COMBINATORIAL CATEGORICAL EQUIVALENCES

STEPHEN LACK AND ROSS STREET

ABSTRACT. In this paper we prove a class of equivalences of additive functor cat-
egories that are relevant to enumerative combinatorics, representation theory, and
homotopy theory. Let 2 denote an additive category with finite direct sums and
splitting idempotents. The class includes (a) the Dold-Puppe-Kan theorem that
simplicial objects in 2 are equivalent to chain complexes in Z"; (b) the observa-
tion of Church-Ellenberg-Farb that 2 -valued species are equivalent to 2 -valued
functors from the category of finite sets and injective partial functions; (c¢) a Dold-
Kan-type result of Pirashvili concerning Segal’s category I'; and so on. We provide
a construction which produces further examples.
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The intention of this paper is to prove a class of equivalences of categories that seem
of interest in enumerative combinatorics as per [17], representation theory as per [9], and
homotopy theory as per [2]. More specifically, for a class of categories &, we construct a
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category 2 with zero morphisms (that is, 2 has homs enriched in the category 1/Set of
pointed sets) and an equivalence of categories of the form

(P, 2] ~ (D, X . (1.1)

On the left-hand side we have the usual category of functors from & into any additive
category 2  which has finite direct sums and splitting for idempotents. On the right-hand
side we have the category of functors which preserve the zero morphisms.

One example has & = A 7, the category whose objects are finite ordinals with first
and last element, and whose morphisms are functions preserving order and first and last
elements. Then Z is the category with non-zero and non-identity morphisms

0«2 1% 2%
such that @ o @ = 0. Since there is an isomorphism of categories
AT 2AT, (1.2)

where the right-hand side is the algebraist’s simplicial category (finite ordinals and all order-
preserving functions), our result (1.1) reproduces the Dold-Puppe-Kan Theorem [11, 12, 20].

Cubical sets also provide an example of our setting; see Example 3.3. We conclude that
cubical simplicial abelian groups are equivalent to semi-simplicial abelian groups.

For a category 7 equipped with a suitable factorization system (&, .#) [14], write Par</
(strictly the notation should also show the dependence on .#) for the category with the same
objects as o/ and with .Z-partial maps as morphisms. We identify & with the subcategory
of &/ having the same objects but only the morphisms in &. Assume each object of o/
has only finitely many .#-subobjects. Let 2" be any additive category with finite direct
sums and splitting idempotents. Our main result Theorem 9.1 includes as a special case an
equivalence of categories

[Pare?, 2] ~ [, 2] . (1.3)

(Here 2 is obtained from & by freely adjoining zero morphisms.) We give an alternative
proof of this particular case in an appendix (Section 13) using the theory of comonads.

Let & be the groupoid of finite sets and bijective functions. Let FIf denote the category
of finite sets and injective partial functions. Let Mod denote the category of left modules
over the ring R. Our original motivation was to understand and generalize the classification
theorem for FIf-modules appearing as Theorem 2.24 of [9], which provides an equivalence

[FIf, Mod ] ~ [&, Mod®]

between the category of functors FIf — Mod® and the category of functors & — Mod®.
This is the special case of (1.3) above in which o7 is the category FI of finite sets and injective
functions, and .# consists of all the morphisms. This result has provided a new viewpoint
on representations of the symmetric groups, and a new viewpoint on Joyal species [17, 18].

In order to consider stability properties of representations of the symmetric groups, the
authors of [9] also consider FI-modules: that is, R-module-valued functors from the category
FI. Each FIf-module clearly has an underlying FI-module, so their Theorem 2.24 shows
how symmetric group representations become Fl-modules. One application they give is a
structural version of the Murnaghan Theorem [26, 27|, a problem which has its combinatorial
aspects [31]. We are reminded of the way in which Mackey functors [23, 28| give extra freedom
to representation theory.

Another instance of an equivalence of the form (1.3) is when .7 is the category of finite sets
with its usual (surjective, injective)-factorization system. Then Pare/ is equivalent to the
category of pointed finite sets, which is equivalent to Graeme Segal’s category I" [30]. After
completing this work, we were alerted to Teimuraz Pirashvili’s interesting paper [29] which
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gives this finite sets example, makes the connection with Dold-Puppe-Kan, and discusses
stable homotopy of I'-spaces.

Consider the basic equivalence (1.1). It is really about Cauchy (or Morita) equivalence of
the free additive category on the ordinary category & and the free additive category on the
category with zero morphisms 2. By the general theory of Cauchy completeness (see [32]
for example), to have (1.1) for all Cauchy complete additive categories 27, it suffices to have
it when 2" is the category of abelian groups. Cauchy completeness amounts to existence
of absolute limits (see [33|) and, for additive categories, amounts to the existence of finite
direct sums and splittings for idempotents.

Our approach to finding conditions under which (1.1) holds is to consider structure on the
category & satisfying five Assumptions. All this is described in Section 2. As part of the
structure we consider that the category & underlies a locally partially ordered 2-category
P. We make use of adjunctions in P with identity counits. Our construction of 2 can be
seen as a process of removing, in a systematic way, morphisms in & which have a one-sided
inverse but not a 2-sided inverse. Since one-sided inverses are not unique, we need to choose
a particular one-sided inverse with which to work. The 2-category provides a mechanism for
making those choices.

In Section 11 we prove that a Grothendieck fibration construction produces new examples
of our main result Theorem 9.1. The significance of these constructed examples, let alone
the examples obtained by iterating the construction, is not apparent to us.

In Section 12 we prove a monadicity result (rather than an equivalence) when 2~ is
semiabelian [16]. This is due to Bourn [6] in the case & = A 7.

2. THE SETTING

Let & be a category underlying a 2-category P whose hom categories are partially ordered
sets. That is, for any two objects A and B of &, there is a partially ordered set P(A, B)
whose elements are the morphisms A — B in &, and this order is preserved by composition
on both sides in &2.

Suppose .# is a subcategory of &2 containing all the objects and all the isomorphisms of
&. Assume each m € # has a left adjoint m* 4 m in P with identity counit m* om = 1.
In particular, the morphisms in .# are split monomorphisms (coretractions) in 2.

We write SubA for the (partially) ordered set of isomorphism classes of morphisms m :
U — Ain . We will use the term subobject rather than “.#-subobject” for these elements.
The order on SubA is the usual one. Abusing notation for this order, we simply write U < V
when there exists an f: U — V such that m =no f, where m: U - Aandn:V — Ain
A . There can be confusion when U = V as objects, so we assure the reader that we will
take care. A subobject of A is proper when it is represented by a non-invertible m : U — A
in A ; we write U < A or U <, A.

Define Z to be the class of morphisms r € &2 with the property that, if r = mox on*
with m,n € ., then m,n are invertible.

Define 2 to be the category with zero morphisms (that is, 1/Set-enriched category) ob-
tained from % by adjoining zero morphisms. Composition in & of morphisms in & is as in
P if the result is itself in Z, but zero otherwise.

Define . to be the class of morphisms in & of the form r om* with m € .# and r € Z.

Recall that the limit of a diagram consisting of a family of morphisms into a fixed object
A is called a wide pullback; the morphisms in the limit cone are called projections. The dual
is wide pushout.

Assumption 2.1. Wide pullbacks of families of morphisms in .# exist, have projections in
A , and become wide pushouts under m — m*.
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Assumption 2.2. If ;7' € # are composable then 1’ or € .7.
Assumption 2.3. If r,m*or € #Z and m € .# then m is invertible.

Assumption 2.4. The class 4 o .#* of morphisms of the form m o n* with m,n € 4 is
closed under composition.

Assumption 2.5. For all objects A € &, the ordered set SubA is finite.

Assumption 2.6. The maximal proper elements of SubA can be listed my,...,m, such
that the idempotents ¢; = m; om] on A satisfy ¢;oc;0c; =c¢joc¢; forall i < j.

Remark 2.7. Since m] < m; in P, the idempotent ¢; is in fact an idempotent monad. For
idempotent monads ¢; and ¢; the condition c¢joc;oc; = ¢joc; is equivalent to c;oc; < ¢joc;.
It then follows also that ¢; o ¢j o ¢; = ¢; o ¢;, and so we are dealing with the relation for
Kiselman’s semigroup as studied in [21], and for Lawvere’s graphic monoids [22].

Proposition 2.8. Any morphism f € & factors as f =mnorom®, uniquely up to isomor-
phism form,n € # andr € XZ.

