
Dualizations and antipodes
Brian Day,  Paddy McCrudden  and  Ross Street

January 2002

Abstract
Because an exact pairing between an object and its dual is extraordinarily natural in the object, ideas of the

paper [St4] apply to yield a definition of dualization for a pseudomonoid in any autonomous monoidal bicategory as
base; this is an improvement on [DS; Definition 11, page 114].  We analyse the dualization notion in depth.  An
example is the concept of autonomous (which, usually in the presence of a symmetry, also has been called "rigid" or
"compact") monoidal category.   The antipode of a quasi-Hopf algebra  H  in the sense of Drinfeld [Maj]  is another
example obtained using a different base monoidal bicategory.  We define right autonomous monoidal functors and
their higher-dimensional analogue.  Our explanation of why the category  Comodf (H)  of finite dimensional
representations of  H  is autonomous is that the  Comodf operation is autonomous and so preserves dualization.   

Mathematics Subject Classifications (2000): 18D05, 18D10, 18D20, 16W30.

Key words:  monoidal bicategory, enriched category, bidual, antipode, quantum group, quasi-Hopf algebra, braided
group, comodule.

Introduction
This paper defines and studies (left) autonomous pseudomonoids in any (right)

autonomous monoidal bicategory. As examples we obtain autonomous monoidal V-
categories and quasi-Hopf algebras in the sense of Drinfel'd [Dd] (see [Maj; Section 2.4, page 62-
63]);  ordinary Hopf algebras are special cases of the latter.  A more theoretical example, in one
of a number of possible variants of slice monoidal bicategories, is what we call autonomous
monoidal functors; these have escaped mention in the literature perhaps because strong
monoidal functors automatically preserve duals.  We use this to motivate our notion of
autonomous monoidal lax functor which is of more interest to us here. 

We provide a formal representation theory whereby objects of a monoidal bicategory are
represented by certain morphisms from the tensor unit. This leads us, for example, to the
higher-dimensional categorical ingredients making the monoidal category of (finite
dimensional) representations of a quasi-Hopf algebra autonomous.

This paper can be considered as the next in the progression [St3], [JS3], [DS], [MC0Ð3].
However, we hope it can be read independently, apart from a reference to [St4] for our
approach to monoidal bicategories.  Because of a coherence theorem [GPS], we freely speak as
if we were dealing with a monoidal bicategory  M yet do our work in a Gray monoid. When
M is right autonomous, we write  A¡  for the right bidual of an object  A⁄;  our notation for the
unit and counit morphisms is  n : I aAA¡⁄⁄⊗ ⁄⁄A  and  e : A ⁄⁄⊗ ⁄⁄A¡ aAI⁄⁄.   Also recall from [St4]
that, for each good monoidal category  V,  we have an autonomous monoidal bicategory
VÐMod whose objects are V-categories and whose morphisms are two-sided modules.              
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1.  Dualization for pseudomonoids
Extraordinary 2-cells can be used to express rich structures in a right autonomous

monoidal bicategory  M.   In particular, we can express dualization.  Suppose  A  is a
pseudomonoid in  M in the sense of [DS];  that is, we have a multiplication p : A ⁄⁄⊗ ⁄⁄A aAA
and a unit j : I aAA  which are associative and unital up to coherent isomorphisms  

φ :  p⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄1A) ≅ p⁄⁄°⁄⁄(1A⁄⁄⊗ ⁄⁄p),    λ :  p⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄1A) ≅ 1A ,    and    ρ :  p⁄⁄°⁄⁄(1A⁄⁄⊗ ⁄⁄j) ≅ 1A .

By way of example, we remind the reader that pseudomonoids  A  in  VÐMod are
promonoidal V-categories1 in the sense of [Dy1].  A promonoidal V-category is a monoidal V-
category precisely when its multiplication and unit are representable by V-functors. 

A morphism ⁄⁄d⁄⁄:⁄⁄A¡⁄⁄aAA  is called left dualization for the pseudomonoid  ⁄⁄⁄A ⁄⁄⁄ in  M
when it is equipped with an extraordinary 2-cell  α from  p⁄⁄°⁄⁄(d⁄⁄⊗ ⁄⁄1A) : A¡⁄⁄⊗ ⁄⁄A aAA  to  j : I
aAA,  and an extraordinary 2-cell  β from  j : I aAA  to  p⁄⁄°⁄⁄(1A

⁄⁄⊗ ⁄⁄d) : A ⁄⁄⊗ ⁄⁄A¡ aAA

satisfying two conditions.  Explicitly, we have 2-cells

A¡⁄⁄⊗ ⁄⁄A A⁄⁄⊗ ⁄⁄A

I A

 ⇓  αn

 j 

p

d⁄⁄⊗ ⁄⁄A

and

 I 

A⁄⁄⊗ ⁄⁄AA⁄⁄⊗ ⁄⁄A¡

A

 ⇓  βe

 j 

p

A⁄⁄⊗ ⁄⁄d

satisfying the condition that the pasted composite

A

A

A⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A
≅

e⁄⊗ ⁄⁄A

A⁄⊗ ⁄⁄n

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄AA⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄A A
A⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄A

p

p
≅ φ

p⁄⊗ ⁄⁄A

A⁄⊗ ⁄⁄p

1A⁄

 ⇓   β⁄⁄⊗ ⁄⁄A

 ⇓  A⁄⁄⊗ ⁄⁄α

 j⁄⁄⊗ ⁄A ≅λ

A⁄⊗ ⁄j ≅ρ

1A⁄

1A⁄

is the identity 2-cell of  1A⁄⁄,  and the condition that the pasted composite
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A¡

A¡ A

A

A

A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A¡
A⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄A

