Macquarie Mathematics Reports

THE COMPREHENSIVE CONSTRUCTION OF FREE COLIMITS

Ross Street
Sydney Category Seminar Reports

MACQUARIE UNIVERSITY

REPORT 79-0002 MAY 1979 AND GLADLY LERNE
THE COMPREHENSIVE CONSTRUCTION OF FREE COLIMITS

Ross Street

(1) Let \(\Gamma \) denote a set of categories. A \(\Gamma \)-colimit in a category \(M \) is a colimit of a functor into \(M \) with domain in \(\Gamma \). When all \(\Gamma \)-colimits in \(M \) exist then \(M \) is said to be \(\Gamma \)-complete. A functor \(f : M \to N \) which preserves \(\Gamma \)-colimits is said to be \(\Gamma \)-cocontinuous. (See Mac Lane [4] for unexplained terminology.)

(2) This article asserts the existence of \(\Gamma \)-cocompletions and provides a construction:

Theorem. Let \(\Gamma \) be any small set of small categories. For each small category \(X \), there exist a small \(\Gamma \)-cocomplete category \(\bar{X} \) and a functor \(n : X \to \bar{X} \) with the property that, for each \(\Gamma \)-cocomplete category \(M \), composition with \(n \) yields an equivalence between the category of \(\Gamma \)-cocontinuous functors from \(\bar{X} \) to \(M \) and the category of all functors from \(X \) to \(M \).

(3) The problem of freely adjoining colimits has been investigated by Kock [3] and Wood [8] who, because of combinatorial difficulties created by the formation of the free categories on certain graphs, required conditions of stability on \(\Gamma \). There is compelling a priori evidence that no conditions on \(\Gamma \) (apart from size) should be necessary. To wit, for category-valued 2-functors \(J,S \) with the same domain and such that \(S \) lands in the 2-category of \(\Gamma \)-cocomplete categories and \(\Gamma \)-cocontinuous functors, the category of pseudo-natural transformations (Kelly-Street [2]) from \(J \) to \(S \) is \(\Gamma \)-cocomplete; in other words, \(\Gamma \)-cocomplete categories are closed under "indexed bilimits" in the sense of Street [6].
2.

(4) The case where \(\Gamma \) is the set of categories which have cardinality less than some regular cardinal \(\gamma \) has been dealt with by Gabriel-Ulmer [1]; regularity is itself a stability condition. (In this case we use the prefix "\(\gamma^- \)" rather than "\(\Gamma^- \)" in the above definitions.) They show that \(\mathfrak{K} \) can be taken to be the skeleton of the full subcategory \(K_\gamma(X) \) of \([X^{op}, Set]\) consisting of the \(\gamma \)-colimits of representable functors (= the \(\gamma \)-presentable objects). Clearly each object of \(K_\gamma(X) \) can be obtained as a coequalizer of two arrows between \(\gamma \)-coproducts of representables in \([X^{op}, Set]\). If \(\gamma \) is small, so too then is \(\mathfrak{K} \).

(5) Before proceeding with the general construction, we must recall some details from Street-Walters [7] and Street [5]. Each functor \(w: C \rightarrow X \) can be factored as a composite

\[
\begin{array}{ccc}
C & \xrightarrow{j_w} & E(w) & \xrightarrow{p_w} & X \\
\end{array}
\]

where \(j_w \) is a final functor and \(p_w \) is a discrete \(1 \)-fibration. If \(C, X \) are small, \(E(w) \) is the category of elements of \(\col X(-, wc): X^{op} \rightarrow \text{Set} \) and so is also small. For each commutative square

\[
\begin{array}{ccc}
A & \xrightarrow{j} & C \\
\downarrow{u} & & \downarrow{v} \\
E & \xrightarrow{p} & B \\
\end{array}
\]

in which \(j \) is final and \(p \) is a discrete \(1 \)-fibration, there exists a unique functor \(f: C \rightarrow E \) such that \(fj = u \) and \(pf = v \). The pointwise left Kan extension \(k \) of a functor \(h: C \rightarrow M \) along a \(0 \)-fibration \(q: C \rightarrow A \) is given on objects by the formula

\[
ka = \col(C_a \rightarrow C \xrightarrow{h} M),
\]

where \(C_a \) is the fibre of \(q \) over \(a \).
Suppose Γ is any set of small categories. For each ordinal θ, a set Γ_θ of small categories is recursively defined as follows:

