of 

enriched categories (compare Section 5 here ) , there shoul d be a gl obal 
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tensor product on the base bicategory. However, the idea that this global 

tensor product might lead to symmetry when the base bicategory has one 

object (and so is merely a monoidal category) was reported to us as occurring 

in a conversation of A. Carboni, F.W. Lawvere and R.F.c. Walters (Sydney, 

January 1984); an Eckmann-Hilton argument was envisaged. 

The second author would like to thank the "Groupe Interuniversitaire 

en Etudes Categoriques" directed by Michael Barr for making possible a 

six- week visit to Montreal dur ing April-May 1985. 
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§ 1. Braidings 

A monoidaZ categor y V = (V 0 , ~' I, r, f, a) consists of a category 

V 0, a functor G9 : V 0xV 0-+V 0 (written between the arguments and called 

the tensor product of V), an object I of V0 , and, natural isomorphisms 

a = a A BC : (A Q9 B ) Q9 C + A ~ ( B@ C ) , 

r = rA : A©I +A, 

such that the following diagrams commute: 

IT. (AQ9I)G9C a AG9 (IG9C) 

r®~ /i®f 

A G9C 

The diagram AP is called the pentagon for associativity and the diagram 

IT is called the triangle for identities . This definition is in agree-

ment with that of Eilenberg-Kelly [11 ; p.471] where our AP, IT are 

called MC3, MC2. Call V strict when each aABC' rA, fA i s an identity 

arrow in V . 

A braiding for V consists of a natural family of isomorphisms 

c =CAB : A®B--B ®A 
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in v such that the fo 11 owing two diagrams commute. 

AQ9{B0C) 
c 

{B0C) Q9A Bl. 

y ~ 
(A ©B) ©C BG9{ C@A) 

c~~ ~l@c 
(B®A)®C a B® (A ®C) 

B2. (A<3B)@C c C ®(A ®B) 

~ ~ 
A®(B®C) (C®A) ©B 

l~ ~l 
A®(C©B) 

-1 
A®C) ®B 

a 

A monoidal category together with a braiding is called a braided 

monoidaZ category. Note that B2 amounts to Bl with CAB replaced by 

s. 

so that -1 c is a braiding which is generally different from c. 

A syrrmetry is a braiding such that the following diagram commutes: 

~B©A~ 
A©B l A©B. 

In the presence of S, observe that 82 is the inverse of Bl so that 

B2 is redundant. Thus this notion of symmetry is exactl y that of 

[11; p.512] (our Bl, S are their MC?, MC6); however, Eilenberg-Kelly 

do not consider general braidings. Examples of braidings which are not 

symmetries will be given in the next section . 

Proposition 1. In a braided monoidaZ category, the so Zid arrows in the 

f oUowing diagrams B3-B7 commute . [The symbol ® has been omitted from 

the objects to save space. ] 



B3. 

B5 . 

B6. 

B7. 

3. 

c c 
AI IA B4 . IC CI 

r~ /l 
A 

~/r c 

JAB)C c @l (BlA)cC 

A (BC) 

1 @cl C (BA) 

/a 
A(CB)--c-- (CB)A 

c Q9 1 a l@a - 1 

(AB)(CO) (BA~(CO) B(A (CO ) ) B( (AC )O) 

! 0c l 'SI functor 1®c l a natural li 0 (l 0c) l 
(AB)(OC)-<:._®J _+-(BA)(OC)--a_ ~ B(A (OC)) B2 l <'.?i c 

1 
: ! Ga"'-" B(O CAC )) 

a-1 a natUI'aZ :a - 1 AP !((AO)C) 

(cGl) G l + a @l ,/' a \ 

a ~:Bl)O ).C - - - - -+(:~ )0 )C-(~ 0c~ ~:(r) )C 1 0 (c ~1\ 1 0 a-' 

a natural ~ 
+ 

(A (BO )) C ( <BO ) A ) C ( B CD A ) ) C B ( ( A ) C ) 
C@l a Q9 1 a 

-1 c ~ l 
A (CB) a (AC )B (CA) B 

I<S9y ''' ~ 
A (BC) ''-

' Bl C(AB) 

Y' ' ' ,c 
' ' ......... ~c ' , c natUI'aZ 

' (AB )C "- ' C (BA) ...... 

CQQ~ ' / a-1 Bl ' ' ' C '- "'-......... 
(BA)C ' (CB)A 

a~ 
........ 

/c@1 ' ' ""-
B(AC) 

1 ®c 
B(CA) 

a-1 
(BC)A 
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Proof. B3. Take B= C =I in Bl, use the coherence of a,r,.t and the 

invertibility of cA,r· 

B4. Take A= B= I in B2, use the coherence of a,r,.t and the 

invertibility of cr,c· 

B5 becomes B7 on replacing the bottom c using Bl and the right-hand 

c using B2 . 

B6 and B7 are proved by using the dotted arrows in the diagrams . D 

§2. Examples . 

1. Graded modules . 

For a commutative ring K, let V0 be the category GModK of graded 

K-rnodu les with tensor product given by 

l A ©K B . 
p+q=n P q 

The associativity a: (A ®B) ®C -A ® (B ©C) is given by 

a( (x ®y) ®z) = x ®(y®z). 

Braidings c: A®B-+ B©A for this monoidal structure on GModK 

are in bijection with invertibl e element s k of K via the formula 

c(x :~ y) = kpq(y @x ) where XE AP, Y E Bq 

The proof can be extracted from [11 ; pp . 558-559] where it is shown that 

Sj111metries are in bijection with elements k of K satisfying k2 =1. 

Note that, by taking k non-invertible and defining c as above, 

we still obtain a natural c satisfying Bl,B2. Hence the requirement 

that a braiding be an isomorphism is independent of the other requirements . 
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2 • The braid category 1B . 

Let P denote a Euclidean plane with n distinct collinear points 

distinguished and labelled 1,2, . . . ,n. Let ( ~ ) denote the space of 

subsets of P of cardinality n. The braid group IBn on n strings 

is the fundamental group of ( ~). A loop w: [0,1] ~ ( ~) at the 

point {1,2, .. . ,n} of this space can be depicted by a diagram in 

Euclidean space of the form 

t = 0 

t = 1 

where a horizontal cross-section by P at level t E [0,1] intersects 

the curves in the subset w(t) of P. Let Ti be the homotopy class 

of the loop depicted by the following di agram 

1 2 i i+l n-1 n 

I 
I 

i i+l -1 2 n-1 n 

for i =1, . .. ,n-1 . A presentation of JBn is given by the generators 

and relations 

BGl. Ti Ti+i Ti = Ti+i Ti Ti+i for i=l, . . . ,n-2. 

BG2 . for li-jj > 1, i,j=l, . .. ,n-1. 