Proof. Take f: A — B in &. We use Assumption 2.1 twice. Let n : Y — B be the wide
pullback of all those morphisms V' — B in .# through which f factors. Then n € .# and
there exists a unique f; with f = no f;. Let m : X — A be the wide pullback of those
U — A in ./ whose left adjoint in P the morphism f; factors through. Then m € .# and
f1 = rom™ for a unique r. Clearly r € # and we have uniqueness by a familiar argument. [J

Proposition 2.9. Iftos=mor with s,t € .7, r € Z and m € .4 then both s and t are
in %.

Proof. First we prove the weaker form:

ifsor=mor withr,y € Z, s€ . and m € .# then s € X.
In obvious notation, put s = r1 omj, mjor = mgorgomj and r; omg = mgorzomg. Then
mor' =sor=rjomfor=ryomgorgomi=mgorsomiorsoms. Let p,q € .4 be the
projections in the pullback of m,my4. Then there exists a unique w into the pullback with
r" =pow and rgomforgomj = qou. Since r’ can factor through no proper .#, we deduce
that p is invertible. Put n = gop™!. Then m = myon and nor’ = gou = r3 omgoryoms.
Therefore ' = n* o r3 o mf o ry o mi; by definition of %, we obtain that mg is invertible.
Then mj o (r oms) = mg ory implies (my o ma)* o (r omg) = rao. Assumption 2.3 applies to
yield that mj o mg is invertible. So m; has a right inverse, as well as its left inverse m7j, and
so is invertible. So s = 11 omj is in Z as asserted.

Now we come to the proof of the Proposition. Since s € ., s = r1 o m]. Then, by
definition of Z, m*otoriom] = m*otos = m*omor = r implies m; invertible. So s € Z.
Now the weaker form above applies to yield t € Z. O

3. BASIC EXAMPLES

Example 3.1. Take a category & with a factorization system (&,.#). Assume that
the pullback of any morphism with one in .# exists. Assume every morphism in .# is

a monomorphism and every object of & has only finitely many .#-subobjects. A span

f =X JELINY SRR Y) is called a partial map f : X — Y when fy is in #Z. If

g=(X &Ly 2y Y') is another partial map, we write f < g when there exists h : U — V

with ggoh = fp and g1 o h = f1. Let & = Para/ denote the category whose objects are all
those of &7 and whose morphisms are isomorphism classes [f] of partial maps. Composition
is that of spans: that is, by pullback. We take the reverse of the usual order f < g on
partial maps to give us the required 2-category IP; the usual order would give us right adjoints
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where we have chosen to work with left adjoints. We identify f : X — Y in & with the
morphism [1x, X, f]: X — Y in &. In this way, we have the .# we require for & as the
one in &/. For m : U — X in ., a left adjoint in P is defined by m* = [m, U, 1y] : X = U,

and clearly m* om = 1. Every partial map f = (X Joy Y) has
[fl=fiofs

where fy € .#. Furthermore, fi = moe uniquely up to isomorphism for m € .# and e € &.
It follows therefore that #Z = & and that [f] € .7 if and only if f; € &.

Now we look at our Assumptions. To see that Assumption 2.1 holds, first note that since
we are assuming the .#-subobjects form a finite set, finite wide pullbacks can be obtained
from pullbacks. By assumption, pullbacks of .#s exist in &/ and a pullback of an .Z is an
A in a factorization system. It is a pleasant exercise to see that these pullbacks remain
pullbacks in & and become pushouts in & on taking left adjoints.

We certainly have Assumption 2.2; indeed &% is closed under composition because & is.

For Assumption 2.3, take r = [14, A, e| with e € & and m = [1y,V,m] in .#. To have
m* or = [n, P,u] € %, we must have n invertible and u € &. Then e = m owuon~! implies
m € &; so m is invertible.

The class of partial maps in Assumption 2.4 are those of the form [m, U, n| with m,n €
these are closed under composition since pullbacks of .Z's exist and are in .Z.

Assumption 2.5 was one of our assumptions on the factorization system on 2.

To prove Assumption 2.6 we use the fact that, for every pullback

P J B (3.4)
A C
f
in & with m € .4, the square
P J B (3.5)
A C
f

commutes in Para/. So, for any m, mg € .#, we see that the idempotents ¢; = mjom] and
c2 = mg oms commute. To see this, let ny, ng be the projections in the pullback of my, ma.
Then

€1 0 €y =M1 ©M] 0Mg 0 M5 = M1 0Ny ONy 0 My
=mgomnyonjom] =mgom;0m;om]=cy0cC] .

So cgociocyg =cg0co0c; = cgocy. Therefore the maximal proper subobjects can be listed
in any order and the Assumption is satisfied.

Notice that . is not closed under composition unless each pullback of an & along an .#
is an &. This is true in many examples.

Example 3.2. Take & to be the category A | 1 of finite non-empty ordinals n = {0,1,...,n—
1} with morphisms those functions which preserve first element, last element and order.
Functors out of this category are augmented simplicial objects because of the isomorphism
(1.2). Morphisms &, : m — n are ordered by taking & < ¢ iff and only if £(i) < ((4) for all
i € m. This gives our 2-category P; it is a locally full sub-2-category of Cat. Take .#Z to
consist of all the injective functions in A 1; each such injection 0 has a left adjoint 0* (and
also a right adjoint for that matter) in P; clearly 0* is surjective with 9* 0 9 = 1 since 0 is a
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fully faithful functor. A surjection o in & is of the form 9* if and only if o(i) = 0 implies
1 = 0. We write o : m + 1 — m for the order-preserving surjection which takes the value k
twice. We write 0 : m — m + 1 for the order-preserving injection which does not have & in
its image. Note that Jy ¢ &, while o, 4 9 4 0x_1 in P and oy, is a 9 if and only if k& > 0.
Every £ € &2 factors uniquely as

é':aison.OailoO-jlO'.‘Oo-jt

for0<ig < - <ig<m—land 0<j; < ---<jr<m-—1.

We claim & consists of the identities and the surjections o9 : m +1 — m. The only
invertible morphisms in & are identities. Since members of # factor through no proper
injection, they must be surjective. Every surjection 7 is either of the form 0* or uniquely of
the form og o 0*. Neither of these forms is permissible for 7 € & unless the injection 0 is an
identity. This proves our claim. It is also clear then that .% consists of all the surjections in
Z.

To prove the Assumptions, we make use of the simplicial identities (see page 24 of [13] for
example) which, apart from 0; 00; = 1 = 0;_1 0 9;, say that, for all i < j,

8j08i:8i08j_1 , 0j—100; =0;005, Uj08i:ai00'j_1 , 0;0 j+1:aj00'i .

Assumption 2.1 follows from the fact that the pullback of any two monomorphisms in
2 exists and is absolute (that is, preserved by all functors); see page 27 of [13] on the
Eilenberg-Zilber Theorem. Alternatively, notice that the squares

0j—1 oj—1
n—1 & n n—1l=—2>21"_n
0; jal 0'7;] TU'L
n n+1 n<——n+1
j i

are respectively a pullback and pushout in & for 0 < i < j < n. Then the general result
follows by stacking these squares vertically and horizontally.

In the present example, . is closed under composition, making Assumption 2.2 clear.

For Assumption 2.3, suppose we have Qo p € & and p € Z#. Since p is surjective,
0* o p =1 implies p = 1 and hence 9 = 1, as required. Otherwise 0" o p = gg. Yet, if p=1
this contradicts the lack of right adjoint for gg. So p = 0¢. Thus 0* 0 09 = 0¢, and we can
cancel og to obtain again 9 = 1.

For Assumption 2.4, the class . o .#* of morphisms consists of those which reflect 0.
That is, £ = po 0" with u € 4 if and only if £(7) = 0 implies ¢« = 0. This class is clearly
closed under composition.

Assumption 2.5 is clear.

For Assumption 2.6, notice that the maximal proper subobjects of n are the 9; : n—1 — n
which we take in the natural order of the . We have the idempotents ¢; = 0; o 0; and, using
the simplicial identities for 0 < ¢ < j < n — 1, we have the calculation:

cjoc;ocj=0;00;00;00;00j00;
:8joaioaj_1oaioajoaj
=0jo0;00;00;00j00;
:ajoaiOO'iOO'j
:ajoaiOO'j,lOO'i
=0joo0j00;00;

=Cj0¢C¢ .
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Notice that the arguments above equally apply to the full subcategory A 1 of A T
obtained by removing the object 1. Functors A 1 — 2 are the traditional simplicial
objects in 2.

