

CONSEQUENCES OF SPLITTING IDEMPOTENTS: ADDENDUM

ROSS STREET

2010 Mathematics Subject Classification: 18D05; 18A40

Key words and phrases: idempotent; adjoint; dual.

Proposition 0.1. *In a bicategory \mathcal{M} , if the diagram*

$$\begin{array}{ccc}
 X & \xrightarrow{\quad s \quad} & Y \\
 \downarrow 1_X & \nearrow \beta \Rightarrow t \xrightarrow{\quad \alpha \quad} & \downarrow 1_Y \\
 X & \xrightarrow{\quad u \quad} & Y
 \end{array}$$

pastes to give a retraction $\alpha s \cdot u\beta: u \Rightarrow s$ and idempotents split in $\mathcal{M}(Y, X)(t, t)$ then s has a right adjoint which is a retract of t .

Proof. Let ν be a right inverse for $\alpha s \cdot u\beta$. Put $\alpha' = \alpha \cdot \nu t: st \Rightarrow 1_Y$. Then the lower path in the commutative diagram

$$\begin{array}{ccccc}
 s & \xrightarrow{\quad s\beta \quad} & sts & \xrightarrow{\quad \alpha's \quad} & s \\
 \downarrow \nu & & \downarrow \nu ts & \nearrow \alpha s & \\
 u & \xrightarrow{\quad u\beta \quad} & uts & &
 \end{array}$$

is the identity. Then, by the Paré argument [1], a right adjoint to s is obtained by splitting the idempotent $t\alpha' \cdot \beta t$. \square

REFERENCES

[1] Saunders Mac Lane, *Categories for the Working Mathematician*, Graduate Texts in Mathematics **5** (Springer-Verlag, 1971).