For details see [ 1 ], [ 3 ] , [ 5 ]. 
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There are rel ations between the various 1Bn . There are group 

homomorphisms 

given by = T. 
1 

for i=l, .. . ,m-l, 

k(Ti) = Tm+i for i=l, .. . ,n-l. 

Note that Tm is not in the image of h or k. By BG2, elements in 

the image of h commute with elements in the image of k; hence the 

function 

+ 

given by t,:+ n = h( t,: ) k(n) is a group homomorphism called addition of 

braids . Pictorially, addition of braids amounts to juxtaposition of 

diagrams . 

+ = 

t,: n t,: + n 

The braid category 1B is the co product of the lBn as one-object 

categories. More explicitly, the objects of IB are the natural numbers 

0,1,2, ... , the homsets are given by 

lB(m,n) = { lBn 
~ 

when m = n, 

when m ~ n, 

and, the composit ion is multiplication in the braid groups. 

The tensor product + : ]B x IB ~ lB is given on objects by addition 

of natural numbers and on arrows by addition of braids. This defines a 

strict monoidal structure on lB with identity object I = 0. 



This brings us to the definition of a braiding 

c = c m,n 
m+n---+ n+m 

for the strict monoidal category Il3 . 

fo 11 owing di a gram for c5 •4 E IB,~ • 

The idea is illustrated by the 

m n 

n 

To describe this al gebrai call y, put 

y = T T 1 ... T 2 
T

1 
E Il3n+1 and 

n n-
y (p) = 1 + y + 1 E 18m+n 

for 
p m-p-1 

Then 
= (O ) (1) (m-1 ) IB 

y y .. ,y E m+n 

Naturality of c m,n 
is proved pictori a lly by: 

m n 

m 

n 

p=0,1, .. • ,m-1. 

n 

m 
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Axiom Bl is proved pictorially by: 

m 

For axiom B2, view the last picture from behind the page . Algebraic 

proofs seem to add nothing to our discussion and so will not be included. 

This braiding is not a symmetry since c
1

,
1 

= T
1 

E IB
2 

and T
1 

T
1 

~ 1
2

. 

3 . Ribbons and braids. 

Fred Linton provided the following example (after a lecture on the 

material of this paper [ 33]) which shows that B3-B7 of Proposition 1 

do not imply Bl or B2. The monoidal category LL is defined similarly 

to lB except that the arrows are braids on ribbons (instead of on 

strings) and it is permissible to twist the ribbons. Each ribbon has 

two edges which act as stri ngs so there is a faithful strict monoidal 

functor lL --+ IB taking n to 2n. Let c : m+n --+ n+m m,n be 

defined for lL as for E except that each ribbon is also given one 

twist through 2~. Since Bl,B2 involve an odd number of e's whereas 

B5-B7 each involve an even number of e's, and, since Bl-B7 all hold 

when the twists are ignored (by Example 2), we see that cm,n is a 

natural isomorphism satisfying B5-B7 but not Bl or B2. 

4. Crossed modules with bracket operations . 

Crossed modules appeared in the work of J.H .C. Whitehead [ 35] 
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on homotopy theory. J-L. Verdier (1965) observed that they amount to 

groups in the category of groupoids . The underlying category of any 

group in the category Cat of categories is automatically a groupoid 

(who first observed this we do not know!), so crossed modules are 

pr ecisely group s in Cat. Regarding the group multiplication as a tensor 

product, we obtain a strict monoidal category. The extra structure 

required for a braiding occurs naturally in homotopy theory as the 

Samelson bracket [34 ; p.467] . The details follow. 

A crossed semi-module (N,E,oi,*) consists of monoids N,E, a monoid 

homomorphism a : N-+-E, and, a function * : Ex N -+-N (written between 

the arguments), satisfying the following axioms: 

l*U = U, (ef)*U = e * (f * U), 

o(e * U)e = eo(U), (o(U)*V)U = UV . 

The first four of these say that * is an action of E on N (that is, 

E~ End(N), e r--+e* -, is a monoid homomorphism) and the last two 

say the action behaves like an abstract conjugation - 1 11 e * u = e u e 11
• 

A crossed module is a crossed semi-module in which N,E are grou ps 

[ 4 ; p .102] . 

A bracket operation for a crossed semi-module is a function 

{ , } : E x E--+ N into the invertible elements of N satisfying t he 

following axioms 

a{e,f}fe = ef, {l,g} = {f,l } = 1, 

{ ef, g} = ( e * { f, g} ){ e , g} , { e, g f} = { e, f} ( f * { e, g}) , 

{a (u),f}(f * u) = u, {e, a (v)}v = e * v. 

This operation shou ld be thought of as an abstract colTDTlutator. 

Eac h crossed semi-modul e (N,E,o,*) yield s a stri ct monoidal 
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category V as follows. The objects of V0 are the elements of E. 

An arrow u: e -+e' in V0 is an element u of N with e = a (u)e'. 

Composition in V0 is multiplication in N. The tensor product is 

given by 

(e --=u~ e • ) @ (f --'v--+ f' ) = (ef u (e • *V )) e • f •). 

Braidings for this V precisely amount to bracket operations via 

the formula 

c f = {e, f } : ef fe. e, 

In the very special case where N,E are commutative monoids and 

a ,* are trivial (that is, d(u) =land e * u=u for all CEE,u EN), 

a bracket operation is a function {,}:E x E --+-N into the invertible 

elements of N satisfying the conditions 

{1,g} = {f ,1} = 1, 

{ef ,g} = {e,g}{f ,g }, {e,gf} = {e,f}{e,g} . 

These conditions are precisely those for a bilinear> map Ex E--+ N when 

the more familiar additive notation is used in the commutative monoids. 

When E = N = 'll. and the bilinear map 'll. x ?l-+-?l is multiplication, 

the associated braided monoidal category is an algebraic model of the 

homotopy 3-type of the 2-sphere (as in unpublished work of Joyal-Tierney) . 

When E is the additive group 'll. and N is the multiplicative 

monoid of a commutative ring K, each invertible element k of K 

gives a bracket 'll. x ?Z-+ K with {p,q} = kpq . The associated braided 

monoidal additive category leads to Example 1 via convolution as described 

in Example 5 below. 
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5. Convolution . 

Convolution of monoidal structures was di scussed by Day [ 6] 

we centre attention on pages 17-29 of that paper. 

Let U be a cocomplete synmetric (braided would do here but that 

requires e and ( )0 P of U-categories discussed later) monoidal closed 

category. The notion of promonoidaZ Li-category P is defined on 

pages 17 and 18 of [ 6] (although the word "premonoidal 11 was 

used there). A braiding for a promonoidal Li-category is defined just 

as Day define s 11 synmetry11 on page 23, except that PC3 is deleted and 

PC4 (the analogue of Bl) is -·augmented by the obvious analogue of 82 . 