Example 3.3. This example is about the cubical category I as used by Sjoerd Crans [10]
and Dominic Verity [34, 35]. Functors with domain I are cubical objects in the codomain
category. Verity constructed I as the free monoidal category containing a cointerval.

For each natural number k, define a poset (k) = {—,1,2,...,k,+} by adjoining a bottom
element — and a top element + to the discrete poset {1,2,...,k}. Any function f : (k) — (h)
which preserves top and bottom is order-preserving. Thus we get a locally partially ordered
2-category with objects the (k), with morphisms the top-and-bottom-preserving functions,
and with the pointwise order. Take P to be the locally full sub-2-category consisting of those
f (k) = (h) for which, if f(i), f(j) & {—,+} then i < j if and only if f(i) < f(j).

Let & =1 be the underlying category of this P. Let .# consist of the morphisms in &
which are injective as functions. Given such an m : (k) — (h) in .#, define m* : (h) — (k)
to send each m(i) in the image of m to ¢ and everything else to 4. Clearly m* € & and
m* om = 1. Furthermore, mm*(j) is equal to j if j = m(i) for some 4, and + otherwise.
Therefore 1 < m om* showing m™* to be left adjoint to m with identity counit.

We can characterize morphisms of the form m™* as those which are surjective as functions
and reflect the bottom element —. Consequently % consists of the morphisms which are
surjective as functions and reflect the top element +.

Assumption 2.5 and 2.2 are clear.

For Assumption 2.1, the existence of intersections is obvious. However, we must show
that taking left adjoints gives cointersections. Take a pullback as in the left-hand diagram
of (3.6) and consider the right-hand diagram. Assume fom* = gon*.

() —— (v) (k) —"— (v)
(R R S AN
(u) ————— (k) (uy ——— (0) (3.6)

It suffices to show fopop* = f. Now fpp*(i) is equal to fp(j) if i = p(j) for some j, and
equal to 4+ otherwise. In the first case, we have fpp*(i) = fp(j) = f(i), as required. In
the second case, if ¢ does not have the form p(j) then m(i) is not in the image of n, and so
gn*m(i) = +; thus f(i) = fm*m(i) = + and we again have fpp*(i) = f(i).

For Assumption 2.3, suppose m € .# and r,m* or € %. Suppose m*(i) = +. Since r
is surjective, we have i = r(j) so that m*r(j) = +. However m* o r reflects +. So j = +,
yielding i = r(+) = +. This proves m* reflects + and therefore must be invertible.

For Assumption 2.4, the composites of the form m o n* are clearly the (not necessarily
surjective) morphisms which reflect —. Clearly these are closed under composition.

Finally, we come to Assumption 2.5. However, the idempotents of the form ¢ = mom™ are
defined by the property that ¢ sends an element ¢ either to itself or to +. Such idempotents
commute.

There is another possible characterization of #Z, namely as the category of right adjoints
to the morphisms in .#. Thus in fact Z is dual to .#. Now .# is really just the category
Ajyj of finite ordinals and injective order-preserving maps, and % = .#°P. Also the category
*, with morphisms the m* € ., is dual to .#. The factorization of Proposition 2.8 in
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this case shows the category &2 is a composite

I = Apjo A% o A

inj inj
relative to suitably defined distributive laws.

An alternative viewpoint is that I is ParParA;,;, where in each case partial maps are
defined relative to the morphisms in Ajy;.

4. THE TILDE FUNCTOR

Assume we are in the setting of Section 2. Let 2~ be a category with zero morphisms and
finite limits.
There is a functor -
(=) 2, Z)— (2, Z)pt (4.7)
where the codomain category consists of the pointed functors. Take any functor T': & — 2.
The definition of T’ on objects is:

TA= () ke T(m": A=) . (4.8)
U<mA

This exists because of Assumption 2.5. For r: A — B in &%, the morphism Tr:TA—TB
is the restriction of Tr : TA — TB. Why does it restrict? Let i4 : TA — TA be the
inclusion. Take V' <,, B. Proposition 2.8 yields a factorization n* or = £ o r’ o m* for some
t,m € A and ' € Z. If m is invertible then (nof)*orom =1 € Z and rom € %.
Using Assumption 2.3, we see that n o £ is invertible; so n has a right as well as left inverse,
contrary to n : V — B being proper. So m is proper and we have

(Tn*)(TrYia=Tn or)ia=T{or om*)ig=T{Lor")(Tm")ia=0.

So there exists T'r such that ig(Tr) = (Tr)ia, as claimed.

The proof that T preserves composition is as follows. Take r : A - Band r; : B — C
both in #Z. Clearly if r1or € % then we have TrioTr = Trior by restriction of functoriality
of T. If ryor ¢ Z then, by Assumption 2.2, r; or € .% and so has the form r or = rg om*
with m € .# non-invertible and r9 € #Z. So

ioofrlofr:T(rlor)oiA:T(rgom*)oiA:Trgon*oiA:O

yielding T'(ry o7) = 0= Try o Tr.

For a natural transformation 6 : T = T’, we define 0 :T = T to have components
§A . TA — T'A induced by 84 : TA — T'A. This works because 6 is natural in the
morphisms m*.

5. THE HAT FUNCTOR

We can also construct a functor

(=) : 2, Zpt — 2, Z] (5.9)
whose value at the pointed functor F' : ¥ — % is the functor F: 2 — 2 defined as
follows. On objects, put

FA=) FU.
U<A
Now we need £  to have finite coproducts (however, if 2" is enriched in commutative
monoids, or, more specifically, additive, then these follow from finite completeness and are
direct sums). We define the morphism Ff : FA — FB by specifying its composite with
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each injection iny : FU — FA Letm:U — A represents U =< A and take the factorization
fom=noswithn:V — Bin .# and s € .¥ as per Proposition 2.8. Define

inyoFs forseX

Ffoiny =
foing {0 for s ¢ % .

Why is F a functor? Preservation of identities is clear since identities are in %. Now take
f:A—>Bandg:B— Cin #. Take m:U — A in .#. Factorize
fom=mnos, gon=~Fot, tos=nj;08

withn:V = B, £: W — C,ny € .4 and s,t,s1 € .. We first show that s; € Z if and only
if s,t,s0t € Z. By Assumption 2.2, if s,t € # then tos € ., and so, by uniqueness of the
factorisation in Proposition 2.8, ny is invertible. If also t o s € % then s; € #. Conversely,
if 1 € %, then, by Proposition 2.9, we have s,t € %; so nj is invertible (thus can be taken
to be an identity) and so t o s € Z. Now we can calculate

FgoFfoiny = Fgoiny o Fs =iny o Fto Fs

for s € #Z and t € %, zero otherwise. By definition of £ and functoriality of F', we have
FtoFs=F(tos)fortosec %, and Fto Fs = 0 otherwise. So

FgoFfoiny =inw o F(tos)
forse Z,t € % and t o s € %, zero otherwise. From our first observation, this becomes
ﬁgoﬁfoiny =iny o F's1
for s1 € %, zero otherwise. That is,
ﬁgoﬁfoin(] :ﬁ(gof)oinU
for all U < A.

6. ADJOINTNESS

Take 2" to have zero morphisms, finite limits, and finite coproducts.

Theorem 6.1.

—_—

(_) - (_) : [‘@79’/] — [‘@7‘%]1)'3
Proof. We must prove that there is a natural isomorphism
(2, ZV(F,T) =2, 2 (K, T) .

Take a natural transformation 6 : F = T : & — 2. As in the definition of F f, with
fom=nosand s € Z, we have commutativity in the following diagram.

FU -2 FA-%4 74
FL Lﬁf ij (6.10)
FV—~FB TB

iny 0

Consider a noninvertible £ : W — A in .#. Then, by the properties of Z, {* € % and
¢ H. SoTl of0ing = Oy o Fl* oing = fyy 00 = 0. This implies there exists a unique
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morphism ¢4 : FA — T A such that the following square commutes.

FA— % T4
o] B -
FA TA
04

Naturahty of ¢ is proved as follows using (6.10) with f =r e igopgoFr = fgoingoFr =
HBoFromA =Trofpoing =Troigopa —ZBOTrqu)A

For the inverse direction, take any natural transformation ¢ : F' = T:92 — % . Define 0
by commutativity of the following diagram.

FU - Fa A 74
¢UL Tm (6.12)
TU TU

iy
We need to prove the right-hand square of (6.10) commutes when precomposed with any

ing for any m : U — A in 4. Put fom = no s as usual. In the case where s € Z, the
desired commutativity is a consequence of the commutativity of the following three squares.