- Γ_0 consists of the terminal categories (one of which is denoted by 1);

- for each ordinal θ, $\Gamma_{\theta+1}$ consists of the small categories C for which there exists a 0-fibration $q : C \rightarrow A$ such that A is in $\Gamma_\theta \cup \{1\}$ and each fibre C_a of q is the codomain of some final functor with domain in Γ_θ;

- for each limit ordinal θ, $\Gamma_\theta = \bigcup_{\phi < \theta} \Gamma_\phi$.

Observe that $\Gamma = \Gamma_1$ and $\Gamma_\phi \subseteq \Gamma_\theta$ for $\phi \leq \theta$.

(7) Suppose M is a Γ-cocomplete category. For all ordinals θ, M is Γ_θ-cocomplete and any Γ-cocontinuous functor $f : M \rightarrow N$ is Γ_θ-cocontinuous. For $\theta = 0$ this is trivial. Suppose M is Γ_θ-cocomplete and take a functor $h : C \rightarrow M$ with C in $\Gamma_{\theta+1}$. There is a 0-fibration $q : C \rightarrow A$ as in the definition of $\Gamma_{\theta+1}$ so that the left Kan extension k of h along q can be calculated by the formula

$$ka = \text{colim}(B_a \longrightarrow C_a \longrightarrow C \xrightarrow{h} M)$$

where $B_a \longrightarrow C_a$ is final and B_a is in Γ_θ. Since A is in $\Gamma_\theta \cup \{1\}$, the colimit of $k : A \rightarrow M$ exists. The left Kan extension along the composite $C \xrightarrow{q} A \rightarrow 1$ can be obtained by first left Kan extending along q and then left Kan extending the result along $A \rightarrow 1$. So the colimit of k is the colimit of h. So M is $\Gamma_{\theta+1}$-cocomplete. If θ is a limit ordinal and M is Γ_ϕ-cocomplete for all $\phi < \theta$, clearly M is Γ_θ-cocomplete. So M is Γ_ϕ-cocomplete for all θ asserted. The statement about f is now clear from the above construction of f.

4.

Γ_θ-colimits in M.

(8) For each small category X and each ordinal θ, let X_θ denote the category whose objects are functors $w : C \to X$ with C in Γ_θ and whose arrows $f : w \to w'$ are commutative triangles:

```
      E(w')
     /    \\
    f     \\
   / \    \\
P_w  \downarrow   \downarrow P_{w'}
  \  /  \\
X  /  \\
```

For $\phi \leq \theta$, X_ϕ is a full subcategory of X_θ. There is an equivalence of categories $r_\phi : X \to X_\phi$ which takes x to $x : 1 \to X$ and takes $\xi : x \to x'$ to

$$E(x) = x \downarrow x \xrightarrow{\xi} x \downarrow x' = E(x').$$

The composite $X \xrightarrow{r_\phi} X_\phi \subseteq X_\theta$ is denoted by r_θ.

(9) There is a fully faithful functor $t_\theta : X_\theta \to [X^{op}, Set]$ which is given on objects by:

$$t_\theta(w) = \text{colim}_{C} X(-, wc).$$

This is because $E(w)$ is just the category of elements of $t_\theta(w)$ and because taking categories of elements gives an equivalence between the category $[X^{op}, Set]$ and the category of discrete 1-fibration over X with small fibres.