A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A¡

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A
n⁄⁄⊗ ⁄⁄A¡

A¡⁄
1 1A⁄

1A⁄

A¡⊗ A⊗ d

d⊗ A⊗ A¡

d⊗ A⊗ A
≅

≅ φ

≅

A¡⁄⁄⊗ ⁄⁄AA¡⁄⁄⊗ ⁄⁄j

 ⇓ 
≅

≅ρ

≅λ

d⊗ A
≅

p

p

A⁄⁄⊗ ⁄⁄A¡

 ⇓ ⁄α ⁄⁄⊗ A¡
 j⁄⁄⊗ A¡

d

d

p⁄⁄⊗ A¡
≅

  j⁄⁄⊗ A≅

A¡⊗ pA¡⊗β

A⊗ A⊗ d
p⁄⁄⊗ A

A⊗ p

A¡⊗ ⁄e

A⊗ d

A⊗ ⁄⁄j

is the identity 2-cell of  d.  It would be nice to see the surface diagrams for these conditions, but
this would strain our technology.  By mimicking the argument of Par� [ML; IV.1 Exercise 4,
p.84],  if we have  d,  α and  β as above, but only satisfying the first condition, and if
idempotents split in the category  M(A¡,⁄⁄A),  then the pasted composite of the second
condition gives an idempotent on  d  whose splitting gives a left dualization. 

Proposition 1.1 Let A  be a pseudomonoid in a right autonomous bicategory M.  There are
bijections among the following structures on a morphism  d⁄⁄:⁄⁄A¡⁄⁄aAA  :

(a)  pairs (α ⁄⁄, β) making d  a left dualization for  A;
(b)  adjunctions p J(p⊗ A)⁄°⁄(A⊗ d⊗ A)⁄°⁄(A⊗ n);
(c)  adjunctions p⁄°⁄(d⁄⁄⊗ ⁄⁄A) J(A¡⁄⊗ ⁄⁄p)⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A).

Proof (a) ⇒ (b) Write  p*  for the composite

    A A A A A A A A AA n A d A p A⊗ ⊗ ⊗ ⊗ → ⊗ ⊗  → ⊗ ⊗  → ⊗o .
The counit  p °⁄⁄p* ⇒ 1A is obtained by pasting  φ and A⁄⁄⊗ ⁄⁄α as follows.

A⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A

A A⁄⁄⊗ ⁄⁄A

 ⇓  A⁄⁄⊗ ⁄⁄αA⁄⁄⊗ ⁄⁄n

 A⁄⁄⊗ ⁄⁄⁄⁄j 

A⁄⁄⊗ ⁄⁄p

A⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄A A⁄⁄⊗ ⁄⁄A

A p

 p

p⁄⁄⊗ ⁄⁄A

 ⇓   φ

The unit  1A⊗ A ⇒ p* °⁄⁄p  is the following pasting composite.

3



A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄AA⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A

 ⇓ A⊗ ⁄β⁄⁄⊗ ⁄A
 A⁄⁄⊗ ⁄j⁄⁄⊗ ⁄⁄A 

p⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄AA

1A⊗ A

≅

A⁄⁄⊗ ⁄⁄n

p⁄

p⁄⁄⊗ ⁄⁄A
A⁄⁄⊗ ⁄A

A⁄⁄⊗ ⁄A
1A⊗ A

A⁄⁄⊗ ⁄A

A⁄⊗ A⁄⊗ ⁄A¡⁄⊗ ⁄AA⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄n

p⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄A

A⁄⊗ ⁄A⁄⊗ ⁄A⁄⊗ ⁄A
A⁄⁄⊗ ⁄A⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄A

p⁄⊗ ⁄A⁄⊗ ⁄A≅

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A

≅
A⁄⊗ ⁄e⁄⊗ ⁄A A⁄⊗ ⁄p⁄⊗ ⁄⁄A  ⇓  φ ⁄ ⊗ ⁄⁄A -1

≅ ρ⁄⁄⊗ ⁄A

The two conditions on  α and  β give the adjunction conditions on this counit and unit.

(a) ⇒ (c)  The counit for the adjunction in (c) is the following pasting composite.

A

A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A

A¡⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄A

A

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A

≅

p⁄

d⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A A⁄⁄⊗ ⁄⁄p

d⁄⁄⊗ ⁄⁄AA¡⁄⁄⁄⊗ ⁄⁄p

 n⁄⁄⊗ ⁄⁄A
A⁄⁄⊗ ⁄⁄A

1A

p⁄ j⁄⁄⁄⊗ ⁄⁄A 
p⁄⁄⊗ ⁄⁄A⁄⁄α ⁄⁄⊗ A ⇓ 

≅ λ

 ⇓  φ -1

The unit for the adjunction in (c) is the following pasting composite.

A¡⁄⁄⊗ ⁄⁄A A¡⁄⁄⊗ ⁄⁄A

A¡⁄⁄⊗ ⁄⁄A

A

A⁄⁄⊗ ⁄A A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A

A¡⁄⊗ ⁄A ⁄⊗ ⁄A⁄⊗ ⁄A

A¡⁄⊗ ⁄A ⁄⊗ ⁄AA¡⁄⊗ ⁄A ⁄⊗ A¡⁄⊗ ⁄A
≅

≅

≅

≅
A¡⊗ ⁄ρ

1A¡⊗ A1A¡⊗ A

 ⇓  
A¡⊗ ⁄β⁄⁄⊗ ⁄A

 n⁄⊗ ⁄A¡⁄⊗ ⁄A

A¡⁄⁄⊗ ⁄e⁄⊗ ⁄A A¡⁄⁄⊗ ⁄⁄j⁄⊗ ⁄A

A¡⁄⁄⊗ ⁄⁄p⁄⊗ ⁄AA¡⁄⁄⁄⊗ ⁄A⊗ ⁄⁄d⁄⊗ ⁄A

d⁄⊗ ⁄A  n⁄⊗ ⁄A⁄⊗ ⁄A

p⁄  n⁄⁄⊗ ⁄⁄A

A¡⊗ ⁄φ ⇓  
A¡⁄⁄⁄⊗ ⁄⁄p

A¡⁄⁄⁄⊗ ⁄⁄p

A¡⁄⁄⊗ ⁄⁄A⁄⊗ ⁄p

The two conditions on  α and  β give the adjunction conditions on this counit and unit.