U 5 iA Tm

FU TU TU TA
Fs\ fsl] LTS LTf (6.13)
FV TV — =TV TB
ov iB Tn

In the case where s ¢ Z, we can write s = o £* for some noninvertible ¢ € .#. Then (using
both U < Aand U <X U) we have T'fof0iny = T(fom)oigopy = T(nor)oTl* oigopy =
T(nor)OOO¢U—O—HBoﬁfoinU,asrequired -

To show that the assignments are mutually inverse, take 6 and define qS by (6.11). Let 6
be as ¢ is in (6.12). Then faoing = Tmoiyogy = Tmofyoiny = HAoFmomU = G 0ingy.
So 6 =6.

On the other hand, take ¢ and define 6 by (6.12). Let ¢' be as ¢ is in (6.11). Then
iao@/y =0x0ing =igo¢pa. So ¢ =¢. O

Remark 6.2. Here is an alternative way to discover and prove Theorem 6.1. Let .# be the
subcategory of & generated by .# under composition. Let K : . — & be the inclusion.
Write fpt for the free category with zero morphisms on .. There is a zero-morphism-
preserving functor H : %, — 2 which is the identity on objects and takes a morphism f
to f when f € Z, otherwise it takes f to 0. This gives the two adjunctions

[Hvl]Pt Lang
2 P N SN L e P (6.14)
Rang [K71]

Here Lang denotes ordinary left Kan extension along K while Rang denotes right Kan
extension along H for categories enriched in the category 1/Set of pointed sets. It is quite
straightforward using the formula for Kan extension to deduce that the composite Lang o
[H, 1]pt is none other than the hat construction of Section 5.9. With somewhat more work
one can also deduce that the composite Rang o [K, 1] is the tilde construction of Section 4.7.
Of course, given Theorem 6.1, only one of these verifications is required.
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7. INVERTIBILITY OF THE UNIT

Now assume £ has homs enriched in commutative monoids and is finitely complete. Take
any pointed functor F' : ¥ — 2. By Assumption 2.5, we have a direct sum

FA= P rv
V<A

over the subobjectsn : V' — A of A. For f: A — Bin &, we can represent F\f :FA— FB
as a matrix with V <, A, W =<, B-entry

~ {Fs for fon=Ffosand s Z

F p—
( f)V’W 0 otherwise .

We have the inclusion i4 : FA — FA. By definition of %, we know m* is not in % for a

proper subobject U <,, A. So Fm*oiny = 0. This yields the morphism npA: FA — FA
satisfying i 4 onp A = in4 which is the component at A of the unit of the component at F' of
the adjunction in Theorem 6.1.
Consider Fm* : FA — FU for U <,, A. Notice that m* on = f o s with s € Z implies
s invertible. To see this, we have (mo/¢)* on = s and Assumption 2.4 yields m; onj = s for
some mi,ny € A, so, by the definition of %, it follows that mq,n, are both invertible, so s
is. Hence:
* —
(ﬁm*)v,w _ {1 form*on=1"

0 otherwise .

The inclusion i4 : FA — F A can be written as a vector
ia = (an)v=<,A

where a,, = pry oig : FA — FV. Since F'm* oig =0 for U <,, A, we obtain

Z ap, =0.

m*on=~{

Lemma 7.1. IfU <,, A then a,, = 0.

Proof. We use induction on the number of n : U — A in .# with n < m in the ordered set
P(U, A).

If the number is 1 then m is minimal. Now by adjointness in [P, the equation m*on =1
implies n < m and so n = m by minimality. So an has only the one term a,,. So
am = 0.

Assume inductively that a, = 0 for all p € P(U, A) with fewer n < p than n < m. We

have
0= Z ap = Qm, + 2 ay -

m*on=1 m*op=1, p#m

m*on=1

By adjointness, m* op = 1 and p # m imply p < m. Also p is proper since otherwise
m* op = 1 would imply m invertible. By the inductive assumption, it follows that each such
ap = 0. So a,, = 0 as required. O

Proposition 7.2. The unit np : F — F of the adjunction of Theorem 6.1 is invertible.

Proof. The component npA: FA — F A of the unit is defined by ig4onpA = ing; it is clearly
a monomorphism. Lemma 7.1 can be stated as saying i4 = ing oaa. So

iAOnFAoaA:iHAOGA:iA:iA011§A,
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yielding npAoas = 1I~?A' Hence nrA has inverse aq = pry oi4. U

8. REMARKS ON IDEMPOTENTS

Define a relation on any monoid M by a C b when ba = a. This relation is transitive;
indeed, we have a stronger property.

Proposition 8.1. If ub C a and vc C b then uvc C a.
If u;a; E a;—1 for 1 C i E n then uy ... uya, C ag.

Proof. For the first sentence, the assumptions are aub = ub and bve = ve. So auve =
aubve = ubve = uvc; that is, uve C a. The second sentence follows by induction. O

The relation is only reflexive for idempotents: clearly a C a is equivalent to aa = a.

The unit 1 of the monoid is a largest element in the sense that a C 1 for all a € M. That
is, 1 is the empty meet. However, not all meets need exist. A meet for a,b € M is an element
aNbwithaANbC aand aAbC b, and, if xt C a and z T b then z C a Ab. In particular, a Ab
must be an idempotent. Meets of lists of n elements are defined in the obvious way and, for
n > 2, can be constructed from iterated binary meets when they exist.

Proposition 8.2. IfabC b and a C a then a Ab = ab.
If ay,...,an are idempotents such that a;a; & aj for i © j thenai A---Nap = ai...an,.

Proof. For the first sentence, we are told that ab C b, while a T a implies aa = a, and so
aaab = ab, yielding ab C a. For the second sentence the result is clear for n = 1 since we
suppose a1 idempotent. Assume the result for n—1; so a1A---Aan_1 = a1...a,—1. Apply the
second sentence of Proposition 8.1 to the inequalities a;a, C a, to deduce ay ...a,_1a, C a,.

So, by the first sentence, a1...a, =a1...0n_1 NGy =a1 N -+ Aap_1 A ayp, as required. [

Notice that, if ab = ba and b is idempotent, then bab = abb = ab, so ab T b. So the
proposition applies to commuting idempotents.

Now suppose we have a ring R. We can apply our results to the multiplicative monoid of
R. We say idempotents e and f in R are orthogonal when ef = fe = 0. A list eg,e1,...en
of idempotents is orthogonal when each pair in the list is orthogonal. The list is complete
when ey +e; + -+ -4+ e, = 1. An easy induction shows that a complete list of idempotents is
orthogonal if and only if e;e; = 0 for ¢ < j.

For each a € R, put @ = 1 — a. Clearly if a is idempotent, so is a.

Let R° denote the ring obtained from R by reversing multiplication.

Proposition 8.3. (a) a T bin R if and only if bC @ in R°.
(b) For b an idempotent, ab C b in R if and only if ab = b in R°.
(c) If a and b are idempotents and ab T b in R then eg = ab, e; = ab, ea = b is a complete
list of orthogonal idempotents.

Proof. (a) bC ain R° means (1 —b)(1 —a) =1 — b in R; that is, ba = a which means
alCbin R.

(b) @b C b in R° means bab = ba in R. That is, (1 — b)(1 —a)(1 —b) = (1 — b)(1 — a).
That is, 1 —a—b+ab—b+ba+bb—bab=1—b—a—+ ba. That is, bab = ab, which
isabC bin R.

(¢) We already know eg and es are idempotent. They are also orthogonal: egey =
ab(1 —b) = ab—ab = 0 and ezeg = (1 — b)ab = ab — bab = 0. Therefore ey + e3 =
ab+1—b=1—(1—a)b= ey is idempotent. So e; is idempotent and eg+e;+e5 = 1.
The calculations ege; = ab(l — a)b = ab — abab = 0 and ejes = (1 —a)b(1 —b) =
b — ab — b+ abb = 0 complete the proof.

O
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We can extend part (c) inductively to obtain:

Proposition 8.4. Suppose a1, ...,a, are idempotents such that a;a; E a; for i < j. Then
€ = UjAi41Gi+2 - - - an for 0 < i < n (in particular, eg = ajas...a, and e, = a,) defines a
complete list of orthogonal idempotents.

