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Abstract

The existence of adjoints to algebraic functors between categories of
models of Lawvere theories follows from finite-product-preservingness
surviving left Kan extension. A result along these lines was proved in
Appendix 2 of Brian Day’s PhD thesis [1]. His context was categories
enriched in a cartesian closed base. A generalization is described here
with essentially the same proof. We introduce the notion of carte-
sian monoidal category in the enriched context. With an advanced
viewpoint, we give a result about left extension along a promonoidal
module and further related results.
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1 Introduction
The pointwise left Kan extension, along any functor between categories with finite
products, of a finite-product-preserving functor into a cartesian closed category is
finite-product-preserving. This kind of result goes back at least to Bill Lawvere’s
thesis [8] and some 1966 ETH notes of Fritz Ulmer. Eduardo Dubuc and the
author independently provided Saunders Mac Lane with a proof along the lines of
the present note at Bowdoin College in the Northern Hemisphere Summer of 1969.
Brian Day’s thesis [1] gave a generalization to categories enriched in a cartesian
closed base. Also see Kelly-Lack [7] and Day-Street [3]. Our purpose here is to
remove the restriction on the base and, to some extent, the finite products.

2 Weighted colimits
We work with a monoidal category V as used in Max Kelly’s book [9] as a base
for enriched category theory.

Recall that the colimit of a V -functor F : A −→ X weighted by a V -functor
W : A op −→ V is an object

colim(W,F ) = colimA(WA,FA)

of X equipped with an isomorphism

X (colim(W,F ), X) ∼= [A op,V ](W,X (F,X))

V -natural in X.
Independence of naturality in the two variables of two variable naturality, or

Fubini’s theorem [9], has the following expression in terms of weighted colimits.

Nugget 1. For V -functors

W1 : A op
1 −→ V , W2 : A op

2 −→ V , F : A1 ⊗A2 −→X ,

if colim(W2, F (A,−)) exists for each A ∈ A then

colim(W1, colim(W2, F )) ∼= colim(W1 ⊗W2, F ) .

Here the isomorphism is intended to include the fact that one side exists if and only
if the other does. Also (W1 ⊗W2)(A,B) = W1A⊗W2B.
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Proof. Here is the calculation:

X (colim(W1 ⊗W2, F ), X) ∼= [(A1 ⊗A2)
op,V ](W1 ⊗W2,X (F,X))

∼= [A op
1 ,V ](W1, [A

op
2 ,V ](W2,X (F,X)))

∼= [A op
1 ,V ](W1,X (colim(W2, F ), X)))

∼= X (colim(W1, colim(W2, F )), X) .

Here is an aspect of the calculus of mates expressed in terms of weighted col-
imits. Note that S a T : A −→ C means T op a Sop : A op −→ C op.

Nugget 2. For V -functors W : A op −→ V , G : C −→X , and a V -adjunction

S a T : A −→ C ,

there is an isomorphism

colim(WSop, G) ∼= colim(W,GT ) .

Proof. Here is the calculation:

X (colim(W,GT ), X) ∼= [A op,V ](W,X (GT,X))
∼= [A op,V ](W,X (G,X)T op)
∼= [C op,V ](WSop,X (G,X))
∼= X (colim(WSop, G), X) .

Recall that a pointwise left Kan extension of a V -functor F : A −→ X along
a V -functor J : A −→ B is a V -functor K = LanJ(F ) : B −→X such that there
is a V -natural isomorphism

KB ∼= colimA(B(JA,B), FA) .

3 Cartesian monoidal enriched categories
A monoidal V -category A will be called cartesian when the tensor product and
unit object have left adjoints. That is, A is a map pseudomonoid in the monoidal
2-category V -Catco in the sense of [5].

Let us denote the tensor product of A by −?− : A ⊗A −→ A with left adjoint
∆ : A −→ A ⊗A and the unit by N : I −→ A with left adjoint E : A −→ I .
(Here I is the unit V -category: it has one object 0 and I (0, 0) = I.) It is clear
that these right adjoints make A a comonoidal V -category; that is, a pseudomonoid
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in V -Catop. Since ob : V -Cat −→ Set is monoidal, we see that ∆ : A −→ A ⊗A
is given by the diagonal on objects. We have

A (A,A1 ? A2) ∼= A (A,A1)⊗A (A,A2) ,

where V -functoriality in A on the right-hand side uses ∆.
If A is cartesian, the V -functor category [A ,V ] becomes monoidal under con-

volution using the comonoidal structure on A . This is a pointwise tensor product
in the sense that, on objects, it is defined by:

(M ∗N)A = MA⊗NA .

On morphisms it requires the use of ∆. Indeed, the Yoneda embedding

Y : A op −→ [A ,V ]

is strong monoidal.

4 Main result
Theorem 3. Suppose J : A −→ B is a V -functor between cartesian monoidal
V -categories. Assume also that J is strong comonoidal. Suppose X is a monoidal
V -category such that each of the V -functors −⊗X and X ⊗− preserves colimits.
Assume the V -functor F : A −→X is strong monoidal. If the pointwise left Kan
extension K : B −→X of F along J exists then K too is strong monoidal.

Proof. Using that tensor in X preserves colimits in each variable, the Fubini The-
orem 1, that F is strong monoidal, Theorem 2 with the cartesian property of A ,
and the cartesian property of B, we have the calculation:

KB1 ⊗KB2
∼= colimA1(B(JA1, B1), FA1)⊗ colimA2(B(JA2, B2), FA2)
∼= colimA1,A2(B(JA1, B1)⊗B(JA2, B2), FA1 ⊗ FA2)
∼= colimA1,A2(B(JA1, B1)⊗B(JA2, B2), F (A1 ? A2))
∼= colimA(B(JA,B1)⊗B(JA,B2), FA)
∼= colimA(B(JA,B1 ? B2), FA)
∼= K(B1 ? B2) .