(c) ⇒ (a)  Under an adjunction  p⁄°⁄(d⁄⁄⊗ ⁄⁄A) J(A¡⁄⊗ ⁄⁄p)⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A),  the isomorphism
n  ≅ (A¡⁄⊗ ⁄⁄p)⁄°⁄(A¡⁄⊗ ⁄⁄j ⁄⁄⊗ ⁄⁄A)⁄°⁄⁄n  ≅  (A¡⁄⊗ ⁄⁄p)⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A)⁄°⁄⁄j

corresponds to a 2-cell  α :  p⁄°⁄(d⁄⁄⊗ ⁄⁄A)⁄°⁄⁄n ⇒ j  as required in (a).  Since  A¡  is a right bidual for
A,  2-cells  β : j ⁄°⁄⁄e ⇒ p⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄d) :  A ⁄⊗ ⁄⁄A¡⁄ aAA  are in bijection with 2-cells  β' : A¡⁄⊗ ⁄⁄j ⇒

(A¡⁄⊗ ⁄⁄p) °⁄(A¡⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄d)⁄°⁄⁄(n⁄⊗ ⁄⁄A¡),  and for  β'  we take the following composite in which  η
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denotes the unit for the adjunction of (c).

A¡⁄

A¡⁄⁄⊗ ⁄⁄A

A¡⁄⁄⊗ ⁄⁄A

A¡⁄⁄⊗ ⁄⁄j⁄ 1A¡⊗ A

A¡⁄⊗ ⁄A ⁄⊗ A¡⁄

 n⁄⊗ ⁄A¡⁄

A¡⁄⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄AA¡⁄⁄⁄⊗ ⁄A⊗ ⁄⁄d⁄

A A⁄⁄⊗ ⁄⁄j⁄ A⁄⁄⊗ ⁄Ad⁄

d⁄⊗ ⁄A≅

A¡⁄⁄⁄⊗ ⁄⁄p
A

1A

p⁄≅

 n⁄⁄⊗ ⁄⁄A
≅

 ⇓  ⁄η

The conditions on  α and  β can be deduced from the adjunction conditions.

(b) ⇒ (a)  Under an adjunction  p J(p⊗ A)⁄°⁄(A⊗ d⊗ A)⁄°⁄(A⊗ n),  the isomorphism
(d⊗ A)⁄°⁄n  ≅ (p⁄⊗ ⁄⁄A)⁄°⁄(⁄j ⁄⊗ ⁄A ⁄⊗ ⁄A)⁄°⁄⁄(d⊗ A)⁄°⁄n  ≅  (p⁄⊗ ⁄⁄A)⁄°⁄(⁄A ⁄⊗ ⁄d⁄⊗ ⁄A)⁄°⁄⁄(A⊗ n)⁄°⁄j

corresponds to a 2-cell  α :  p⁄°⁄(d⁄⁄⊗ ⁄⁄A)⁄°⁄⁄n ⇒ j  as required in (a).  Since  A¡  is a right bidual for
A,  2-cells  β : j ⁄°⁄⁄e ⇒ p⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄d) :  A ⁄⊗ ⁄⁄A¡⁄ aAA  are in bijection with 2-cells  β" : A ⁄⊗ ⁄⁄j ⇒

(p⁄⊗ ⁄⁄A)⁄°⁄(⁄A ⁄⊗ ⁄d⁄⊗ ⁄A)⁄°⁄⁄(A⊗ n) : A aAA ⁄⊗ ⁄⁄A,  and for  β"  we take the following composite i n
which  η '  denotes the unit for the adjunction of (b).

A⁄

A⁄⁄⊗ ⁄⁄A

A⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄j⁄ 1A⁄⊗ A

A⁄⊗ ⁄A¡⁄⁄⊗ A⁄

 A⁄⊗ ⁄n

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A
A⁄⊗ ⁄d⊗ ⁄⁄A⁄

p⁄⊗ ⁄A

≅

p⁄⁄⁄⊗ ⁄⁄A

p⁄

 ⇓  ⁄η'A⁄

A⁄⊗ ⁄A¡⁄⁄⊗ A⁄ A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A
 A⁄⊗ ⁄n

A⁄⊗ ⁄d⊗ ⁄⁄A⁄

 A⁄⊗ A⁄⊗ ⁄n

A⁄⊗ ⁄A⁄⊗ ⁄A¡⁄⁄⊗ A ⁄ p⁄⊗ ⁄A¡⁄⁄⁄⊗ ⁄⁄A

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A

1A⁄⊗ A ⁄⊗ A

A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A⁄⁄⊗ ⁄⁄A
A⁄⊗ ⁄A⁄⊗ ⁄d⊗ ⁄⁄A⁄

A⁄⊗ ⁄⁄⁄j⁄⊗ ⁄A⊗ ⁄⁄A⁄

≅ p⁄⊗ ⁄A⊗ ⁄⁄A⁄

A⁄⊗ ⁄p⊗ ⁄⁄A⁄

≅

≅

≅

The conditions on  α and  β can be deduced from the adjunction conditions.  Q.E.D.

Proposition 1.1 (c) is precisely the condition defining "right antipode" in [DS; Definition
11, page 114].  In [DS] we presumed the multiplication  p,  the unit  j,  and the dualization  d
had right adjoints; we shall now see that  p  necessarily has a right adjoint, while  d  has a
right adjoint if  j  does. 

Proposition 1.2 Let A  be a pseudomonoid with left dualization  d⁄⁄:⁄⁄A¡⁄⁄aAA.  T h e n p :
A ⁄⁄⊗ A aAA  has a right adjoint p* and there is an isomorphism

d  ≅ ⁄(A⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(p*⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡).
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Furthermore, i f j  has a right adjoint j*  t h e n
(i)     d  has a right adjoint d*  =  (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄p)⁄⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A),
(ii)    (j*⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄p*)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j) ≅ 1A ,
(iii)   the unit of the adjunction d J d*  is invertible (so that  d  is fully faithful),  and
(iv)   there is an isomorphism  j*  ≅ e⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄d*)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j). 

