I. A philosophical and historical perspective (cycles and elephants)

II. Local homeomorphisms and sections

III. Yoneda Lemma and Kan Theorem

IV. Presheaves, étale spaces, sheaves
 Examples: Sheaves of functions
 Spectrum and structure sheaf of a ring

V. Elementary toposes (development of intuitionistic set theory)
 Examples: Spatial toposes
 G-sets (or more generally $[G, Set]$)

VI. Geometric morphisms
 Examples: Generalized spaces (sobriety)
 Generalized groups
 Local structures (local-ringed spaces)

VII. Grothendieck topologies: lex totality; TopSp as a site

VIII. Classifying toposes

IX. Analysis in a topos

X. Representation theory of rings
 Example: Kaplansky becomes Swan

XI. Elementary set theory (axiom of choice and theorem of Barr)

XII. Non-standard analysis of A. Robinson

XIII. Independence results in set theory

XIV. Cohomology

XV. Stacks

XVI. Topological groupoids

XVII. Structure Theorem (Grothendieck–Toepel–Tierney)