If P is a small braided monoidal Li-category then the Li-functor 

Li-category [P,U] with the convolution structure is a cocomplete 

braided monoidal closed category. (All the diagrams need to prove this 

already appear in Day [ 6 ]. ) 

Each braided monoidal Li-category gives rise to a braided promonoidal 

Li-category [ 6; p.26] . So all our small examples of braided monoidal 

categories can be convoluted to give more examples. We point out the 

particular example [18,Set] as worthy of detailed study (elsewhere). 
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§3. Multiplications on monoidal categories . 

For monoi da 1 categories V, V' , a monoidaZ functor qi = (<P ,¢ ,cp o) : V ~ V 1 

I 

consists of a functor <P : V 0 ---+- V0 , a natural transformation 

¢ = ¢AB: <PA 0 <P B --+ cp (A~B), and, an arrow cpo : I -+cp l, satisfying 

axioms MFl, MF2 , MF3 [11; p.473] . Call ~ ~trong when ¢ , cpo are 

invertible. Call <P str ict when ¢ , cpo are identities. 

Let MCL denote the 2-category of (small) monoidal categories, 

monoidal functors, and, monoidal natural transformations . The 2-category 

of more interest here is the sub-2-category MC of MCL with the same 

objects, with strong monoidal functors as arrows , and, with monoidal 

natural transformations as 2-cells . There is also the 2-category MC5 

of strict monoidal categories, strict monoidal functors, and, monoidal 

natural transformations; so MC 5 is the 2-category of monoids in the 

2-category Cat of categories . 

The 2-category MCL admits products and the projections are strict 

monoidal functors; so the sub-2-categories MC , MC 5 are closed under 

formation of products. The product of V, V' in MCL has (V x V') o = 

V0 x V0', (A,A') ~ (B , B') = (A G9 B,A 1 G9 B1
), I= (I,I) . The terminal 

object MCL is the category Il with one object and one arrow enriched 

with its unique monoidal structure . 

A binary operation on an object V of MC is a strong monoidal 

functor <P: V x V ---+- V. For reference we give axiom MF3 in thi s case. 

MF3. (¢, CA,A 1 )¢(B,B 1 ))¢ (C,C 1
) 

~0 1 1 
¢(AB,A 1 Bi)¢(C,C 1

) 

a 
<P (A,A' )(cp( B,B' )¢(C,C' ) ) 

~ 1 
¢ ((AB)C,(A1 B1 )C') --- - -­

<P (a,a ) 

l1 0~ 
<P (A,A' )cp (BC,B 1C1

) 

1 ~ 
<P (A ( BC ) ,A I ( B I c I ) ) 
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A pseudo- identity for the binary operation in MC (as in any 

2-category) is a nullary operation 11.--+V which acts as an identity 

for ¢ up to an invertible 2-cell. Up to isomorphism there is only 

one arrow 11.--+ V in MC, namely, the strong monoidal functor taking 

the one object of 11. to I . Hence ¢ admits a pseudo-identity if 

and only if there exist isomorphisms 

AA : A = <!> (I ,A) , 

such that AI = ¢0 = p1 and the following commute . 

PI. AB ~¢ (1,AB) 

>.<n l j $ (.el'1 l 
<f> {I,A)<f> {I,B) ~<f> {Il,AB) 

<I> 

AB-~<!> (AB, I) 

p@pl 1$(1,rl) 

, ¢ (A,I)¢ (B,I) ~<P (AB,II). 
¢ 

A binary operation ¢ together with A,p as above will be called a 

muZtipZication on V. 

The following result generalizes the fact that the binary operation 

of a commutative monoid is a monoid homomorphism. 

Proposition 2. If c is a braiding for a monoidaZ category V then 

a muZtipZication (¢,A ,p) on V is defined by 

¢ = - @-

~ 

<P = m (A 69 A' ) 69 (B ~ B') --~--~) (A @B) Q9 (A' Q9 B') 

(! 6ila-1 )a l l (l @a-
1

)a 

A69 ((A' @B)@ B') A69 ( (B@A' )@B' ), 

and , 

Proof . Conditions MFl, MF2 , PI follow from B3, B4 of Proposition 1 

whereas MF3 comes from B6. D 
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The following result generalizes the fact that, for a monoid in 

the category of monoids, the two binary operations agree and the 

monoid is commutative (Eckmann-Hilton [ 9 ]) . 

Proposition 3. For any multiplication (¢,A, p) on a monoidal category 

V, the following diagram defines a braiding c for V. 

¢ (1 @B,A G9 I) ¢ (B @I,I ~A) 

<P (l,~ ~,l ) 
'I ~ cp (B,A) 

The multiplication obtained f rom this c via Proposition 2 is isomorphic 

(in the obvious sense) to (¢ ,A,p). If c• is any braiding for V and 

(¢, A, p) is obtained from c ' via Proposition 2 then c = c' . 

Proof. Since each arrow in the definition of c is a natural isomorphism, 

it remains to prove Bl,B2. The following diagram proves Bl fo r V 

stri ct monoidal . We leave it to the reader to modify the diagram in the 

general case. 
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BAC 

p ~ 
cp (B,I)cp (I ,A)C Bcp (I,A)cp (C,I) 

~I \~ [QI[] cp 1 1¢ 
l p>. 

8¢ (C,A) cp (B,A)C 

;11 cp ( B, I )cp ( I , A )cp ( C , I ) 1~ 
¢ (I , A )¢ ( B, I ) C Bcp ( C , I)cp (I , A) 

[f!l I I p pl 1 [ill 

BCA 

cp (I,A)cp (B,I)cp (C,I) cp (B,I)cp(C,I)cp (I,A) 

~ ~ 
) (B,A)cp (C,I) ¢ (8,I)cp (C,A) 

IMF31 ~MF30 IMF31 

p2 

cp (I ,A) cp (BC, I) ~ cp (BC ,A) ~----
¢ cp 

cp (BC , I )¢ (I , A) 

The last two sentences of the Proposition are straightforward . D 

For braided monoidal categories V, V', a monoidal functor <P : v~ V' 

is said to be braided when the following diagram commutes. 

c t;r $B1;A 
cp (A <i> B )--- cp (B <i'>A) 

cp c 

Let BMCL denote the 2-category of braided monoidal categor ies, 

braided monoidal functors , and, monoidal natural transformati ons . 

Restricting to braided strong monoidal functors, we have the 2-category 

BMC . Further restr icting to braided strict monoidal categories and 

braided stri ct monoidal functors, we have the 2-category BMC5. Of 

these , the one of mo st interest is BMC . 
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The results of this section can be summarized as an equivalence 

between the 2-category BMC and the appropriate 2-category Mult(MC) 

of monoidal categories with multiplication. 
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§4 . Coherence for braidings. 