Proof From Proposition 1.1 (b),  we have  p* = (p⊗ A)⁄°⁄(A⊗ d⊗ A)⁄°⁄(A⊗ n).  So
(A⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(p*⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡)  ≅

≅ (A⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(p⁄⁄⊗ A ⁄⁄⊗ ⁄⁄A¡)⁄°⁄(A⁄⁄⊗ ⁄⁄d⁄⁄⊗ A ⁄⁄⊗ ⁄⁄A¡)⁄°⁄(A⊗ ⁄⁄n ⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡)
≅  p⁄°⁄(A⁄⁄⊗ ⁄⁄d)⁄°⁄(A⁄⁄⊗ ⁄⁄A¡⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(A⊗ ⁄⁄n ⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡)
≅ p⁄°⁄(A⁄⁄⊗ ⁄⁄d)⁄°⁄⁄⁄( j⁄⁄⊗ ⁄⁄A¡)
≅  p⁄°⁄( j⁄⁄⊗ ⁄⁄A)⁄°⁄⁄d
≅ d .

If  j J j*  then we can compose the adjunction of Proposition 1.1 (c) with  A¡⁄⁄⊗ ⁄⁄j JA¡⁄⁄⊗ ⁄⁄j*  to
obtain  p⁄°⁄(d⁄⁄⊗ ⁄⁄A)⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄j) J (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄p)⁄⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A);  however,  p⁄°⁄(d⁄⁄⊗ ⁄⁄A)⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄j)  ≅

p⁄°⁄(A⁄⁄⊗ ⁄⁄j )⁄°⁄⁄d  ≅ d,  which proves (i).  Then  
d*⁄°⁄⁄⁄j  =  (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄p)⁄⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄j  

≅ (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄p)⁄⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄A ⁄⊗ ⁄⁄j )⁄⁄°⁄⁄n  
≅ (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄n  
≅ j*¡,

from which (iv) immediately follows.  To prove (ii) we use the formula for  p*:
( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄p*)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j)  

≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄p⁄⊗ A)⁄°⁄(A⊗ A⊗ ⁄d⁄⊗ A)⁄°⁄(A⊗ A⊗ n)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j) 
≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⊗ ⁄A ⁄⊗ A)⁄°⁄(A⊗ A⊗ ⁄d⁄⊗ A)⁄°⁄(A⊗ A⊗ n)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j )
≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄d⁄⊗ A)⁄°⁄(p⁄⊗ A¡⊗ ⁄A)⁄°⁄(A⊗ A⊗ n)⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j )
≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄d⁄⊗ A)⁄°⁄(A⁄⊗ n)⁄°⁄p⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄j )
≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄d⁄⊗ A)⁄°⁄(A⁄⊗ n)
≅  ( j *⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄p*
≅  (p⁄⁄°⁄( j⁄⁄⊗ ⁄⁄A)⁄)* 
≅  1A .

Finally, to verify (iii) we note that an inverse of the unit for  d J d*  is provided by the
composite isomorphism:

d*⁄⁄°⁄⁄d  ≅ (A¡⁄⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⁄⊗ ⁄⁄p)⁄⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A)⁄°⁄⁄(A⁄⁄⊗ ⁄⁄e)⁄⁄°⁄⁄(p*⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡)
≅  (A¡⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⊗ ⁄p)⁄⁄°⁄⁄(A¡⁄⊗ ⁄A ⁄⊗ ⁄A ⁄⊗ ⁄⁄e)⁄°⁄⁄(n⁄⊗ ⁄A ⁄⊗ ⁄A ⁄⊗ ⁄A¡)⁄⁄°⁄⁄(p*⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄( j⁄⁄⊗ ⁄⁄A¡)
≅  (A¡⁄⊗ ⁄⁄j * )⁄°⁄⁄(A¡⁄⊗ ⁄p)⁄⁄°⁄⁄(A¡⁄⊗ ⁄A ⁄⊗ ⁄A ⁄⊗ ⁄⁄e)⁄°⁄⁄(A¡⁄⁄⊗ ⁄A ⁄⊗ ⁄p*⁄⊗ ⁄A¡)⁄⁄°⁄⁄(A¡⁄⁄⊗ ⁄A ⁄⊗ ⁄j ⁄⊗ ⁄A¡)⁄⁄°⁄⁄(n⁄⁄⊗ ⁄⁄A¡)
≅ ⁄⁄(A¡⊗ ⁄⁄e)⁄°⁄(A¡⊗ ⁄j *⁄⊗ ⁄A⊗ A¡)⁄°⁄(A¡⊗ ⁄p⁄⊗ ⁄A ⁄⊗ ⁄A¡)⁄°⁄(A¡⊗ A⊗ ⁄p*⁄⊗ A¡)⁄°⁄(A¡⊗ A⊗ ⁄j ⁄⊗ ⁄A¡)⁄°⁄(n⁄⁄⊗ A¡)
≅  (A¡⊗ ⁄⁄e)⁄°⁄(A¡⊗ ⁄1A⊗ A¡)⁄⁄°⁄(n⁄⁄⊗ A¡)       using (ii)
≅  (A¡⊗ ⁄⁄e)⁄°⁄(n⁄⁄⊗ A¡)
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≅  1A¡ .   Q.E.D.

Corollary 1.3 Left dualizations are unique up to isomorphism i n M(A¡,⁄⁄A)  compatible
with  α and β.

Proof This follows from the formula for  d  in Proposition 1.2 and the fact that  p*  is
uniquely determined up to isomorphism by  p.  Q.E.D.

A pseudomonoid is called left autonomous when it admits a left dualization.  When  M
is left autonomous, we define right  dualization to be dualization in  M⁄⁄rev.  When  M is
autonomous, we call a pseudomonoid autonomous when it admits both a left and a right
dualization.  

We write  A⁄∨ for the left bidual of  A. 

Proposition 1.4 If  A  is an autonomous pseudomonoid in an autonomous mono ida l

bicategory M⁄ then its right dualization d'⁄⁄:⁄⁄A ⁄∨ ⁄⁄aAA is the mate  d⁄∨ ⁄⁄:⁄⁄A ⁄∨ ⁄⁄aAA  of its left
dualization d⁄⁄:⁄⁄A¡⁄⁄aAA. If further j : I aAA  has a right adjoint t h e n d⁄⁄:⁄⁄A¡⁄⁄aAA  is a n
equivalence.