Suppose 4 is an additive category in which idempotents split. Our results apply to the
endomorphism monoid 2 (A4, A) of each object A € 2. If a is an idempotent on A, we have
a splitting:

aA aA .

aA
Yet, we also have a splitting for @ = 1 — a which incidentally provides a kernel aA for a and
so a direct sum decomposition of A:
= aA®daA .

More generally, for any complete list eg, e1, ... e, of orthogonal idempotents in 27(A, A),
we obtain a direct sum decomposition

A= eADeAD---DeA .

9. THE EQUIVALENCE

An adjunction with invertible unit and conservative right adjoint is an equivalence. A right
adjoint is conservative if and only if the components of the counit are strong epimorphisms.
So it remains to prove, for any functor 7' : &2 — 2" and any object A in &, the component

erA : TA — TA of the counit of the adjunction of Theorem 6.1 is a strong epimorphism.
We have TA = @UjA TU and the restriction of erA to the U <, A term is

am : TU 2% 17U T2 74 (9.15)

It follows from Assumption 2.6 that the idempotents a; = T'c; on TA in 2 satisfy the
conditions of Proposition 8.4.

Theorem 9.1. For any additive category 2  which has finite products and splittings for
idempotents, the adjunction of Theorem 6.1 is an equivalence

(P, X =D, X pt -

Proof. As remarked in the Introduction, it suffices to take 2" to be the category of abelian
groups. We say this to assure the reader that the limits involved in the tilde construction
do exist in 2" as given in the Theorem.

We already know that it suffices to show that the morphisms a,, of (9.15) are jointly
strongly epimorphic. Put o9 = 1, and a; = a;y, for 1 < i < n and we shall show that
these a; for 0 < i < n are already jointly strongly epimorphic. The proof is by induction
on the number of subobjects of A (using Assumption 2.5). If A has no proper subobjects,
TA=TA and aq is invertible. For 1 < i < n, we have a commuting square

ETUZ'

TU; TU;

pil ]TW

TU; TA.

a;
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Each U; has fewer subobjects than A so the inductive hypothesis yields invertibility of each
erU;. So it suffices to prove that ag together with the T'm; are jointly strongly epimorphic.
Every proper subobject of A factors through one of the m;; so

n
TA= ﬂ kerT'm; = egT A
i=1
in the notation of Proposition 8.4. Also, in that notation, e; = (T'm;)(T'm})ait1 - .. ap, so
we put s; = (T'm})ait1...an : TA — TU;. Take sg to be the splitting of o : egT' A — TA.
Then

n
g, Ty, ..., Tmy] : (| TU; — TA
i=0
has a right inverse s with entries s; since
agSo +Tmis1+---+Tmps, =eg+e1+---+e,=1.

Thus o, T'm; ..., T'm, are jointly strongly epimorphic, as required. ([
10. EXAMPLES OF THEOREM 9.1

Example 10.1. We begin with a baby version of the Dold-Puppe-Kan Theorem. Let Pt.2"
denote the category whose objects are split epimorphisms in 2", the morphisms are mor-
phisms of the epimorphisms which commute with the splittings; this is what Bourn [5] calls
the category of points in 2Z". Take P to be the free-living adjunction p* -4 p with identity
counit p*opu =1. So [P, Z| = PtZ". Let 4 consist of all the monomorphisms. Then #
contains only the identities. Theorem 9.1 yields

PtZ ~ 2 x Z .

This example also shows the necessity of 42 having homs enriched in abelian groups
(not merely commutative monoids). We need 2" to have kernels of split epimorphisms
and coproducts already. If we also ask that it have finite products then considering the
split epimorphism X x Y — Y given by the projection, the counit is the canonical map
X +Y — X xY, so if this is invertible we have hom enrichment in commutative monoids.
Now considering the codiagonal X + X — X, split by one of the injections, it is not hard to
show that 1x has an additive inverse.

Example 10.2. ([11, 12, 20]) Applying Theorem 9.1 to Example 3.2 yields that [A | +, 2]
is equivalent to the category of chain complexes in Z .

Example 10.3. Applying Theorem 9.1 to Example 3.3 yields [I, Z'] ~ [Aiyj, Z7], the cate-
gory of semi-simplicial objects in 2.

Here are some examples of the general type described in Example 3.1.

Example 10.4. A (set) species in the sense of Joyal [17] is a functor F' : & — Set
where & is the category of sets and bijective functions. A pointed-set species is a functor
F :6 — 1/Set. An R-module species is a functor F : & — Mod®; the case where R is a
field is the basic situation of [18].

Following [9], we write FI for the category of finite sets and injective functions. We then
see that # = FI and & = &, while & = FIi, the category of injective partial functions.

Corollary 10.5. [9] The functor

(=) : [6,Mod] — [FIf, Mod®?|

18 an equivalence of categories.
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Example 10.6. Another example relevant to [19] is the category &/ = FIVecty, of finite
vector spaces over the field F, of cardinality ¢ (a prime power) and injective linear functions.
Let & = ®l; be the category of finite Fy-vector spaces and linear isomorphisms. Then
& = F1IYi, is the category of finite F,-vector spaces and injective partial linear functions.

Corollary 10.7. The functor

—_—

(=) : [&l,, Mod ] — [FIH,, Mod®]
is an equivalence of categories.

Example 10.8. Here are a few examples of categories &/ as in Example 3.1 to which
Theorem 9.1 applies with & the epimorphisms and .# the monomorphisms:

(a) the category of finite abelian groups and group morphisms;
(b) the category of finite abelian p-groups and group morphisms;
(c) the category of finite sets and all functions.

Theorem 9.1 also applies to .# in place of &7 in these examples. Then & is replaced by the
groupoid of invertible morphisms in 7. In case of example (a), the paper [15] describes the
groupoid being represented in Z .

Example 10.9. Consider the “algebraic” simplicial category A, whose objects are all the
natural numbers and whose morphisms £ : m — n are order-preserving functions

¢€:{0,1,...,m—1} — {0,1,....,n — 1} .

Put &/ = AP, Take .# in & to consist of the surjections in A;. Pushouts of surjections
along arbitrary morphisms exist in A;. Then & = Aipinj and & is the opposite of the
category whose morphisms m — n are cospans

I3 o
m-——=r+—n
in Ay with o surjective. We could also take the “topological” simplicial category A (omit
the object 0) to obtain a reinterpretation of the preoperads in 2" in the sense of [2].

Example 10.10. Here is a rather trivial example involving A. Take &/ to be the category
of non-empty ordinals and morphisms the order-preserving functions which preserve first
element. Let .# be the class of morphisms which are inclusions of initial segments. This is
part of a factorization system where & = A | .7 is the category of ordinals with distinct first
and last element and morphisms the order-preserving functions which preserve first and last
element. Sometimes & is called the category of intervals; there is a duality isomorphism

&= A%
In this case, not only do we have the equivalence
&, 2~ [P, Z]
of Theorem 9.1, we actually also have an isomorphism
P=2E .

Example 10.11. Take .o/ to be a (partially) ordered set with finite infima and the descending
chain condition. Then every morphism is a monomorphism and the strong epimorphisms
are equalities. So & is the discrete category ob on the set of elements of the ordered set.
The reader may like to contemplate the case where &7 is the set of strictly positive integers
ordered by division.
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11. A CONSTRUCTION FOR NEW EXAMPLES

Let A |7 be the category of intervals; that is, the full subcategory of A 1 obtained by
deleting the object 1. This provides an example of the setting in Section 2; see Example 3.2.
The 2-category “IP” for this example will be denoted by D; it is the 2-category whose underly-
ing category is A | »1 and whose 2-cells are pointwise order. I is a locally full sub-2-category
of Cat.

Let & be any category with the structure and assumptions laid out in Section 2; in
particular, we have the locally ordered 2-category P.

There is a kind of wreath product Q of D with PP. It is another locally ordered 2-category.
The objects are functors A : a — & (not just families) with @ € I and for which each
At <j): A; = Ajisin A o .#*. A morphism (§,u) : (a,A) = (b, B) is a diagram

: b
u
—
N
P
in Cat with £ : a — b in D and ug : Ag — By invertible (or, if the class . for &2 is closed
under composition, we can merely ask that ug € .). Define (&, u) < ((,v) : (a, A) — (b, B)
when ¢ < ¢ and, for each i € a, we have B(&i < (i) o u; < v;.

This Q is a locally full sub-2-category of the Grothendieck fibration construction applied
to the 2-functor

a (11.16)

DP — Cat®® =5 2 Cat .