One form of the coherence theorem for monoidal categories is that 

every monoidal category V is equivalent in MC to a strict monoidal 

category ( =monoid in Cat) [25], [ 2], [27]. However, it is not 

true that every braided (or even s.)ffimetric) monoidal category is 

equivalent in BMC to a commutative monoid in Cat. The reason is that 

c: A<S9A -+A @A is generally not the identity of A<S9 A and this 

distinction is preserved by equivalence. 

Recall from Kelly [17] that the free s.)ffimetric strict monoidal 

category on Il is the category F of finite cardinals and permutations. 

The analogue for braided strict monoidal categories comes out of the 

next result . 

Theorem 4. For each braided monoidal category V, evaluation at 1 E ]3 

is an equivalence of categories 

BMC ( B, V) :::. Vo . 

If V is strict monoidal , this restricts to an isomorphism of categories 

Proof. Let M be a strict monoidal category with V ~ M in MC . 

Clearly the braiding on V transports to a braiding on M such that 

V ~ M lifts to BMC. There i s a commutative diagram of functors 

ev
1 BMC ( lB, V )---- Vo 

~l l~ 
BMC(lB, M)---~ Mo ev

1 

So it suffices to prove the Theorem for V strict monoidal . 
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For each object A of V0, we shall describe the unique braided 

strict monoidal functor <P : IB--+ V with <j> (l) =A. To preserve tensor 

product, we are forced to put <P (n) = An (where again we put 

A ~ B =AB). To give <P on arrows we must define a monoid homomorphism 

<j> : Bn--+V0 (An,An) for each n. Since <P istobebraidedand 

c1 ,1 = T1 : 2--- 2 in B, we are forced to have <P (T1) = cA,A : A2----+ A2 

But then the equality Ti= li_1+T1+1n-i-i : (i-1)+2+(n-i-1)-+(i-1)+2+(n-i-1) 

in IB forces the definition 

( ) i-1 n-i-1 
<P T . = 1 . 1CA Al . 1 : A AAA ~---, Al- , An-1-

To see that this gives the desired monoid homomorphism we must see that 

the relations of the braid group are preserved: BGl follows from B7 

of Proposition 1 and BG2 from functorial ity of Q9 in V. Natural ity 

of the equality <P (m)<P (n) = <P (m+n) in m ,n e: B follows from the 

definition of addition of braids (look at the images of h,k separately). 

Hence we have a strict monoidal functor <P : B----+ V. Properties Bl,B2 

in B and the fact that n = 1+ . .. +l show that each cm is built ,n 

up from c1 ,1 = T1 : 2----+2 using the monoidal structure. Thus 

cA,A = <P (T1 ) implies <P is braided. 

Now we show that evaluation at 1 is fully faithful. Take braided 

strong (not necessarily strict) monoidal functors ~ . ~ : B----+V and an 

arrow f: cp (l)-+ ¢ (1) in V0. Let ¢n: <P (l)n-+ <P (n) be defined 

inductively by ¢0 = <Po : I-+ <P (O) and 

In order to have a monoidal natural transformation a : <P ~ ~ with 

a
1 

= f , we are forced to define an by the commutative diagram 
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The naturality of a follows from the naturality of a ,~ and the 

braidedness of ¢ ,~ (it suffices t o see that ~ < T ; )an = an¢(T i )) . 

That a is monoidal follows from commutativity of the diagram 

¢ (1 )m+n. ____ _ 
fTI+n 

and the simil ar one for ~ (these commutati vi ti es can be proved by 

induction directly or by appeal to [ 22 ] for coherence of monoidal 

functors). D 

A sli ght modification of the work of Kell y [ 17] on 11 clubs 11 gives 

the 2-monadi city of BMCs over Cat and that the 2-monad i s determined 

by the free obj ect on Il . The seco nd sentence of Theorem 4 precisely 

stat es that B i s the free bra ided stri ct monoidal category on TI.. 

Aga in from Kelly [ 15], [ 17], [ 18] we know that the 2-cat egory of 

bra ided monoidal categories and braided strict monoidal functors i s 

2-monad ic over Cat. In this sense, the free braided monoidal category 

B on TI. i s suc h t hat the cat egory of braided strict monoidal fu nctors 

B-+ V i s isomorphic to V0 2-na turall y in braided monoidal V. 

Let r : B -+ lB correspond to 1 E lB under thi s isomorphism . 

Theorem 4 implies that r : B-+ lB i s an equivaZenee in BMC. 

The objects of B are the integraZ shapes of Kell y-Mac Lane [20 ]; 

they incl ude I,1 and TQ<> S for any integral shapes T,S. The arrows 
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are built up from the basic a,r,t ,c using G9 and compo sition . The 

faithfulness of r implies the fo ll owing coherence result: 

to test whether a diagrcun built up from a,r,t ,c corronutes in all 

braided monoidal categories it suffices to see that each leg of the 

diagrcun .has the scune underlying braid. 

For example, the following equalities of braids reprove 85, 86, 87 of 

Proposition 1 . 

85. A 8 C 

l CX B 
C/S<:A 

= 

86. A 8 C D 

X I I 
8/ A C ~D 
I X~ 
8 D _............ A C 

A 8 C D 

I I X 
A 8 D/ C 

B~A ! 
= 

87 . 

= 
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§5. Categories enriched over braided monoidal categories . 

Categories with horns enriched in a monoidal category V were 

defined by Eilenberg-Kelly [ 11; pp.495-496]; they are more briefly 

called V-categori es . There is a 2-category (= ~ypercategory) V-Cat 

of (small) V-categories, V-functors and V-natural transformation s. 

We write V-Catco for the 2-category obtained from V-Cat by reversing 

2-cells (but not 1-cells) . 

Propo sit ion 5. Suppose V is a braided monoidaZ category. For each 

V-category A a V-categor y A0 P i s defined by the following data : 

( i ) 

(ii ) 

(iii ) 

(iv) 

objects of A0 P are 

A0 P(A,B) = A(B,A); 

j : I--+ A0 P(A,A) 

A0 P(B,C) cg,A0 P(A,B) 

II 
A(C,B)~A(B,A) 

\ 

is 

those of A . 
' 

j : 
M 

I-+A(A,A); 

A0 P (A,C) 

II 
A(C,A) 

~ 
A(B,A) <i9 A(C,B) . 

and, 

The assignment A f----+ A0 P is the object function of an ismorphism of 

2-categories 

)
0 P: V-Catc0---+V-Cat . 

Proof. Compare [ 11; p.514]. The only difference is that we cannot 

appeal to MacLane's coherence to prove commutativity of the top 

hexagon in the diagram on p. 515 of [ 11 ]. However, the hexagon does 

commute by Proposition 1, 85. D 

A word of warning: (A0 P )0 P ~ A The i somorphism 

not involutory unless the braiding i s a s)illmetry. However, since ( )0 P 
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is an isomorphism the principle of duality does apply to the general 

braided case. 