Proof By the dual of the formula for  d  in Proposition 1.2,  

d' ≅ ⁄(n⁄∨ ⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄∨ ⁄⁄⊗ ⁄⁄p*)⁄⁄°⁄⁄⁄(A⁄∨ ⁄⁄⊗ ⁄⁄j).  

So  
d'¡ ≅ (j¡⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(p*¡⁄⁄⊗ ⁄⁄A)⁄⁄°⁄(A¡⁄⊗ ⁄⁄n)  

≅  (e⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄⁄e⁄⁄⊗ ⁄⁄A¡⁄⊗ ⁄⁄A)⁄⁄°⁄(p*⁄⊗ ⁄A¡⁄⊗ ⁄⁄A¡⁄⊗ ⁄⁄A)⁄⁄°⁄⁄( j⁄⊗ ⁄⁄A¡⁄⊗ ⁄⁄A¡⁄⊗ ⁄⁄A)⁄⁄°⁄(A¡⁄⊗ ⁄⁄n)
≅  (e⁄⁄⊗ ⁄⁄A)⁄⁄°⁄⁄(A⁄⊗ ⁄⁄n)⁄⁄°⁄(A⁄⊗ ⁄e)⁄⁄°⁄⁄(p*⁄⊗ ⁄⁄A¡)⁄⁄°⁄( j⁄⊗ ⁄⁄A¡)
≅  (A⁄⊗ ⁄e)⁄⁄°⁄⁄(p*⁄⊗ ⁄⁄A¡)⁄⁄°⁄( j⁄⊗ ⁄⁄A¡)
≅  d .

This proves the first sentence of the Proposition.
If  j J⁄⁄j*  then by Proposition 1.2 (iii), the unit of  d J⁄⁄d*  is invertible; so the counit of

d*⁄∨ J d∨ is invertible.  By the dual of Proposition 1.2 (iii), the unit of  d⁄∨ J d∨ * is invertible.

So  d∨ has both a left and right quasi-inverse and hence is an equivalence.  So  d  is an

equivalence.  Q.E.D.

Proposition 1.5 In an autonomous monoidal bicategory M⁄⁄, a left autonomous
pseudomonoid is autonomous if its left dualization d⁄⁄:⁄⁄A¡⁄⁄aAA  is an equivalence.

Proof We begin by proving the existence of a canonical isomorphism
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A⁄⁄⊗ ⁄⁄A ∨ I

A⁄⁄⊗ ⁄⁄AA¡⁄⁄⊗ ⁄⁄A

≅ A⁄⁄⊗ ⁄⁄d ∨ 

e ∨ 

n

d⁄⁄⊗ ⁄⁄A

by showing that there is an isomorphism after applying the biequivalence  (Ð)¡;  we have:
e⁄⁄⁄°⁄⁄(d⁄⁄⊗ ⁄⁄A¡)  ≅  e⁄⁄⁄°⁄⁄(d⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄(A⁄⊗ ⁄⁄e⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄(n⁄⊗ ⁄A¡⁄⊗ ⁄⁄A¡)

≅  e⁄⁄⁄°⁄⁄(A⁄⊗ ⁄⁄e⁄⁄⊗ ⁄⁄A¡)⁄⁄°⁄⁄(d⁄⊗ ⁄⁄A ⁄⁄⊗ ⁄⁄A¡⁄⊗ ⁄⁄A¡)⁄⁄°⁄(n⁄⊗ ⁄A¡⁄⊗ ⁄⁄A¡)
≅  ((d⁄⊗ ⁄⁄A)⁄⁄°⁄n)¡  ≅  n¡⁄⁄°⁄⁄⁄(A¡⁄⊗ ⁄⁄d¡).

From the above square and Proposition 1.1 (b), we have
p* ≅ (p⊗ A)⁄°⁄(A⊗ d⊗ A)⁄°⁄(A⊗ n)  

≅ (p⊗ A)⁄°⁄(A⊗ A⊗ d∨ )⁄°⁄(A⊗ e∨ ⁄)

≅ (A⊗ d∨ ⁄)⁄°⁄(p⁄⊗ A∨ )⁄°⁄(A⊗ e∨ ⁄).

However, if  d  is an equivalence, so is  A⊗ d∨ ⁄ and it follows from the last isomorphism that

p⁄⁄°⁄⁄(A⊗ d∨ ⁄)  is left adjoint to  (p⁄⊗ A∨ )⁄°⁄(A⊗ e∨ ⁄).  By the dual of Proposition 1.4 (c), we have

shown that  d⁄∨ :  A⁄∨ aAA  is a right dualization for  A.  Q.E.D.

Proposition 1.6 A (left) autonomous monoidal V-category is precisely a (left) autonomous

pseudomonoid of  VÐMod such that the multiplication, unit and dualization modules are
representable by V-functors.

Proof We take it as known that a monoidal V-category  A  is precisely a pseudomonoid of

VÐMod such that the multiplication and unit modules are representable by  V-functors; we
have  p(a⁄⁄,⁄⁄b⁄⁄,⁄⁄c) ≅ A(c⁄⁄,⁄⁄a⁄⊗ ⁄b)  and  j(a) ≅ A(a⁄⁄,⁄⁄j).  Suppose we have a V-functor  (Ð)* : A ⁄op aAA
⁄⁄and we let ⁄⁄d ⁄⁄be the corresponding represented V-module given by  d(a⁄⁄,⁄⁄b) = A(a⁄⁄,⁄⁄b*).  W e
need to see what it means for  d  to satisfy the equivalent conditions of Proposition 1.1; let us
take condition (b) to be specific.  The composite  (p⊗ A)⁄°⁄(A⊗ d⊗ A)⁄°⁄(A⊗ n)  has value at
(a⁄⁄,⁄⁄b⁄⁄,⁄⁄c)⁄⁄∈ A ⁄op ⁄⊗ ⁄A ⁄op⁄⁄⁄⊗ A  given by the coend

  
A x c A z y A u x A v y A w z A a u v A b wx y z u v w ( , ) ( , ) ( , ) ( , *) ( , ) ( , ) ( , ), , , , ,

⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊗∫
which, by repeated application of the coend form of the Yoneda Lemma, reduces to  

A(a⁄⁄,⁄⁄c⁄⁄⊗ ⁄⁄b*).
The condition that this should be V-naturally isomorphic to  p*(a⁄⁄,⁄⁄b⁄⁄,⁄⁄c) = A(a⁄⁄⊗ ⁄⁄b⁄⁄,⁄⁄c)  is
precisely the condition that each  b*  should be a left dual for  b.  Q.E.D.