(10) Notice that $t_\theta r_\theta$ is isomorphic to the Yoneda embedding $y_X : X \to [X^{op}, Set]$.

(11) For each ordinal θ and each functor $u : A \to X_\theta$ with A in Γ, we shall now construct a colimit for the composite $A \xrightarrow{u} X_\theta \subseteq X_{\theta+1}$.

Write $E : X_\theta \to \text{Cat}$ for the functor which takes w to its "comprehensive image" $E(w)$ and takes $f : w \to w'$ to $f : E(w) \to E(w')$. Let L be the
category obtained from the composite \(A \xrightarrow{u} X_0 \xrightarrow{E} \text{Cat} \) via the Grothendieck construction; explicitly, an object of \(L \) is a pair \((a,e)\) where \(a,e \) are objects of \(A, E(ua) \), respectively, and an arrow \((\alpha,\eta) : (a,e) \rightarrow (a',e') \) in \(L \) consists of arrows \(\alpha : a \rightarrow a' \), \(\eta : (ua)e \rightarrow e' \) in \(A, E(ua') \), respectively. The first projection \(d : L \rightarrow A \) is a 0-fibration with \(E(ua) \) as its fibre over \(a \). Since \(ua \) is in \(X_0 \), there is a final functor \(j_{ua} \) into \(E(ua) \) with domain in \(\Gamma_0 \). It follows that \(L \) is in \(\Gamma_{0+1} \). This means that the functor \(s : L \rightarrow X \) given by \(s(a,e) = p^{uo} e \), \(s(\alpha,\eta) = p^{uo} \eta \) is an object of \(X_{0+1} \).

We shall show that \(s \) is a colimit for the composite \(A \xrightarrow{u} X_0 \xrightarrow{E} X_{0+1} \). Let \(\lambda_a : ua \rightarrow s \) in \(X_{0+1} \) be the inclusion \(i_a : E(ua) \rightarrow L \) composed with \(j_s : L \rightarrow E(s) \). The following composite is the identity natural transformation.

\[
\begin{array}{ccc}
E(ua) & \xrightarrow{j_a} & L \\
\downarrow{ua} & & \downarrow{j_s} \\
E(ua') & \xrightarrow{i_a'} & E(s) \\
\end{array}
\]

Since \(p_s \) is discrete it follows that \(j_s i_a = j_s i_a (ua) \) which means that the \(\lambda_a \) are the components of a cocone with vertex \(s \). To see that this cocone is universal, suppose \(w : C \rightarrow X \) is in \(X_{0+1} \) and \(\mu_a : ua \rightarrow w \) are the components of a cocone with vertex \(w \). This means we have commuting diagrams:

\[
\begin{array}{ccc}
E(ua) & \xrightarrow{j_a} & L \\
\downarrow{ua} & & \downarrow{j_w} \\
E(ua') & \xrightarrow{i_a'} & E(w) \\
\end{array}
\]
Let \(g : L \rightarrow E(w) \) be the functor given by \(g(a,e) = \mu_a e \), \(g(a,n) = \mu_a n \). Then \(P_w g = s = P_s j_s \), so there exists a unique functor \(f \) such that the following commutes.

\[
\begin{array}{ccc}
L & \xrightarrow{j_s} & E(s) \\
\downarrow{g} & & \downarrow{f} \\
E(w) & \xrightarrow{P_w} & X
\end{array}
\]

It is easily seen now that \(f : s \rightarrow w \) in \(X_{n+1} \) is unique with the property that \(\mu_a = f \lambda_a \) for all \(a \) of \(A \).