Let 2 be the underlying category of Q. Define .# for 2 to consist of the morphisms
(0,m) : (a,A) — (b, B) where 0 is injective and m; € .# for all i € a. The following result
is routine.

Proposition 11.1. If o is a left adjoint with identity counit for @ in D and m; is a left
adjoint with identity counit in & form; € M, i € a, then (o, z) is a left adjoint with identity
counit for (0,m) : (a,A) — (b, B), where z, = m}, o B(k < 0ck) for all k € b.

Proposition 11.2. Assumptions 2.1 and 2.5 are satisfied by this A4 for 2.

Proof. Assumption 2.5 is immediate since it is true of A |7 and assumed for &. Thus we
only need to check Assumption 2.1 for binary pullbacks. The pullback of two subobjects
(0,m) : (a,A) — (¢,C) and (&',m’) : (b, B) — (¢, C) is obtained by forming the pullback

p
|
a

in AT, and, for each k € p, forming the pullback

7.r/

o<=—
Q

_ >

7]

g/
k
Pk: Bﬂ'/k}

Kk l Lm;lk

Ari Conk
Myl

in &. Note that, for k1 < ko, the induced P(ky < ko) satisfies ¢y, o P(ky < ka) = A(mky <
ko) o Ly, so that P(k; < ko) = ., 0 A(rky < ko) o by, € M o A * by Assumption 2.4 for
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. This gives the pullback

(p.P) — "~ (b, B)
(m,€) l l (9',m’)
(4, 4) — (¢, C)

in 2.

Now take left adjoints of the morphisms in this pullback in Q. We must prove the result
is a pushout in 2. Take ({,u) : (a,A) = (2,X) and (¢,v) : (b,B) — (z,X) such that
(&,u) o (0,m)* = (¢,v) o (0',m')*. By Assumption 2.1 for AT, there exists a unique
0 : p — x such that o 7* = £ and 0 o 7”* = (. By Assumption 2.1 for £, for each k € p,
there exists a unique wy, : P, — Xy, such that wy, 0 £}, = ury, and wy o £;F = vy. (Note that
this uses 7* o = 1 and 7’* o/ = 1.) This gives (6, w) : (p, P) — (x, X) as required. O

Defining # and . for 2 as we must, we conclude from Proposition 11.2 that we have
the unique factorization property (§,u) = (u,n) o (0,s) with (u,n) € 4 and (o,s) € .7
furthermore, we have the unique factorization (o, s) = (p,r) o (9, m)* with (0, m) € .# and
(p,1) € Z.

Before continuing, we require more explicit descriptions of these classes . and Z. To do
this, we require some restrictions on &.

Suppose A is a subcategory of a category € and €, % , £ are three classes of morphisms
in €. We say (€, %" )-factorization in £ is N -functorial when, for all fi = kjoh; € L
and f2 =kgohy € % with hl,hg € J and k‘l,]fg S Q%/, ifbof1 = fQOCL with a,b € A then
there exists a unique ¢ € A for which the following diagram commutes.

hl kl

Ay Cy By
al c lb
Y
Ay " Cs o By

Example 11.3. In Example 3.1, where & = Par.«/, we see that (.#*, #)-factorization in
7 is P-functorial. Moreover, (.7, .4 )-factorization in & is &-functorial if each pullback in
& of a morphism in & along a morphism in # is in &. Under this condition, .7 is closed
under composition.

Example 11.4. In Example 3.2, (., .#)-factorization in & = A 1 (or A ,T) is &-
functorial. Moreover, (#*, Z)-factorization in . is 4 o .4 *-functorial. To see this last
sentence, suppose po & = (oo where ¢ 4 9, p = 1 or gg, and £ reflects 0. We claim
0 = £ o 9, which clearly reflects 0, satisfies po 6 = ( and § o 0 = £. The first of these is easy:
pol =pofod=_oood = (. The second is clear when p = 1. For the second with p = oy,
we use that og is injective except that ggl = 0¢0. Now 1 < 0 oo so & # £0oi implies
&i < Do, and the only possibility for this is &6 = 0 and €007 = 1. Since £ € A o A,
& = 0 implies i = 0. Then £00i = £0o0 = 0 # 1, a contradiction. This proves § o 0 = £.
Clearly 6 is unique since o is epimorphic.

Proposition 11.5. Assume (.7, #)-factorization in P is M o M *-functorial. A morphism
(&u): (a,A) — (b, B) in 2 is in . if and only if for each j € b, there exists i € a with
ot =3 and u; € .&.

Proof. To prove “if”; assume (&, u) = (9,m) o ({,v) with (9,m) € #. Since £ = do ( is
surjective, 0 is an identity and £ = (. So we have u; = mg; o v; for all i € a. For any given
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J € b, choose ¢ in the fibre of £ over j with u; € . Then m; = my; is invertible. This
proves (0, m) invertible. So (§,u) € ..

For “only if”, first note that, writing £ = p o ¢ with p injective and o surjective, we have
(§,u) = (p,1B,) o (o,u) with (u,1p,) € A#. So p is an identity and ¢ is surjective. Now
notice that, by naturality of u, if i1 < g in the fibre of £ over j € b, then u;, = u;,0A(i1 < i2).
So u;, € .7 implies u;, € .. Let 0j denote the largest element of the fibre of £ over j. So we
are required to prove that each uy; is in .. (In fact, £ 4 0 in Cat although 0 : b — a may not
be in A | x7). We have ({,w) : (a, A) — (b, Ap) defined by w; = A(i < i) : A — Ape.
However, (§,u) = (1p,uy) o (§,w) and (§,u) € .7 imply (15, uy) € .. It remains to show
that any morphism in . of the form (1;,y) : (b,C) — (b, B) has each y; in .. Factor
y; = mjos; with m; € .# and s; € .. Using functoriality of the factorization in &, we
obtain a factorization (1,y) = (15, m) o (1p,5) in 2. So (1, m) is invertible. Hence each m;
is invertible yielding y; € .. O

Proposition 11.6. Assume (7, 4 )-factorization in & and (M *,Z%)-factorization in .
are M o M*-functorial. The morphisms in the Z for 2 consist of those of the form (14,7) :
(a,A) — (a,B) or (og,r) : (b+1,A) — (b, B) where r; € Z for alli € a.

Proof. We have the characterization of . as in Proposition 11.5.

The morphisms (p,7) of the given form are clearly in . so it suffices the show that
(p,r) = (& u) o (0,m)*, for (0,m) € A, implies (0,m) invertible. We have p = oo
and 7, = ugy o 2z where (0,2) = (9, m)*. It follows that o is an identity, that p = £ and
T = up omy. Since 1, € Z and my, € A, it follows that each my, is invertible. So (9,m) is
invertible.

Conversely, suppose (§,u) € Z. Then (§,u) € . so £ is surjective and, for each j, there
is an ¢ with & = j and u; € .. By definition of 2, we also have uy € .. For each ¢ with
i € 7, write u; = r; o m; functorially with 7, € #Z and m; € 4. If £ is an identity then,
by definition of Z in £, all m; are invertible and so all u; € %Z; so (£, u) has the desired
form. Suppose ¢ is not an identity. Then { = 0 ooy, where o is a (possibly empty) composite
of morphisms o; with i < k. So (§,u) = (0,1) o (ok,u). Since (§,u) € %, it follows that
(ok,u) € Z. Assume k > 0. Then we have (0, m) € A and (o, z) = (O, m)* such that
(og,u) = (1,r) o (o, 2). It follows from the definition of # that (9, m) is invertible, a
contradiction. So k = 0, and thus ¢ = 1 and £ = 0¢. Consequently we have u; € .7 for all
i. So (&,u) = (00,71;) o (1,m}) and the definition of Z yields the m; invertible. So u; € #Z
for all 4, and (&, u) has the desired form. O

Proposition 11.7. Assume (7, . #)-factorization in & and (M *,Z%)-factorization in .
are M o M*-functorial. The morphisms in the the class M o M* for 2 consist of those of
the form (&,u) : (a, A) — (b, B) such that & reflects 0 and u; € M o M* for alli € a.

Proof. Take (§,u) = (v,n)o(o,z) € M o M* where (0,z) = (0,m)* as usual. Then £ =voo
reflects 0. Also u; = ngyi02; = ngjom}; 0 A(i < doi) is a composite of morphisms in .# o #*
for &2 and so is in .4 o .#* by Assumption 2.4 for &.