Recall from [DS; Definition 21, page 142] that a Hopf V-algebroid is a V-category  H
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together with V-functors  D : H aAH ⁄⁄⊗ ⁄⁄H ,  E : H aAI and  S : H aAH ⁄op whose right
adjoints  D*,  E*  and  S*  in  VÐMod are equipped with the structure of a right autonomous
pseudomonoid in  (VÐMod)⁄co.  So  S*  is a dualization for the pseudomonoid  H,  D*,  E*  i n
(VÐMod)⁄co.  (Note that adjoints are reversed in  (VÐMod)⁄co,  so that  S  is the right adjoint of
S*  therein).  

2.  An autonomous construction and autonomous morphisms 
Let  M be a right autonomous monoidal bicategory.  
A morphism in  M with a right adjoint will be called a m a p [St1], [St2]; we write  h ⁄* : B

aAA  for the right adjoint of a map  h : A aAB.   A map pseudomonoid  A  is one for which
both  p : A⊗ A aAA  and  j : I aAA  are maps.  Recall (Proposition 1.2) that it is a
consequence that any left dualization for  A  is a map;  also, a left autonomous pseudomonad
A  is a map pseudomonoid if and only if  j : I aAA  is a map. 

Suppose now that  H  is a left autonomous map pseudomonoid in  M⁄⁄.⁄ We explicitly
describe an autonomous monoidal bicategory  Map(M⁄;⁄H).  The objects  (A⁄⁄, f⁄⁄)  are maps  f : A
aAH  in  M⁄⁄.  The morphisms  (u⁄⁄,⁄⁄σ) : (A⁄⁄, f⁄⁄) aA(B⁄⁄, g⁄⁄)  are diagrams

A B

H

u

 f g ⇐ σ

in  M.  The 2-cells  θ : (u⁄⁄,⁄⁄σ) ⇒ (u'⁄⁄,⁄⁄σ') : (A⁄⁄, f⁄⁄) aA(B⁄⁄, g⁄⁄)  are 2-cells  θ : u ⁄⁄⇒ u' : A aAB  (with
no conditions relating them to  σ and  σ').  The compositions making this a bicategory are the
obvious ones.  The tensor product is given by

(A⁄⁄, f⁄⁄) ⊗ (B⁄⁄, g⁄⁄)  =  (A⁄⁄⊗ ⁄⁄B ⁄⁄, p⁄⁄°⁄⁄(f⁄⁄⊗ ⁄⁄g⁄⁄)⁄⁄),    (u⁄⁄, σ ⁄⁄) ⊗ (v⁄⁄, τ ⁄⁄)  =  (u⁄⁄⊗ ⁄⁄v ⁄⁄, p⁄⁄°⁄⁄(σ ⁄⁄⊗ ⁄⁄τ ⁄⁄)⁄⁄),
with unit object  (⁄⁄I⁄⁄,⁄⁄j )⁄;  so the first projection  Map(M⁄;⁄H) aAM is strict monoidal.  There is a
monoidal subbicategory  Map'(M⁄;⁄H)  of  Map(M⁄;⁄H)  with the same objects and morphisms,
however the 2-cells  θ : (u⁄⁄,⁄⁄σ) ⇒ (u'⁄⁄,⁄⁄σ') : (A⁄⁄, f⁄⁄) aA(B⁄⁄, g⁄⁄)  are those satisfying the following
equation.

A B

H

 ⇐

 ⇓
σ'

θ A B

H

 ⇐σ=

u

u'
u

f g f g

It is easy to see that  (u⁄⁄,⁄⁄σ) : (A⁄⁄, f⁄⁄) aA(B⁄⁄, g⁄⁄)  is a map in  Map(M⁄;⁄H)  if and only if  u : A
aAB  is a map and there exists some 2-cell  f ⇒ g⁄⁄°⁄⁄u  in  M⁄⁄;  whereas,  (u⁄⁄,⁄⁄σ)  is a map i n

Map'(M⁄;⁄H)   if and only if  u  is a map and  σ : g⁄⁄°⁄⁄u ⇒ f  is invertible.      

Proposition 2.1 The monoidal bicategories  Map(M⁄;⁄H)  and Map'(M⁄;⁄H)  are both right

9



autonomous with the same right bidual  (A⁄⁄, f⁄⁄)¡  =  (A¡,⁄⁄d⁄⁄°⁄⁄f ⁄* ¡⁄)   for the object  (A⁄⁄, f⁄⁄).