For the unit part, for similar reasons, we have:

N ∼= FN0
∼= colim0(I (0, 0), FN0)
∼= colimA(I (EA, 0), FA)
∼= colimA(I (EJA, 0), FA)
∼= KN .
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5 An advanced viewpoint
In terminology of [4], suppose H : M −→ N is a monoidal pseudofunctor between
monoidal bicategories. The main point to stress here is that the constraints

ΦA,B : HA⊗HB −→ H(A⊗B)

are pseudonatural in A and B. Then we see that H takes pseudomonoids (=
monoidales) to pseudomonoids, lax morphisms of pseudomonoids to lax morphisms,
oplax morphisms of pseudomonoids to oplax morphisms, and strong morphisms of
pseudomonoids to strong morphisms.

In particular, this applies to the monoidal pseudofunctor

V -Mod(−,I ) : V -Modop −→ V -CAT

which takes the V -category A to the V -functor V -category [A ,V ]. Now pseu-
domonoids in V -Modop are precisely promonoidal (= premonoidal) V -categories in
the sense of Day [1, 2]. Therefore, for each promonoidal V -category A , we obtain
a monoidal V -category

V -Mod(A ,I ) = [A ,V ]

which is none other than what is now called Day convolution since it is defined and
analysed in [1, 2].

A lax morphism of pseudomonoids in V -Modop, as written in V -Mod, is a
module K : B −→ A equipped with module morphisms

B

K
��

P // B ⊗B

K⊗K
��

ks φ

A
P

// A ⊗A

B

J   

K // A

J~~

φ0 +3

I

satisfying appropriate conditions. In other words, we have

φA1,A2,B : colimB1,B2(K(A1, B1)⊗K(A2, B2), P (B1, B2, B))

=⇒ colimA(K(A,B), P (A1, A2, A))

and

φ0B : JB =⇒ colimA(K(A,B), JA) .

We call such a K a promonoidal module. It is strong when φ and φ0 are invertible.
We also have the V -functor

∃K : [A ,X ] −→ [B,X ]

defined by
(∃K)B = colimA(K(A,B), FA) .
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By the general considerations on monoidal pseudofunctors, ∃K is a monoidal
V -functor when X = V . However, the same calculations needed to show this
explicitly show that it works for any monoidal V -category X for which each of the
tensors X ⊗− and −⊗X preserves colimits.

Theorem 4. If K : B −→ A is a promonoidal V -module then ∃K : [A ,X ] −→
[B,X ] is a monoidal V -functor. If K is strong promonoidal then ∃K is strong
monoidal.

Proof. Although the result should be expected from our earlier remarks, here is a
direct calculation.

(∃KF1 ∗ ∃KF2)B ∼= colimB1,B2(P (B1, B2, B), (∃KF1)B1 ⊗ (∃KF2)B2)
∼= colimB1,B2(P (B1, B2, B), colimA1(K(A1, B1), F1A1)⊗

colimA2(K(A2, B2), F2A2))
∼= colimB1,B2,A1,A2(K(A1, B1)⊗K(A2, B2)⊗ P (B1, B2, B),

F1A1 ⊗ F2A2)

=⇒ colimA,A1,A2(K(A,B)⊗ P (A1, A2, A), F1A1 ⊗ F2A2)
∼= colimA(K(A,B), colimA1,A2(P (A1, A2, A), F1A1 ⊗ F2A2))
∼= colimA(K(A,B), (F1 ∗ F2)A))
∼= ∃K(F1 ∗ F2)B .

The morphism on the fourth line of the calculation is induced by φA1,A2,B and so
is invertible if K is strong promonoidal. We also have φ0B : JB =⇒ (∃KJ)B.

For the corollaries now coming, assume as above that X is a monoidal V -
category such that X ⊗ − and − ⊗ X preserve existing colimits. Also A and B
are monoidal V -categories. The monoidal structure on [A op,X ] is convolution
with respect to the promonoidal structure A (A,A1 ? A2) on A op; similarly for
[Bop,X ].

Corollary 5. If J : A −→ B is strong monoidal then so is

LanJop : [A op,X ] −→ [Bop,X ] .

Proof. Apply Theorem 4 to the module K : Bop −→ A op defined by K(A,B) =
B(B, JA). We see that K is strong promonoidal using Yoneda twice and strong
monoidalness of J .

Corollary 6. If W : A −→ V is strong monoidal then so is

colim(W,−) : [A op,X ] −→X .

Proof. Take B = I in Theorem 4.
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Corollary 7. Suppose A is cartesian monoidal. If F : A −→ X is strong
monoidal then so is

colim(−, F ) : [A op,V ] −→X .

Proof. Here is the calculation for binary tensoring:

colim(W1 ⊗W2, F ) ∼= colimA((W1 ⊗W2)∆A,FA)
∼= colimA1,A2(W1A1 ⊗W2A2, F (A1 ? A2))
∼= colimA1,A2(W1A1 ⊗W2A2, FA1 ⊗ FA2))
∼= colimA1(W1A1, FA1)⊗ colimA2(W2A2, FA2)
∼= colim(W1, F )⊗ colim(W2, F ) .

The unit preservation is easier.

Corollary 8. Suppose A and B are cartesian monoidal and J : A −→ B is
strong comonoidal. If F : A −→X is strong monoidal then so is

LanJF : B −→X .

Proof. Notice that LanJF is the composite of B(J, 1) : B −→ [A op,V ] and
colim(−, F ) : [A op,V ] −→ X . The first is strong monoidal by hypothesis on
J . The second is strong monoidal by Corollary 7.

——————————————————–
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