Proposition 6. Suppose V is a braided monoidal category and A,B 

are V-categories . The f ollowing data define a V-category C denoted 

by A G9 B : 

(i) objects of C are ordered pairs {A,B) of objects A,B 

(ii ) 

(ii i ) 

of A, B, respectively; 

c ((A' B)' (A I 'BI ) ) = A(A,A') G9 B{B,B'); 

------+ C{(A,B),(A,B)) l 

l -11 II 
101 ------A(A,A)G9B{B,B); and, 

j G9j 

(iv) C( (A' ,B' ) ,(A",B")) &I C{(A,B),(A' ,B' ) )fi c( CA,B ) ,(A",B" ) ) 

II II 
(ACA',A")Q98(B 1 ,B")) Q9 {A (A,A')Q98(B,B')) A{A,A") G9 B(B,B") 

m\ ~ 
(A(A' ,A") &IA(A,A' ) ) ® {B ( B' ,B") Q9 8( B,B' ) ) 

where m is the ''middle- four interchange" appearing in Proposition 2. 

Taking the definitions precisely as in Eilenberg- Kelly [ 11; p.519], 

V-Cat becomes a h · ' l monoidal 2- category. 

Proof. The only difference here from [ 11] is that we cannot appeal 

to Maclane's coherence to prove commutativity of the top hexagon in 

the bottom diagram of p.518 . The hexagon does commute in our case 

too by Proposition 1, B6 . D 

Opposite monoids and ten sor products of monoids in V are special 

cases of the above results since a monoid in Vis a one-obj ect 

V-category. A monoid A in a braided V is corrmutative when the 

following diagr am commutes. 
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c 
A ~A A,A > A ~A 

~/' 
A 

Proposition 6 allows us to define monoidal V-categories and 

braidings thereon . 
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§6. Cohomology of groups. 

Let H3(G,M) denote the 3-dimensional cohomology group of the 

group G with coefficients in the G-module M (by which we mean a 

module over the group ring ~G) . The purpose of this section is to 

show that the usual interpretation (see Brown [4 ;p.103] and the 

references there) of H3(G.M) in terms of crossed modules can be 

viewed as a combination of an easy interpretation in terms of compact 

monoidal groupoids and a coherence result which allows the replacement, 

up to equivalence, of a pseudo-structure by a genuine one. 

The 2-category H3 is defined as follows. An object (G,M.h) 

consists of a group G, a G-modu l e M and a function h: G3-+M 

h(x,1,y) = 0 

uh(x,y,z) + h(u,xy,z) + h(u,x,y) = h(u,x,yz) + h(ux,y,z) 

(that is, h is a normaliz ed 3-cocycZe ). An arrow (g,p,k): (G,M,h) 

~ (G 1 ,M 1 ,h 1
) consists of a group homomorphism g: G--+ G1 (so that 

M' becomes a G-modul e), a G-modul e homomorphism p : M ~ M' and a 

function k: G2 ~w such that 

k(x,1) = k(l,y) = 0 

ph(x,y,z) + k(xy,z) + k(x,y) = k(x,yz) + (gx)k(y,z) + h1 (gx,gy,gz) 

(that is, ph-h 1g3 is the cobounda:ry of a normalized k). A 2-cell 

e ( k) ( k ) (G'M'h)-+ (G' ,M' ,h') : g,p, ~ g1,P1' i : is a function e : G --+MI 

such that 

8 (1) = 0 

e(xy) + k(x,y) = k1(x,y) + e(x) + g1 (x)e (y) 

(that is, k-k1 is the cobounda:ry of a normalized e ) . Compositions 

are defined in the obvious way; however, if there is any doubt, we are 

about to define an embedding T of H3 into the 2-category MC (see 
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Section 3) of monoidal categories and the compositions are preserved 

by T. 

For (G,M,h) E H3, the monoidal category V = T(G,M , h) is defined 

as follows: 

- objects are elements of G; 

{: for x = y, 
- V0 (x,y) = 

for x ~ y; 

- composition is addition in M; 

- tensor product is given by 

(x -4 x) @ (y ...}4 y) = (xy µ + xv> xy) ; 

- the associativity isomorphism is 

h (x ,y ,z) : (xy )z --->- x (yz); 

- the identity element of G acts as a strict identity object of V. 

For each arrow (g,p,k): (G,M.h) ~ (G' ,M' ,h 1
), there is a 

monoidal functor qi = T(g,p,k): T(G,M,h) ~ T(G 1 ,M 1 ,h 1
) defined as 

follows: 

¢ ( x -14 x ) = ( g ( x ) ~ g ( x ) ) ; 

¢x ,y = k (x ,y) : g (x )g (y) ~ g (xy); 

¢ 0 = 0 : 1 ---)- g (1) . 

The monoidal natural transformation Te : T(g,p,k) => T(g 1 ,p1 ,k1 ) is given 

by (Te )x = e (x): g(x)--->- gi(x) . 

A monoidal category V is called compact when, for all objects A, 

there exist an object A* and arrows nA: I --->- A* (Sf) A, eA: Afi> A*-+ I 

such that the following composites are identities. 
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-1 

lG9n AG9 {A* G9 A) _a __ (A G9 A*) <i9 A e<i9l A 

u-1 ~ 1 1 °' 
A~~ _-<-~-- I @A* n' (A* G9 A) @A* -""-a--r A* G9 (A@ A*) 161e A* G9 I ---'-r---+ A* 

(This differs from the definition in the 1 iterature [15 , 7 ,19] in that 

we do not require symmetry . ) 

Proposition 7. I f V is a monoidal category such that, for all objects 

A, there exist an object A* and an invertible arrow eA: A@A*--+- I 

then V is compact . 

Proof. D.ef i ne nA : I---+ A* ©A to be the composite 

I --+A*A** · A*(IA**) A*((AA*)A**) --+A*(ACA*A**)) 
eA!, 1 ~.t - 1 1 G9 (eA1 ~ 1) l ~a 

A*(AI} A*A . 
1 G9 r 

The two diagrams which complete the proof will be omitted . O 

A groupoid is a category in which all arrows are invertible . So a 

monoidal groupoid is compact if and only if, for each object A, there 

exists an object A* with A G9 A* --+ I . 

Let CMG denote the full sub-2-category of MC consisting of 

the compact monoidal groupoids. Notice that T actually lands in CMG . 

Recall that a 2-functor F: K-+ L is called a biequivalence 

[31] when it induces an equivalence 

K(K,K') ~ L(FK,FK 1
) 

on horn-categories fo'r all K,K', and, for all objects L of L, there 

exist an object K of K and an equi va lence FK ~ L in L . 
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Proposition 8. The 2- funator T: H3 --+ CMG is a biequivalenae . 

