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Abstract

The existence of adjoints to algebraic functors between categories of
models of Lawvere theories follows from finite-product-preservingness
surviving left Kan extension. A result along these lines was proved in
Appendix 2 of Brian Day’s PhD thesis [1]. His context was categories
enriched in a cartesian closed base. A generalization is described here
with essentially the same proof. We introduce the notion of carte-
sian monoidal category in the enriched context. With an advanced
viewpoint, we give a result about left extension along a promonoidal
module and further related results.
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1 Introduction

The pointwise left Kan extension, along any functor between categories with finite
products, of a finite-product-preserving functor into a cartesian closed category is
finite-product-preserving. This kind of result goes back at least to Bill Lawvere’s
thesis [8] and some 1966 ETH notes of Fritz Ulmer. Eduardo Dubuc and the
author independently provided Saunders Mac Lane with a proof along the lines of
the present note at Bowdoin College in the Northern Hemisphere Summer of 1969.
Brian Day’s thesis [1] gave a generalization to categories enriched in a cartesian
closed base. Also see Kelly-Lack |7] and Day-Street [3]. Our purpose here is to
remove the restriction on the base and, to some extent, the finite products.

2  Weighted colimits

We work with a monoidal category ¥ as used in Max Kelly’s book [9] as a base
for enriched category theory.

Recall that the colimit of a ¥-functor F' : o — 2 weighted by a ¥ -functor
W : o/°P — ¥ is an object

colim(W, F') = colima (WA, FA)
of 2" equipped with an isomorphism
2 (colim(W, F), X) = [P, ¥)(W, 2 (F, X))

¥ -natural in X.
Independence of naturality in the two variables of two variable naturality, or
Fubini’s theorem [9], has the following expression in terms of weighted colimits.

Nugget 1. For ¥ -functors
Wi — AV Wy dy® —V, F:ah @y — X,
if colim(Ws, F'(A, —)) exists for each A € < then
colim (W7, colim(Wa, F')) = colim(W; @ Wa, F) .

Here the isomorphism is intended to include the fact that one side exists if and only

if the other does. Also (W1 @ Wa)(A, B) = W1 A® W) B.



Proof. Here is the calculation:

2 (colim(Wy ® W, F), X) = [(eh @ o), V|(W1 @ Wa, Z'(F, X))
= [P VW, [, V|(Wa, 2 (F, X))
= [P, V| (Wi, Z (colim(Wa, F), X)))

12

Z (colim(Wh, colim(Ws, F)), X) .
O

Here is an aspect of the calculus of mates expressed in terms of weighted col-
imits. Note that S 47T : &/ — € means T°P - S°P : &/°P — FOP.

Nugget 2. For ¥ -functors W : o/°P — ¥ G : ¢ — 2, and a ¥V -adjunction
SHT : o/ — €,
there is an isomorphism
colim(WS°P, G) = colim(W,GT) .
Proof. Here is the calculation:

Z (colim(W,GT), X)

I

[P, VW, Z (GT, X))
[P, VW, Z (G, X)T°P)
[€°P, V|(WSP, 2 (G, X))
Z (colim(W S, G), X) .

e

12

O]

Recall that a pointwise left Kan extension of a ¥-functor F : &/ — 2 along
a ¥-functor J : &f — A is a ¥-functor K = Lan;(F) : Z — Z such that there
is a ¥-natural isomorphism

KB = colims(A(JA,B),FA) .

3 Cartesian monoidal enriched categories

A monoidal ¥ -category &/ will be called cartesian when the tensor product and
unit object have left adjoints. That is, & is a map pseudomonoid in the monoidal
2-category #-Cat in the sense of [5].

Let us denote the tensor product of & by —x— : &/ @&/ — o/ with left adjoint
A: o — o ® &/ and the unit by N : .¢ — & with left adjoint E : & — .&.
(Here .# is the unit ¥'-category: it has one object 0 and .#(0,0) = I.) It is clear
that these right adjoints make ' a comonoidal ¥ '-category; that is, a pseudomonoid



in ¥-Cat®?. Since ob : ¥-Cat — Set is monoidal, we see that A : & — &/ R &
is given by the diagonal on objects. We have

M(Aa Al * AZ) = W(Av Al) ® M(Av AQ) )

where ¥ -functoriality in A on the right-hand side uses A.

If o7 is cartesian, the #-functor category [«7, ¥] becomes monoidal under con-
volution using the comonoidal structure on 7. This is a pointwise tensor product
in the sense that, on objects, it is defined by:

(M*N)YA=MA®NA .
On morphisms it requires the use of A. Indeed, the Yoneda embedding
Y: P — [, V]

is strong monoidal.

4 Main result

Theorem 3. Suppose J : & — B is a V-functor between cartesian monoidal
¥ -categories. Assume also that J is strong comonoidal. Suppose 2" is a monoidal
¥V -category such that each of the ¥V -functors — ® X and X ® — preserves colimits.
Assume the ¥ -functor F : of — X is strong monoidal. If the pointwise left Kan
extension K : B — X of F along J exists then K too is strong monoidal.

Proof. Using that tensor in 2" preserves colimits in each variable, the Fubini The-
orem 1, that F' is strong monoidal, Theorem 2 with the cartesian property of 7,
and the cartesian property of %, we have the calculation:

12

KB ® KBy COlimAl (%(JAl, Bl), FAl) & ColimA2(,%7(JA2, Bg), FAQ)

COlimA17A2(¢@(JA1, Bl) &® %(JAQ, BQ), FA ® FAQ)

12

= COlimALAQ(%(JAl,Bl)®%(JA2,B2),F(A1*A2))
> colimy(B(JA, By) @ B(JA, By), FA)
= colimy(#(JA, By x By), FA)

1

K(Bl * Bg) .
For the unit part, for similar reasons, we have:

N

1

FNO

colimg(-.#(0,0), FNO)
colimyg (¥ (EA,0), FA)
colimy(#(EJA,0),FA)
KN .