(12) For all \(\Gamma \)-cocomplete categories \(M \), each functor \(h : X \rightarrow M \) has a pointwise left Kan extension \(k_\theta \) along \(r_\theta : X \rightarrow X_\theta \) whose value at an object \(w \) of \(X_\theta \) is given by:

\[
k_\theta(w) = \text{colim} \left(C \longrightarrow X \xrightarrow{h} M \right).
\]

To see this notice that the colimit of \(hw \) does exist since \(C \) is in \(\Gamma_\theta \) (7). Since \(j_w \) is final, the colimit is also the colimit of the composite \(E(w) \xrightarrow{P_w} X \xrightarrow{h} M \). We shall show that \(P_w : E(w) \rightarrow X \) is isomorphic to \(d_\theta : r_\theta \downarrow w \rightarrow X \) so that the above formula for \(k(w) \) is isomorphic to the usual formula (see Mac Lane [4]) for the pointwise left Kan extension of \(h \) along \(r_\theta \). An object of \(r_\theta \downarrow w \) is a pair \((x,f)\) where \(x \) is an object of \(X \) and \(f : r_\theta(x) \rightarrow w \) is an arrow of \(X_\theta \). Since the top arrow of the square below is final and \(P_w \) is a discrete 1-fibration, to give such an object is precisely (see (5)) to give an object of \(E(w) \).

\[
\begin{array}{ccc}
1 & \xrightarrow{j} & X \downarrow x \\
\downarrow{f} & & \downarrow{d_\theta} \\
E(w) & \xrightarrow{P_w} & X
\end{array}
\]
The required isomorphism \(r_\theta \cdot w \cong E(w) \) is now clear.

(13) The left Kan extension \(k_\theta \) of (12) has the following two properties:

(i) \(k_\theta \cdot r_\theta \cong h \);

(ii) \(k_\theta \) preserves the colimits of functors \(A \xrightarrow{u} X_\phi \cong X_\theta \) with \(A \) in \(\Gamma \) and \(\phi < \theta \).

Since \(k_\theta \) is pointwise and \(r_\theta \) is fully faithful, property (i) follows (Mac Lane [4; Ch. X §3, Cor. 3, p. 235], Street [5; p. 129]). Since property (ii) is vacuous for \(\theta = 0 \) and since \(X_\theta = \cup_{\phi < \theta} X_\phi \) for \(\theta \) a limit ordinal, it suffices to show that, for all ordinals \(\theta \), \(k_{\theta+1} \) preserves the colimit of each functor \(A \xrightarrow{u} X_\theta \cong X_{\theta+1} \) with \(A \) in \(\Gamma \).

Such a colimit was constructed in (11) and denoted by \(s \). What we must show is that \(k_{\theta+1}(s) \) is canonically isomorphic to the colimit of the composite \(A \xrightarrow{u} X_\theta \cong X_{\theta+1} \xrightarrow{k_{\theta+1}} M \); the latter composite is isomorphic to \(k_\theta u \). Now \(k_{\theta+1}(s) = \text{col}(L \xrightarrow{s} X \xrightarrow{h} M) \) by (12), and this colimit can be calculated by first Kan extending along \(d : L \rightarrow A \) and then along \(A \rightarrow X \). Since \(d \) is a 0-fibration, the value at \(a \) of the left Kan extension of \(hs \) along \(d \) is \(\text{col}(E(Ua) \xrightarrow{Pua} X \xrightarrow{h} M) \cong \text{col}(h(Ua)) = k_\theta(Ua) \). So \(k_\theta u \) is the left Kan extension of \(hs \) along \(d \). So the colimit of \(hs \) is \(\text{col}(k_\theta u) \) as required.

(14) Each object \(w : C \rightarrow X \) of \(X_\theta \) is the colimit of \(C \xrightarrow{r_\theta} X_\theta \). For each object \(c \) of \(C \), there is an arrow \(\lambda_c : r_\theta(wc) \rightarrow w \) in \(X_\theta \) uniquely determined by the commutativity of the diagram:
For each \(\zeta : c \rightarrow c' \) in \(C \), we have \(p_w^\lambda c : (X \downarrow wc) \downarrow wc = p_w^\lambda c j_{wc} \) (both sides equal \(wc : \top \rightarrow X \)). Since \(p_w \) is a discrete 1-fibration and \(j_{wc} \) is final, it follows that the arrows \(\lambda_c \) form a cocone over \(r_w^w \) with vertex \(w \). The universal property is easily checked.