Proof We shall check that a right bidual  (A⁄⁄, f⁄⁄)¡  for  (A⁄⁄, f⁄⁄)  is  (A¡,⁄⁄d⁄⁄°⁄⁄f ⁄* ¡⁄).  Take a
morphism  (v⁄⁄, τ ⁄⁄) :  (B⁄⁄, g⁄⁄) aA(C⁄⁄,⁄⁄h ⁄⁄) ⁄⊗ ⁄⁄(A⁄⁄, f⁄⁄).  So we have  v : B aAC⁄⁄⊗ ⁄⁄A  and  τ :
p⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄f⁄⁄)⁄⁄°⁄⁄(h⁄⁄⊗ ⁄⁄A ⁄⁄)⁄⁄°⁄⁄v ⇒ g⁄.  Up to isomorphism there exists a unique  u  :  B ⁄⊗ ⁄⁄A¡ aAC  such
that  v ≅ (u ⁄⊗ ⁄A)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n).  Moreover, since  H  has left dualization, Proposition 1.1 (b) gives
the right adjoint of  p⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄f⁄⁄)  as  

⁄(H⁄⁄⊗ ⁄⁄f ⁄* ⁄)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄H⁄⁄)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄H)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄n).⁄⁄

It follows that we have a natural bijection between 2-cells  τ and 2-cells
υ :  (h⁄⁄⊗ ⁄⁄A ⁄⁄)⁄⁄°⁄⁄(u ⁄⊗ ⁄A)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n) ⇒ ⁄(H⁄⁄⊗ ⁄⁄f ⁄* ⁄)⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄H⁄⁄)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄H)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄n)⁄⁄°⁄⁄g⁄⁄. 

However, we have isomorphisms  ⁄

(H⁄⁄⊗ ⁄⁄f ⁄* )⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄H⁄⁄)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄H)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄n)⁄⁄°⁄⁄g
≅ (p⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄(H⁄⁄⊗ ⁄⁄H⁄⁄⊗ ⁄⁄f ⁄* ⁄)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d⁄⁄⊗ ⁄⁄H)⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄H¡⁄⁄⊗ ⁄⁄H)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n)
≅ (⁄⁄(⁄⁄p⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d)⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄H¡)⁄⁄)⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄(B⁄⁄⊗ ⁄⁄H¡⁄⁄⊗ ⁄⁄f ⁄* ⁄)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n)
≅ (⁄⁄(⁄⁄p⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄d)⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄H¡)⁄⁄)⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄(B⁄⁄⊗ ⁄⁄f ⁄* ¡⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n)
≅ (⁄⁄p⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄(d⁄⁄°⁄f ⁄*¡)⁄⁄)⁄⁄)⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n);

so that 2-cells  υ are in natural bijection with 2-cells
((h⁄⁄°⁄⁄u) ⁄⊗ ⁄A)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n) ⇒ ⁄(⁄⁄p⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄(d⁄⁄°⁄f ⁄*¡)⁄⁄)⁄⁄)⁄⁄⊗ ⁄⁄A ⁄)⁄⁄°⁄⁄(B⁄⁄⊗ ⁄⁄n).

From the universal property of  n : I aAA¡⁄⁄⊗ ⁄⁄A ⁄⁄,  these 2-cells are in turn in natural bijection
with 2-cells  σ :  h ⁄⁄°⁄⁄u ⇒ ⁄p⁄⁄°⁄⁄(g⁄⁄⊗ ⁄⁄(d⁄⁄°⁄f ⁄*¡)⁄⁄).  The assignment  (v⁄⁄, τ ⁄⁄) jA(u⁄⁄, σ ⁄⁄)  clearly extends to
equivalences of categories

Map(M⁄;⁄H)( (B⁄⁄, g⁄⁄) , (C⁄⁄,⁄⁄h ⁄⁄) ⁄⊗ ⁄⁄(A⁄⁄, f⁄⁄) )    ~ Map(M⁄;⁄H)( (B⁄⁄, g⁄⁄) ⁄⊗ ⁄⁄(A¡,⁄⁄d⁄⁄°⁄⁄f ⁄* ¡⁄) , (C⁄⁄,⁄⁄h ⁄⁄) )  and

Map'(M⁄;⁄H)( (B⁄⁄, g⁄⁄) , (C⁄⁄,⁄⁄h ⁄⁄) ⁄⊗ ⁄⁄(A⁄⁄, f⁄⁄) )    ~ Map'(M⁄;⁄H)( (B⁄⁄, g⁄⁄) ⁄⊗ ⁄⁄(A¡,⁄⁄d⁄⁄°⁄⁄f ⁄* ¡⁄) , (C⁄⁄,⁄⁄h ⁄⁄) ).  Q.E.D.

A pseudomonoid  (A⁄⁄,⁄⁄f⁄)  in  Map(M⁄;⁄H)  consists of, in  M⁄⁄,  a pseudomonoid  A  together
with a map ⁄⁄f⁄⁄: A ⁄⁄aAH ⁄⁄and 2-cells  χ : f⁄⁄°⁄⁄p⁄⁄aAp⁄⁄°⁄⁄(f⁄⁄⊗ ⁄⁄f⁄⁄)⁄ and  ι : f⁄⁄°⁄⁄j aAj  subject to no
conditions.  Yet, a pseudomonoid  (A⁄⁄,⁄⁄f⁄)  in  Map'(M⁄;⁄H)  consists of a pseudomonoid  A  i n
M together with a map ⁄⁄f⁄⁄: A ⁄⁄aAH and 2-cells  χ : f⁄⁄°⁄⁄p⁄⁄aAp⁄⁄°⁄⁄(f⁄⁄⊗ ⁄⁄f⁄⁄)⁄⁄ and  ι : f⁄⁄°⁄⁄j aAj  subject to
the usual conditions making  f : A ⁄⁄aAH  a colax morphism of pseudomonoids.

A left dualization for a pseudomonoid  (A⁄⁄,⁄⁄f⁄)  in  Map(M⁄;⁄H)  is a left dualization  d  for
A  together with a 2-cell