11

I
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In terminology of [4], suppose H : .# — .4 is a monoidal pseudofunctor between
monoidal bicategories. The main point to stress here is that the constraints

dyp:HA® HB — H(A® B)

are pseudonatural in A and B. Then we see that H takes pseudomonoids (=
monoidales) to pseudomonoids, lax morphisms of pseudomonoids to lax morphisms,
oplax morphisms of pseudomonoids to oplax morphisms, and strong morphisms of
pseudomonoids to strong morphisms.

In particular, this applies to the monoidal pseudofunctor

¥-Mod(—, %) : ¥-Mod®® — ¥-CAT

which takes the ¥-category o to the ¥-functor ¥-category [«7,¥]. Now pseu-
domonoids in #-Mod®? are precisely promonoidal (= premonoidal) ¥ -categories in
the sense of Day [1, 2]. Therefore, for each promonoidal ¥ -category o7, we obtain
a monoidal ¥'-category

¥V -Mod(«, .9) = [, V]
which is none other than what is now called Day convolution since it is defined and
analysed in [1, 2|.
A lax morphism of pseudomonoids in ¥-Mod®P, as written in ¥-Mod, is a
module K : 8 — o equipped with module morphisms

K

B La— ¥ B ; o
0

KL <¢= jK@K X:/

o 5 g QA 84

satisfying appropriate conditions. In other words, we have

¢A1,A2,B : COhmBl’BQ(K(Al, Bl) X K(AQ, BQ), P(Bl, Bg, B))
= colimyg (K (A, B), P(Ay, A2, A))

and
oo : JB = colimy(K (A, B),JA) .

We call such a K a promonoidal module. 1t is strong when ¢ and ¢g are invertible.
We also have the ¥-functor

g [, X — [B, X]

defined by
(3x)B = colim (K (A, B), FA) .

5



By the general considerations on monoidal pseudofunctors, g is a monoidal
¥ -functor when 2~ = 7. However, the same calculations needed to show this
explicitly show that it works for any monoidal ¥ -category 2~ for which each of the
tensors X ® — and — ® X preserves colimits.

Theorem 4. If K : B — </ is a promonoidal ¥ -module then 3 : [/, X'| —
(%, 2] is a monoidal ¥ -functor. If K is strong promonoidal then Jx is strong
monoidal.

Proof. Although the result should be expected from our earlier remarks, here is a
direct calculation.

I

(3xF1 * Ik F»)B colimp, p,(P(B1, B2, B), (3xF1)B1 @ (3x F2)Ba)

colimp, p,(P(B1, B2, B),colimy, (K(A1,By), F141) ®
colimg, (K (A2, B2), F2A3))

colimp, B, A,,4,(K (A1, B1) ® K(As, By) ® P(B1,Bs, B),
F1A; ® FA)

— CO]imAAl’AQ(K(A?B)®P(A1,A2,A),F1A1®F2A2)

=~ colimyg (K (A, B),COIimAl’AQ(P(Ah A9, A), F1A; @ F5A9))
= colimy(K (A, B), (F1* F)A))

~ Jg(Fi*F)B .

I

12

The morphism on the fourth line of the calculation is induced by ¢4, 4,5 and so
is invertible if K is strong promonoidal. We also have ¢op : JB = (IxJ)B. O

For the corollaries now coming, assume as above that 2" is a monoidal 7-
category such that X ® — and — ® X preserve existing colimits. Also &/ and %
are monoidal #-categories. The monoidal structure on [</°P, 27| is convolution
with respect to the promonoidal structure o7 (A, A; x A3) on &7°P; similarly for
[P, Z].

Corollary 5. If J : of — A is strong monoidal then so is
Lanjop : [&/P, 2| — [BP, 2] .

Proof. Apply Theorem 4 to the module K : #°° — &7°P defined by K (A, B) =
PB(B,JA). We see that K is strong promonoidal using Yoneda twice and strong
monoidalness of J. O

Corollary 6. If W : of — ¥V is strong monoidal then so is
colim(W, =) : [P, 2] — 2.

Proof. Take 8 = . in Theorem 4. O



Corollary 7. Suppose &/ 1is cartesian monoidal. If F : o — X is strong
monoidal then so is

colim(—, F) : [P V] — 2.

Proof. Here is the calculation for binary tensoring:

colim(Wy ® Wy, F) 2 colima((Wy @ Wy)AA, FA)

= COliInAhA2 (W1A1 X WQAQ, F(A1 * Ag))
= COhmAl,AQ(WlAl ® WyAsy, F A1 ®FA2))
= COhHlA1 (WlAl, FAl) & COhHlA2 (WQAQ, FAQ)
=~ colim(Wi, F) ® colim(Wa, F') .
The unit preservation is easier. ]

Corollary 8. Suppose o/ and 9B are cartesian monoidal and J : o/ —> B is
strong comonoidal. If F': of — 2 is strong monoidal then so is

LanyF : B — 2 .

Proof. Notice that Lan;F' is the composite of #A(J,1) : B — [&/°P, V] and
colim(—, F) : [&/°P,¥] — 2 . The first is strong monoidal by hypothesis on

J. The second is strong monoidal by Corollary 7. O
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