(15) There is an ordinal \(\psi \) such that the inclusion \(X_\psi \subseteq X_{\psi + 1} \) is an equivalence of categories. If \(\Gamma \) is a small set of categories then the first such \(\psi \) is small and \(X_\psi \) has a small skeleton. Let \(\gamma \) be a regular cardinal which exceeds the cardinalities of all the categories in \(\Gamma \) and is small if \(\gamma \) is. The category \(K_\gamma(X) \) described in (4) is \(\Gamma \)-cocomplete. The Yoneda embedding \(y_X : X \rightarrow [X^{\text{op}}, \text{Set}] \) factors through \(K_\gamma(X) \) via a functor \(h : X \rightarrow K_\gamma(X) \) say. The left Kan extension \(k_\theta \) of \(h \) along \(r_\theta : X \rightarrow X_\theta \) exists and is given by \(k_\theta(w) = \text{colim}_{c \in C} X(-, wc) \) using (12). Since \(K_\gamma(X) \) is closed under \(\gamma \)-colimits in \([X^{\text{op}}, \text{Set}] \), the composite \(X_\theta \rightarrow K_\gamma(X) \subseteq [X^{\text{op}}, \text{Set}] \) is just \(t_\theta \) as given in (9). Since \(t_\theta \) is fully faithful, so too is \(k_\theta \). Let \(\phi \) be the first ordinal of cardinality exceeding that of the skeleton of \(K_\gamma(X) \); by (4), \(\phi \) is small if \(\gamma \) is. There is no \(\phi \)-sequence of non-isomorphic objects in \(K_\gamma(X) \), so there exists \(\psi < \phi \) for which \(X_\psi \subseteq X_{\psi + 1} \) is an equivalence. We have shown that each \(X_\theta \) is equivalent to a full subcategory of \(K_\gamma(X) \) and so has a small skeleton when \(\gamma \) is small.

(16) For an ordinal \(\psi \) as in (15), \(X_\psi \) is \(\Gamma \)-cocomplete and, for each \(\Gamma \)-cocomplete category \(M \), composition with \(r_\psi : X \rightarrow X_\psi \) yields an equivalence between the category \([X_\psi, M]_\Gamma \) of \(\Gamma \)-cocontinuous functors from \(X_\psi \) to \(M \) and the category of all functors from \(X \) to \(M \). Since \(X_\psi \subseteq X_{\psi + 1} \) is an equivalence, \(\Gamma \)-cocompleteness of \(X_\psi \) follows directly from (11). By (12), the functor \([r_\psi, M] : [X_\psi, M] \rightarrow [X, M] \)
has a left adjoint which, by (13), is fully faithful and lands in
$[X_\psi, M]_\Gamma$. It remains to prove that each Γ-cocontinuous functor
k : $X_\psi \longrightarrow M$ is a left Kan extension of kr_ψ along r_ψ. From (14)
we have that each object w of X_ψ is the colimit of $r_\psi w$. Since k
is Γ-cocontinuous it is also Γ_ψ-cocontinuous by (7), so $k(w)$ is the
colimit of $kr_\psi w$. By (12), k is a left Kan extension of kr_ψ
along r_ψ.

(17) To complete the proof of the Theorem, let ψ be as in the second
sentence of (15), let \bar{X} be the skeleton of X_ψ, and let $n : X \longrightarrow \bar{X}$
be induced by $r_\psi : X \longrightarrow X_\psi$.

(18) Notice that our construction gives the Γ-cocompletion of a small
category X even when Γ is not small, however, the Γ-cocompletion
in this case may not have a small skeleton.
REFERENCES