For the converse, we use the characterizations of . and & in Propositions 11.5 and 11.6.
Suppose (&, u) has the form given in the Proposition. Factorize as (§,u) = (v,n)o(p,r)o(0, 2)
with (v,n) € A, (p,r) € #, and (0,2) € A" as usual. Then & = v o p o o reflects
0 implies p = 1 by the uniqueness of factorization in A 7. However, this means we
have ug; = ny; o rj om; which implies ; = 1 by uniqueness of factorization in Z. So

(§u) = (v,n)o(0,2) € Mo M". O

Theorem 11.8. Assume (7, 4 )-factorization in &P and (M*,R)-factorization in . are
M o M*-functorial. Then Assumptions 2.1 to 2.6 hold for 2.
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Proof. Assumptions 2.1 and 2.5 were dealt with in Proposition 11.2. Assumption 2.2 is
straightforward. Assumption 2.4 is immediate given Proposition 11.7. So turn to Assump-
tion 2.3. By Assumption 2.3 for A | .7 and &7, we only need consider the case of a composite

(b+1,4) "% 6,8 "2 0,0)

in Z, where u; € Z for 0 < i < b, (1,m) € A4 and (1,z) = (1,m)*. Then zy,; o u; is in
Z for 0 < i < b. However, z; = m}k So, by Assumption 2.3 for & and the fact that oq is
surjective, each m; is invertible. So (1,m) is invertible as required.

For Assumption 2.6, let (a, A) be an object of 2. Subobjects of (a, A) are isomorphism
classes of morphisms (9, m) : (z,X) — (a, A) where 0 is injective and each m; : X; — Ap;
represents a subobject of an A; in &. The maximal subobjects are represented by those
(0, m) of two types. The first type have 9 = 0 for some 0 < k < a—1 and all m; an identity.
The second type have 0 an identity and have m; an identity for all but one component i = g
for which m;, : Xo — A;, represents a maximal subobject of A;,. Any endomorphism of
the form (1,u) : (a, A) — (a,A) commutes with any of the form (§,v) : (a, A) — (a,A)
where 1 < & and v(i) = A(i < &) by naturality of u. So the idempotents (as needed in
Assumption 2.6) obtained from the maximal subobjects of the first type commute with those
of the second type. Clearly the idempotents obtained from maximal subobjects of the second
type for different ig also commute. So we can take any listing of our idempotents in .2 which
keeps the order of those of the first type consistent with the order used in A 7, and, those
of the second type, consistent for each iy with the order used in &. [l

12. WHEN 2 IS SEMIABELIAN

Semiabelian categories include the category Grp of (not necessarily abelian) groups and
group morphisms. In [6] Dominique Bourn gave a version of the Dold-Puppe-Kan Theorem
(Example 10.2) for the case where the codomain category 2~ was semiabelian. In that case
it asserted monadicity of the right adjoint in Theorem 6.1. In this section, we provide a
version of this for & as in Section 2 in place of A°P.

Throughout we assume our category 2~ has zero morphisms (that is, has homs enriched
in pointed sets).

We begin by providing a non-additive version of the material at the end of Section 8 on
idempotents.

Proposition 12.1. Suppose the category Z has kernels of idempotents. Let e, f be idem-
potents on an object A of 2. If eo foe = eo f then the intersection of the kernels of e and
f ewists.

Proof. Let k : K — A be the kernel of e. Since eo fok =eo foeo f =0, there exists a
unique g with fok=kog. Then kogog=fokog=fofok=fok=kogandkisa
monomorphism. So ¢ is idempotent. Then the kernel £ : L — K of g is easily verified to be
the intersection of the kernels of e and f. O

Protomodular categories were defined by Bourn [5]: a category 2" (with zero morphisms)
is protomodular when it is finitely complete and, for each object A, the functor ker : PtA —
4 is conservative. Here PtA is the category whose objects (p, X, s) consist of morphisms
p: X — As: A— X with pos =14, and whose morphisms f : (p, X,s) — (q,Y,t) are
morphisms f : X — Y such that go f = p and fos=1t. Also the functor ker takes (p, X, s)
to the kernel of p.

The following property is sometimes [4] taken as the definition of protomodular.

Lemma 12.2. In a protomodular category, if (p, X, s) is an object of PtA and k : K — X
is the kernel of p then s : A — X,k : K — X are jointly strongly epimorphic.
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Proof. Suppose m : Y — X is a monomorphism and m o u = s, m o v = k for some u,v.
Then m : (pom,Y,u) — (p,X,s) is a morphism of PtA. Using v, we see that m induces
an isomorphism between the kernel of p o m and K. Since ker : PtA — 2" is conservative,
m: (pom,Y,u) = (p, X, s) is invertible. So m is invertible. O

Proposition 12.3. Let ay,...,a, be a list of idempotents on an object A of a protomodular
category Z . Suppose a; o aj o a; = a; o a;j for i < j. Suppose a; = m; om; is a splitting of
a; via a subobject m; : A; — A and retraction m}. Let k; : K; — A be the kernel of m} (or
equally of a;). Then the morphisms my, ..., my along with the inclusion Nker m; — A are
jointly strongly epimorphic.

Proof. By Lemma 12.2, for each i, the morphisms m; : A; — A and k; : K; — A are jointly
strongly epimorphic; we will loosely say “A; and K; cover A”.
If i >1thenagoa;0ky =ajoa;0a1 0k =0, and so a; o k1 lands in K7, providing

a factorization a; o k; = kj o al. Now a} is also an idempotent, and, for 1 < i < j,
1o 1 1 o _ 1.1 ool 1 1 11
kloaioajoai —aloa]oalokl—aloajokzl—krloaioaj,andboaioajoai = a; o aj.

Clearly the splitting A} of a% is contained in A;.

The kernel KZ-1 of az1 is KZ1 = K1 N K; since a; ox = a; 0o x = 0 is equivalent to x = k1 oy
and kloa}oy:aiokloy:sioxzo; so in fact a}oy:O.

We know that A may be covered by A; and K. By Lemma 12.2 again, we know, for each
i > 1, that K1 may be covered by the splitting of A} and the kernel K} = K; N K; of a}.
Since A} < A;, we see that A may be covered by A;, A;, and K3 N K;.

Now continue inductively. ]

Theorem 12.4. Suppose & is as in Section 2 and 2 is protomodular (with zero morphisms)
with finite coproducts. Then the components of the adjunction of Theorem 6.1 are strong
epimorphisms.

Proof. The counit has components

Z ﬂ ker Tn* — TA .

B=mA C=nB
We prove this is a strong epimorphism by induction on the number k£ of maximal proper
subobjects Aq,..., A of A, with m; : A; — A. The result is clear for k = 1. For k > 1,
consider the following diagram.

> ZBij ﬂc<n3 ker T'n* > TA;

5l lv
> B~ ac<, pker T'n* - FA 5 Ne<, 4 ker Tn*

The component of the counit is strongly epimorphic if and only if o and 3 are jointly strongly
epimorphic. The top row is a coproduct of components of the counit already known to be
strongly epimorphic by induction. So it suffices to show that v and § are jointly strongly
epimorphic. Rewriting the domain of 5 as

k
ﬂ ker T'n* = ﬂ ker T'm; ,
C<nA i=1
we see that Proposition 12.3 applies to yield what we want. O

A category 42 is semiabelian [16] when it has zero morphisms, is protomodular, is Barr
exact, and has finite coproducts. A category is regular [1| when it is finitely complete, and
has the (strong epimorphism, monomorphism)-factorization system existing and stable under
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pullbacks. It follows that every strong epimorphism is regular (that is, a coequalizer); see
[8] for a proof. A category is Barr exact when it is regular and every equivalence relation is
a kernel pair.

We mentioned Bourn’s category Pt.2" in Example 10.1. We will use the following routine
fact.

Lemma 12.5. If 2 is a semiabelian category then the functor Pt 2™ — X2, sending each
split epimorphism to its kernel, preserves strong epimorphisms.

Proof. A strong epimorphism

i

in PtZ has f and g strong epimorphisms in Z". From this it is easily verified that the
square involving the downward-pointing arrows is a pushout. Factor the morphism in Pt.2"
as

X 9 7 fi v
T Al Al
A A B
1a f

in which the right-hand square involving the downward-pointing arrows is a pullback. The
induced morphism kerq; — kerq is invertible. Semiabelian categories are Maltsev [16].
Therefore, as a comparison morphism to the pullback in a pushout square in a Maltsev
exact category, g1 is a strong epimorphism (see Theorem 5.7 of 7]). The induced morphism
kerp — kerq; is the pullback of g; along kerqy — Z and so is a strong epimorphism by
regularity. (I

Theorem 12.6. If & is as in Section 2 and 2 is semiabelian then the adjunction of
Theorem 6.1 is (crudely) monadic.