Proof. A monoidal natural transformation T(g,p,k) => T(g1 ,p1 ,k1 ) 

is precisely a 2-cell (g,p,k) => (g 1 ,p1 ,k1 ) in H3 • Every monoidal 

functor is isomorphic to a normal one (that is, one with ¢0 an 

identity) and a normal monoidal functor T(G,M,h) - T(G' ,M ' ,h') 

is precisely an arrow (G,M,h) - (G' ,m' ,h') in H3. So T induces 

equivalences on horn-categories. 

The structure of "compact monoidal groupoid 11 transports across 

equivalences of categories . Since every category is equivalent to a 

skeletal category, each object of CMG is equivalent to a VE CMG 

such that A--+ B in V0 implies A= B. Let G denote the group 

of objects of V: the multiplication is tensor product AG9B and 

the inverse of A is A*. Let M denote group V0(I ,I) of endo­

arrows of I under composition . Since (f ,g) ---+r1(f G9g)r!1 defines 

a homomorphism Mx M -M taking (l,f) and (f ,1) to f, it 

follows that M is an abelian group and fg = r 1(fGQg)rr 1 (Eckmann­

Hilton [ 9] again). We have homomorphisms A. A, pA: M --+V 0(A,A) given 

by the composites 

-1 ) 
Vo (I , I ) - 69 A Vo (I 69 A , I G9 A) Y..oJJ ,l > Vo (A, A) 

V0(I , I) A69 - V0(A 69 I,A G9 I) Vo(r-
1
,rL V0(A,A) 

which are dinatural [26;p . 214] in A with inverses given by the 

composites 

V0(A,A) - G9 A!.v 0 (A ~A* , A ~ A*) Va(e-l ,e)) V
0
(I,I) 

-1 
V

0
(A,A) A* 69 - V 0 (A* ~A,A* G9 A) Vo(n,n ) ) V0 (I , I). 

It follows that A·f = A.A- 1 (pA(f)) defines an action of G on M so 

that M becomes a G-module. Let W denote the underlying category 

of T(G,M,O) and define a functor ¢ : W0 --+ V0 by ¢ (A)= A and 
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<P (A-L.+A) = >..A(f): A --A where f EM. Then <P is an isomorphism 

of categories. There is a unique normal (that is, each rA' .e.A an 

identity) monoidal structure W on W0 for which <P underlies a 

monoidal functor ~ : W--+ V. The associativity isomorphism for ~J 

gives a normalized 3-cocycle h: G3 .-+ M. Clearly T(G,M,h) = W == V 

in CMG . 0 

Consider the following classical construction from the cohomology 

of groups [23,4] . 

Let G be a group and let F denote the free group on the under-

lying pointed set of G so that the inclusion a : G ~ F of generators 

is a function satisfying o(l) = 1. There is a unique group homomorphism 

w : F --+ G satisfying wa(x) = x. Let R denote the free group on the 

square of the underlying pointed set of G so that the inclusion of 

generators gives a function T: G2 --+R with T(x,1) = T( l,y) = 1 

for all x,y G. There is a unique group homomorphism K: R---+ F 

satisfying 

KT (x,y) = o(x)a (y) a(xy)- 1
. 

This gives a short -exact sequence of groups 

1~ R~K~F~G---+1. 

If M is a G-module, we can extend this to an exact sequence of 

groups 

0 t' d w 1 - ·---+ M --''---+> K --=----+ F -=--+ G ---+ 1 

by taking K = Mx R, t(µ ) = (µ ,1), a (µ ,p) = K(p). Since M is abelian 

and R is free, each x E G and function h: G3 -+ M determine a unique 

homomorphism nx : K-+ K sat i sf yi ng 

nx (µ, T(y,z)) = ( -1) xµ+ h(x,y,z) , T(X,y)T( Xy,Z)T(X,yz) . 
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provided h(x,l,z) = h(x,y,1) = 0. If h is a 3-cocycle, we deduce the 

identity 

where y(u,x) is the. inner automorphism of K given by conjugation with 

(0,<(u,x)). It follows that each nx is an automorphism of K. that 

an action of F on K is defined by the eq~ation 

and that (K,N, 3,*h) is a crossed module. 

For 3 (G,M,h) E H ' let S(G,M,h) denote the strict monoidal category 

obtained as in Section 2 Example 4 from the crossed module (K,N, 3,*h) 

classically constructed above. Since (K,N,3, *h) is a crossed module 

and not merely a crossed semi-module, S(G,M,h) is a group in Cat. 

An explicit description of S(G,M,h) is as follows: 

- objects are elements of F, 

arrows µ: w + w1 have w(w) = w(w') and µE M, 

- composition is addition in M, and, 

- tensor product is determined by 

(w ~a(x))@ ( cr (y) cr (z) ~ cr (yz)) = (wcr (y)a(z) µ+xv+h(x,y,z)> a(x)cr (yz)) 

where w(w) = x. 

Notice that an arrow µ: w + w' determines a unique element p E R 

with w = K(p)w' ( ,-1 ) since ww E ker w = im K and hence a unique 

element (µ, p) E K with w = a(µ,p)w' . Notice al so that the underlying 
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category of S(G,M,h) is independent of both the action of G on M 

and the cocycle h. 

There is a monoidal functor E: T(G,M,h) + S(G,M,h) which is 

st-Pict (despite the fact that T(G,M,h) is not strict unless h = 0). 

The underlying functor a of E takes an object x E G to the object 

a(x) E F and takes an arrow µ : x + x to µ : o(x ) + a(x ). The reader 

shou ld draw the diagram MF3 for E to understand how h enters into 

this. 

Proposition 9. E: T(G,N,h) + S(G,N,h) is a monoidal equivalence. 

Proof. Since the underlying categories are groupoids, it suffices that 

the underlying functor a of E should be an equival ence of categories. 

That a is fu l ly faithful is obvious. For each w E F we have 

0: o(w(w)) + w in the groupoid S(G,M,h); so a is surjective up to 

isomorphism on objects. D 

Corollary 10. Every compact monoidal groupoid is equivalent in CMG 

to a group in Cat. D 

The above Corollary is an immediate consequence of Propositions 

8 and 9. However, it is one of a class of coherence results which assert 

that certain pseudo-algebrai c structures on categories are equivalent 

to strict such structures. The first step of proving these results is 

to form a free structure on the set of objects of the category with 

the pseudo-structure. In the present case this is mirrored by the passage 

from G to F. 
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The classical construction of a 3-cocycle from a crossed 

module (N,E, a ,*) is also contained in the above results. To see this, 

let V denote the group in Cat obtained from the crossed module as in 

Example 4 of Section 2. Propositions 8 and 9 yield an equivalence 

for some 3 (G,M,h) E H • 

<fl : S{G,M,h) + V 

This h is the desired cocycle. More 

explicitly, G and M are the cokernel and kernel of a: N + E, the 

action of G on M is induced by that of E on N, and, the cocycle 

h is obtained as follows. We have the exact sequence 

of groups. Since w is surjective we can choose a function a : G + E 

with a(l) = 1 and wa = lG . Since a(x) a(y) and a{xy) are in the 

same fibre of w, we can choose a function T: G2 
+ N with 

T(X,1) = 1 = T(l,y) 

a(xy ) = a(T(x,y)) cr (x)a (y) 

Then T(x,y)L(xy,z) and (a(x) * T(y,z))L(x,yz) are in the same fibre 

of a so there is a unique function h: G3 
+ M detennined by the 

equation 

T(x,y)T(xy,z) = 1(h(x,y,z))(a (x) *T(y,z)h(x,yz). 