Proof. By Theorem 12.4, the right adjoint (tilde) is conservative (since this is logically equiv-
alent to the counit being a strong epimorphism). Since 2 is semiabelian, it has coequalizers.
Therefore [Z2, 27| has coequalizers, so, for crude monadicity [25], it suffices to show that tilde
preserves coequalizers of reflexive pairs.

Both [#2, 2] and [Z, Z |yt are semiabelian. A limit-preserving functor between semi-
abelian categories preserves coequalizers of reflexive pairs provided it preserves strong (=
regular) epimorphisms (see Lemma 5.1.12 of [3]).

Let ¢ : S — T be a strong epimorphism in [&?, Z]. Each q4 : SA — TA is a strong
epimorphism. We must show each ¢a : SA—TAisa strong epimorphism.

Recall that T A is calculated by a sequence of kernels of split epimorphisms. This sequence
depends only on the object A and the category &2, not on the particular functor T. The
desired result follows on repeated application of Lemma 12.5. U

13. APPENDIX: PARTIAL MAPS USING TWO COMONADS

In this Appendix we provide a more categorical proof of the equivalence (1.3) in the
situation of Example 3.1. Let &, &, # and & be as in Example 3.1.

Let J : & — < be the inclusion functor and let I = (—), : & — Z2. Both functors are
the identity on objects.
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Let Z be any category admitting coproducts and products indexed by sets of .-
subobjects of any given object of <.

Lemma 13.1. Fach functor F': & — 2~ has a pointwise left Kan extension

& / o
\é/ (13.17)
F Lanj F
2

along J : & — of defined on objects by:

(LanyF)X = > FU .
U<X

For morphisms f: X — Y in o, the following square commutes.

FU—"Y  _ (Lan;F)X

Fel l(LanJF)f (1318)
FfU (LanyF)Y

lIlfU

Proof. The inclusion U < X +— (U,iy : JU — X) of the discrete category on the set
{U :U < X} into the comma category J/X has a left adjoint, taking (V, f : JV — X) to

fV < X, and so is final. It follows that the colimit of J/X dom o I 2 can be calculated
by restricting along the inclusion and so is the coproduct displayed. (I

Lemma 13.2. Fach functor T : o — 2" has a pointwise right Kan extension

o ! P
p
\:/ (13.19)
T Ran;T
2

along I : of — &P defined on objects by:

(Ran;T)X = [[ TU .
U<X

For morphisms (W, h) : X — Y in P, the square

pry—1y

(Ran;T)X Th='V
(RanIT)(W,h)l Th (13.20)
(Ran;T)Y — TV

commutes, where h is the pullback of h along iy .

Proof. The functor U < X — (if; : X — IU,U) from the discrete category on the set
{U : U < X} into the comma category X /I has a right adjoint, taking ((W, h) : X — [ A, A)

cod

to W < X, and so is initial. It follows that the limit of X/I — & i) % can be calculated
as the product displayed. O
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This gives the two adjunctions

Lan y Ranjy
&2 1 |«.2] T [2.2]. (13.21)
[J,1] [1,1]

Each adjunction generates a comonad on [&7, Z]:
G =Lanjyo[J,1] and H =[I[,1]oRan; . (13.22)
To be more explicit, the functors GF and HF' are defined on objects by
(GF)A= )Y FU and (HF)A= [] FU .
U<A U<A
On morphisms f: A — B in &, they are defined by commutativity in the squares

FU Fe FfU (HF)A—"07 gy
inUL linfU prflvl lprv (13.23)
(GF)A Gy (GF)B Ff-lv - FV .

The counits ep : GF — F and er : HFF — F have components respectively defined
by erAoiny = Finy and epA = pry. The comultiplications dr : GF — G?F and
dp : HF — H?F have components respectively defined as follows.

ZUSA FU HUgA FU

FU Y v FV
k % m Af

ZVSUgA FV HVgUgA Fv

We shall construct a comonad morphism © : G = H when 2" is a pointed category.
Take F : o7 — Z and A € o/. We define

OrA: Y FU— [[ FV (13.24)
U<A V<A

pr

by taking the composite
FU ™ N FU 2 T FV Y FY
U<A V<A
to be zero unless U <V, in which case the composite is F(U <V): FU — FV.

Proposition 13.3. For the two comonads G and H of (13.22) on [/, 2], a comonad
morphism © : G = H 1is defined by the components (13.24).

Proof. Naturality in A is proved by contemplating the following diagram.

i OrA PTe—1
FU "%y g FU 51y, cs FUL = Ff7V

Fe‘ l(GF)f l(HF)f \Ff

FIU — = Sven Vi g Mvep FV = FV

The top composite is zero unless U < f~'V (say with inclusion 7). The bottom composite
is zero unless fU < V (say with inclusion j). These conditions are the same. When they
hold, the diagram commutes since foi=joe.
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Naturality in F' is obvious.
Preservation of the counits is proved by the calculation

epAo@®pAoing =pryo@pAocing = F(U < A)=cpAoiny .
Preservation of the comultiplications is proved by observing that
pry<y 0 dpAoOpAoiny = pry o OpAoiny
while
pry < © 0% AdpAociny = pPry<y © 0% Aoiny<yw .
Both of these right-hand sides are zero unless W < V', in which case they are both equal to
F(W <V). O

Proposition 13.4. The functor [I,1]: [P, 2| — [/, Z7] is comonadic.

Proof. The functor [I,1] is conservative since I is bijective on objects. It also preserves all
limits, including all equalizers. The result follows (for example) by the Beck comonadicity
theorem [24]. O

It follows that © : G = H induces a functor © : [/, 2| — [P, X over [, X ],
where [/, 2] is the category of Eilenberg-Moore G-coalgebras. The composite of © with
the comparison functor [£, 2] — [«7, Z']¢ is isomorphic to

(=): &, 2] — 2, 2] (13.25)
as defined in (5.9).

With a finite well-poweredness assumption on the factorization system of 7, we shall
show that the adjunction of Theorem 6.1 is an equivalence. In other words, we shall show
that the free additive categories on & and & are Morita equivalent (= additively Cauchy
equivalent).

Our goal now is to prove:

Theorem 13.5. Let (&,.#) be a factorisation system on a category <. Assume that A
is contained in the class of monomorphisms and that all pairs (m : U — X, f: A — X) of
morphisms with m € 4 have a pullback in of . Assume that the 4 -subobjects of each object
form a finite set. Regard & as a subcategory of of with the same objects and put & = Pargs .
Let 2 be any finitely complete additive category. Then the functor (13.25) is an equivalence
of categories

& X~ (2, 2] .
We first prove that the comonads G and H of (13.22) are isomorphic.

Proposition 13.6. Under the assumptions of Theorem 13.5, the comonad morphism © :
G = H, with components (13.24), is invertible.

Proof. Since 2 is additive, every finite product is a coproduct. The ordered set of .-
subobjects of A € &7 is assumed finite and so has a linear refinement. So we can list all the
subobjects as 0 = Up, Uy, ..., U, = A such that U; < U; implies ¢ < j. Then the morphisms
(13.24) are represented by an upper-triangular matrix with identity morphisms in the main
diagonal. Since 2 is additive (including existence of additive inverses), such matrices are
invertible. (]

Proof of Theorem 13.5. By Proposition 13.6, the functor (13.25) becomes the comparison
from [&, 2] into the category of G-coalgebras. So the Theorem is now equivalent to
comonadicity of the functor Lany : [&, 2] — [/, Z7]. Since the unit of the adjunc-
tion Lan; - [J, 1] is a pointwise coretraction FA — FA® @y, 4 F'U, and hence a strong
monomorphism, the functor Lan; is conservative. So it remains to prove that Lan; preserves
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certain equalizers. In fact, it preserves all finite limits. Since limits in [7, 2] are formed
pointwise, it suffices to see that each

evqolLlany:[&, 2] — %

preserves finite limits where evy : [«7, 2] — £ is evaluation at A € /. By Lemma 13.1,

evq o Lany = @ evy .
U<A

Each evaluation evy; preserves limits so their direct sum does. U

1
2]
3]

4]

5]

6]

7
8]
9]

10]

11)

12)

13]

14]

15)

16]

17]

18]

19]

[20]
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