Then h is a normalized 3-cocycle and the equivalence <fl is 

obtained from the corrmutative diagram 



32. 

~K F~ 
I ---+ M 

1 

lq f w~ G---+ I 

~N--~ E/ a 

where f( a (x)) = a (x), q(µ, T(x,y)) = i(µ)T(x,y). It is important to 

observe that ~= S(G,M,h) + V is a homomorphism of groups in Cat; 

that is, strict monoidal (although its inverse equivalence cannot 

generally be chosen to be). This is a phenomenon of coherence theory 

not particular to this case! 

To extract the interpretation theorem of Brown [4; p.103], let 

M be a G-module. There is a category CrMod(G,M) of crossed modu les 

(N,E, a ,*) for which G,M are the cokernel, kernel of a and * 

induces t he action of G on M. The arrows are commutative diagrams 

of groups in which the vertical homomorphi sms are compatible with the 

actions * ,*'· 

For a category A recall that n0A denotes the set of 

undirected path compon~nts of objects of A. If a functor A + B has 

an adjoint then it induces a bijection n0A ~ n0B. 

Write H3(G,M) for t he subcategory of H3 consisting of the 

objects of the form (G,M,h) with the given G, M, and, the arrows 

(g,p,k) with g,p identity functions. Notice that H3(G,M) is a 

groupoid and 
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Corollary 11 . The functor H3(G,M) + CrMod(G,M) taking (G,M,h) to 

(K,F, a,*h) has a r i ght adjoint and so induces a bijection 

Proof. For a crossed module (N,E, a,*), let h' be the 3-cocycle 

obtained from choices of cr , T as above. The arrow 

(q,f): (K,F, a,*h,) + (N,E, a,*) in CrMod(G,M) acts as a component of 

a counit for the adjunction. D 



34. 

§7. Cohomology of abelian groups 

Suppose G,M are abelian groups. Then M can be regarded as 

a trivial G-module (via the action xµ = µ for x E G, µ E M) and the 

cohomology groups Hn(G,M) can be considered. However, it is argued 

by Eilenberg-Mac Lane [24,10,12 ] that these groups are inappropriate 

here since they take no account of the commutativity of G, and so should 

be replaced by groups H~b(G ,M). We shall describe H!b(G,M). 

An abelian 3-cocycle for G with coefficients in M is a pair 

(h,c) where h: G3 
+ M is a normalized 3-cocycle 

h(x,0,y) = 0 

h(x,y,z) + h(y,x+y,z) + h(u,x,y) = h(u, x,y+z) + h(y+x,y,z) 

and 2 c: G + M is a function satisfying 

h(y,z,x) + c( x,y+z) + h( x,y,z) = c(x,z) + h(y, x,z) + c(x,y) 

-h(z,x,y) + c(x+y,z) - h(x,y,z) = c(x,z) - h(x,z,y) + c(y,z). 

For any function k: G2 
+ M satisfying 

k(x,O) = k(O,y) = 0, 

the coboundar y of k is the abelian 3-cocycle a(k) = (h,c) defined 

by the equations 

h( x,y,z) = k(y,z) - k( x+y,z) + k(x,y+z) - k( x,y) 

c( x,y) = k(x,y) - k(y, x) . 



3 Then Hab(G,M) is the abelian group of abelian 3-cocycles modulo the 

coboundaries . 

A function t: G + M is called quadratic when it satisfies the 

conditions 

t(-x) = t(x) 

t(x+y+z) + t(x) + t(y) + t(z) = t(y+z) + t(z+x) + t( x+y). 

The trace of an abelian 3-cocycle (h,c) is the function t: G + M 

given by t(x) = c{x,x). A calculation shows that traces are quadratic 

functions. 

Theorem 12. (Eilenberg-Mac Lane [24,10,12]) . Trace induces an isomorphism 

be-tween the group H!b(G .M ) and the group of quad:t>atic functions from 

G to M. 

Proof. For fixed M, trace is natural in abelian groups G. As ·a-dd+t+te­

fa(s-e t / fl:lRCtgr.:s.. from the category of abelian groups to its dual, H~b(-,M) 
1h.ey ( and quadratic functions into M preserve filtered colimits. Every 
ctr€- • 
•(/..0M1c abelian group G is a filtered colimit of finitely generated abelian 

f"'.<.ilt/tZJtS , groups . Every finitely generated abelian group is a finite direct sum 

of cyclic groups. So it suffices to verify the isomorphism when G is 

cyclic. 

If G is the integers under addition, then H3(G,M) = 0. If 

G = {0,1, .. . ,n -1 } with addition modulo n, then 

H3(G ,M) ~ {µ E M I nµ = 0} 

where the coset of the 3-cocycle h given by 
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h(x,y,z) 
for y+z < n 

for y+z ;:: n 

corresponds to µ . 

Suppose t: G + M is a quadratic function for G cyclic as above. 

Put v = t(l). By induction using the quadratic property we see that 

t(x) = x2v. Define c(x,y) = xyv. If G is infinite (0,c) is an 

abe l i an 3-cocyc le whose trace is t. If G has order n, notice 
2 that 2nv = n v = 0 in order for t to be well defined. Let h be 

the 3-cocycle defined in terms of µ = nv as above. Then (h,c) is 

an abelian 3-cocycle with trace t . This proves surjectivity. 

Suppose (h' ,c') is an abelian 3-cocycle with c(x,x) = 0. If 

G is infinite take h to be the zero 3-cocycle. If G is of order 

n take h to be the 3-cocycle of the form above for some µ such that 

h - h' is a coboundary. Then (h,c) - (h' ,c') is a coboundary for 

some c with c(x,x) = 0. Using c(l,1) = 0 one deduces c(l,y) = 0 

and then c(x,y) = 0 by induction . Then h = 0. So (h' ,c') represents 

the zero element of H~b(G.M). This proves injectivity. 0 

The remarkable observation connecting braidings with cohomology 

is the following. 

Proposition 13. To say t'hat c i s a braiding for the monoidaZ category 

T(G,M,h) is precisely to say (h,c) is an abeZia:n 3-cocycZe. 

Proof. The properties of c in the definition of abelian 3-cocycle 

precisely amount to Bl and B2. O 
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The 2-category H!b is defined as follows. An object (G,M,h,c) 

consists of abelian groups G,M together with an abelian 3-cocycle 

(h,c). An arrow (g,p,k): (G,M,h,c)-+ (G 1 ,M 1 ,h 1 ,c 1
) is an arrow 

(g,p,k): (G.M.h) -+ (G' ,M 1 ,h 1
) in H3 (with trivial module actions) 

such that 

pc(x,y) + k(x,y) = k(y,x) + c(g(x),g(y)). 

A 2-cell e: (g,p,k) => (g1,p1,k1) is precisely a 2-cell in H3. 

Compositions are as in H3. 

Let CBMG denote the full sub-2-category of BMC consisting 

of the compact braided monoidal groupoids. Write T(G,M,h,c) for the 

compact monoidal groupoid T{G,M,h) enriched with the braiding c 

(Proposition 13). Notice that, for an arrow {g,p,k) in H~b , the 

monoidal functor T{g,p,k) is braided. Hence we have a 2-functor 
3 T: Hab -+ CBMG. 

Proposition 14. The 2- fW'lctor T: H!b -+ CBMG is a biequivalence. 

Proof. That T induces equivalences on horn-categories follows as in 

the proof of Proposition 8. Proceed as in that proof where this time 

V is braided. For any f: I -+ I, we have the commutative diagram 

So this time the functions AA,pA are equal and hence the action of G 

on M is trivial . The braiding c on V yields a function 
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2 d: G -+ M given by 

d(A,B) = A.ft.
1 B(c(A,B)) 

and hence (G,M,h,d) E H3 
ab with T(G,M,h,d) ;- V in CBMG. D 

Let Quad denote the category whose objects are quadratic 

functions t: G-+ M between abelian groups, and, whose arrows are 

commutative squares 

g 

t G-------+M 

L 
G1 ---~-~M' 

t 

with g,p homomorphisms of groups. As with any category we can regard 

Quad as a 2-category with only identity 2-cells. 

Trace defines a 2-functor tr: H~b -+ Quad taking (G,m,h,c) 

to the trace of (h,c), taking {g,p,k) to {g,p), and, taking e 

to an identity. 

For abelian groups G,M, we write Ext{G,M) for the groupoid ,....,...,.. 

whose objects are short exact sequences 0 -+ M-+ E -+ G -+ 0 for abelian 

groups and whose arrows are commutative diagrams 

E 

o-M/!~G-o 
~ / . 

El 

of homomorphisms of groups. The abelian group Ext(G,M) of homological 
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algebra is the group 7T 0~(G,M) of isomorphism classes of objects 

of Ext(G,M). 
~ 

Proposition 15. The underlying functor of tr: H!b + Quad is surjective 

on objects, full and conservative (= reflects isomorphisms) . Furthermore, 

the fibres of the functor 

tr : H;b((G,M,h,c),(G' ,M' ,h' ,c')) .+ Quad(t,t') 

on ham-categories (where t,t' are the traces of (h,c), . (h' ,c')J 

ar e all equivalent to the category ~(G,M'). 

Proof. Theorem 12 immediately yields surjectivity on objects. If 

(g,p): (G,M,t) + (G 1 ,M 1 ,t 1
) is an arrow in Quad with t,t ' as stated 

above, then (ph,pc), (h 1 g3 ,c 1 g2) are both abelian 3-cocycles for G 

with coefficients in M' having the same trace pt= t' g. By Theorem 

12 the abelian 3-cocycles differ by a coboundary and so we have 
3 (g,p,k): (G,M,h,c) + (G 1 ,M 1 ,h 1 ,c 1

) on Hab with tr(g,p,k) = (g,p) . 

So tr is full on arrows. 

If (g,p,k) 3 is any arrow of Hab with tr(g,p,k) = (g,p) 

invertible then g,p are isomorphisms of groups and -1 -1 (g ,p ,-k) is 

an inverse for (g,p,k). So the underlying functor of tr is 

conservative. 

Now take any (g,p): t + t' in Quad. The fibre over (g,p) 

of the fun ctor in the second sentence of the Proposition has objects 

k: G2 + M' such that (g,p,k): (G,N,h,c) + (G' ,M' ,h' ,c') is an arrow 
3 of Hab , and, has arrows e: k + k1 functions e : G + M' satisfying 

e(l) = O and k1(x,y) - k(x,y) = e(x+y) - e(x) - e(y). 
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Let H!b(G,M 1
) denote the category whose objects f are 

abelian 2-cocycles (that is, functions 2 
f : G -+ M' such that f(x,O) = 0, 

f{ x,y) = f(y, x) and f( x+y,z) + f(x,y) = f(x,y+z) + f( y,z)) and whose 

arrows e: f -+ f 1 are functions e : G -+ M1 such that e( I) = 0 and 

f 1(x,y) - f{x,y) = ~ (x+y) - e(x) - e(y). 

Since tr is full on arrows, there does exist k0 in the fibre 

category. Any other object k of the fibre gives f = k - k0 E H! b{G ,M1
) 

and arrows e: k -+ k1 of the fibre are precisely arrows e: k - ko -+ 

k1 - k0 in H;b(G,M' ). Hence the fibre is isomorphic to H~b(G,M 1 ) . 

The equivalence of categories 

H2 (G MI) ab ' ~ Ext(G ,M 1
) 

'VY' 

f th t d d . t . H2 f h 1 comes rom e s an ar 1n erpretat1on of or group co omo ogy . 

Each f is a factor set and so gives a short exact sequence of groups 

0 -+ M1 -+ E -+ G -+ 0 

(inducing the trivial action of G on M1
) and E is abelian since 

f(x,y) = f{y,x) . D 

Corollary 16. There is a 2- functor K: CBMG-+ Quad satisfying, and 

determined up to isomorphism by, the condition th,at KT ~ tr. Furthermore, 

K is surjective up to isomorphism on objects, full on arrows, and, 

any arrow which is inverted by K is an equivalence . 0 

This means, in a sense, that a quadratic function is a 11 comp lete 

invariant" for a compact braided monoidal groupoid. Each compact 
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braided monoidal groupoid V can be assigned a quadratic function KV ; 

each quadratic function t has the form KV for some V; and, if 

KV~ KV 1 then V ~ V1
• 

Finally note that each compact braided monoidal groupoid V 

is equivalent in CBMG to a braided group in Cat (in fact, one of 

the form S(G,M,h) with a braiding) by Propositions 14 and 9, and, 

it should be remembered from Section 2 Example 4 that a braided group 

in Cat amounts to a crossed module with bracket operation. 
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