⁄H¡

⁄A⁄⁄¡ A

H
⇐κ

d

d

⁄f⁄⁄* ⁄⁄¡  f 

satisfying no conditions. When this dualization is moreover a left dualization i n
Map'(M⁄;⁄H),  we say  f : A aAH  is a left autonomous colax morphism of left autonomous
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pseudomonoids.  Let us now be more explicit about this definition.
Suppose  A  and  H  are left autonomous pseudomonoids in  M.  Suppose  f : A aAH  is

a colax morphism of pseudomonoids such that  f  is a map as a morphism in  M.  We say that
f  is left autonomous when there exists a 2-cell  κ : f⁄⁄⁄⁄°⁄⁄d ⇒ d⁄⁄⁄⁄°⁄⁄f⁄⁄*¡  which is compatible with  α
and  β in the sense that the following two equations hold.  In these diagrams, the unlabelled
2-cells  (f⁄⁄* ¡⁄⊗ ⁄⁄f⁄⁄)⁄⁄°⁄⁄n ⇒ n  and  e ⇒ ⁄⁄e⁄⁄°⁄⁄(f⁄⁄⁄⊗ ⁄⁄f⁄⁄* ¡⁄)  are the mates of the canonical isomorphisms
(A¡⁄⊗ ⁄⁄f⁄⁄)⁄⁄°⁄⁄n ≅ n ⁄⁄°⁄⁄(f⁄⁄¡⊗ ⁄⁄H)  and  e⁄⁄°⁄⁄(A⊗ ⁄⁄f⁄⁄¡) ≅ e⁄⁄°⁄⁄(f⁄⁄⊗ ⁄⁄H¡)  under the adjunction    f⁄⁄* ¡⁄Jf⁄⁄¡.

⁄A⁄⁄¡⊗ ⁄⁄A ⁄A⁄⁄⊗ ⁄⁄A

 I  A

H

d⊗ A

 n  p ⇐α

⇐ ι
 f  j 

 j =

⁄A⁄⁄¡⊗ ⁄⁄A ⁄A⁄⁄⊗ ⁄⁄A

 I  A

H

d⊗ A

 n  p 

 f  j 

⁄H⁄¡⊗ ⁄H
⁄H⁄⊗ ⁄H n 

 ⇓ d⊗ H

 p ⇓ α

⁄f⁄⁄*⁄⁄¡⁄⁄⊗ ⁄⁄f
⁄f⁄⁄⁄⁄⊗ ⁄⁄f⇐κ ⁄⁄⁄⊗ f

⇐
χ

⁄A⁄⁄⊗ ⁄A⁄¡

 I

A

⁄H⁄⁄⊗ ⁄H⁄¡

⁄H⁄⁄⊗ ⁄H⁄

H

 e  j 

⁄f⁄⁄⊗ ⁄⁄f⁄*¡  e 

H⁄⁄⊗ ⁄⁄d

 f 

 p 

⁄A⁄⁄⊗ ⁄A⁄¡

 I

A

⁄H⁄⁄⊗ ⁄H⁄¡

⁄H⁄⁄⊗ ⁄H⁄

H

 e  j 

⁄f⁄⁄⊗ ⁄⁄f⁄*¡

H⁄⁄⊗ ⁄⁄d

 f 

 p 

= ⁄A⁄⊗ A
 p A⁄⁄⊗ ⁄⁄d

 ⇓ β

 ⇓  ⇓  ι 
 j 

 ⇓ β

f⁄⁄⊗ ⁄κ ⇓ 
⁄f⁄⁄⊗ ⁄⁄f⁄

χ ⇓ 

If  f : A aAH  is a pseudomorphism (that is, a colax morphism for which both  χ and  ι are
invertible) then there is a unique 2-cell  κ : f⁄⁄°⁄⁄d ⇒ d⁄⁄°⁄⁄f⁄* ⁄¡  satisfying the first of these two
conditions;  moreover,  this  κ is invertible and also satisfies the second condition.  So
pseudomorphisms automatically have a unique left autonomous structure and preserve left
dualization. 

As examples in VÐMod, we have the concepts of "left autonomous comonoidal V-
functor" and "right autonomous monoidal functor".  We shall explain these explicitly
because the concept somehow seems to have escaped consideration in the literature on
monoidal categories; also we will need a higher-dimensional version described in the next
section of this paper.  

Let  A  and  B  denote left autonomous monoidal V-categories. We write  (Ð)∨ : A ⁄opaAA

for left dualization, with counit  αa :  a∨ ⁄⁄⁄⊗ ⁄⁄a aAj  and unit  βa :  j aA a⁄⁄⁄⊗ ⁄⁄a∨ ,  and we use the

same notation in  B.  A comonoidal V-functor  f : A aAB  is said to be left autonomous when
it is a left autonomous colax morphism in  VÐMod.  Explicitly, it is equipped with a V-natural
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family  κa : f⁄⁄(a∨ ⁄⁄) aAf⁄⁄(a)∨ ⁄,  a⁄⁄∈ ⁄⁄A,  of morphisms in  B  such that the following two diagrams

commute.    

χ
 j 

⁄⁄α f(a)

f⁄⁄(j)f⁄⁄(α  ) a ι

f⁄⁄(a∨ ⁄⁄)⁄⁄⊗ ⁄⁄f⁄⁄(a⁄⁄)

f⁄⁄(⁄⁄a∨ ⁄⁄⊗ ⁄⁄a⁄)

f⁄⁄(a)∨ ⁄⁄⊗ ⁄⁄f⁄⁄(a)⁄⁄
⁄⁄κ   ⁄⁄⊗ f⁄⁄(a) a

f⁄⁄(a)⁄⁄⊗ ⁄⁄f⁄⁄(a∨ ⁄⁄)f⁄⁄(a⁄⁄⊗ ⁄⁄a∨ ⁄⁄)

f⁄⁄(a)⁄⁄⊗ ⁄⁄f⁄⁄(a)∨ ⁄⁄

f⁄⁄(a)⁄⁄⊗ ⁄⁄κ a

χ

 j ⁄⁄β f(a)

f⁄⁄(j)

f⁄⁄(β  ) a

ι

Now suppose  A  and  B  are right autonomous monoidal V-categories and suppose  f : A
aAB  is a monoidal functor (not necessarily strong).  Define  f : A aAB  to be right
autonomous when the comonoidal functor  f : A¡ aAB¡  is left autonomous.  (Note that we
do not write  f⁄⁄¡ : A¡ aAB¡  since this would be confusing;  indeed  f : A¡ aAB¡  induces the

module  f⁄* ⁄¡ : A¡ aAB¡.)  Explicitly,  writing  a∧ for the right dual of  a⁄⁄∈ ⁄⁄A and using
otherwise obvious notation, a right autonomous monoidal functor  f : A aAB  is equipped

with a V-natural family  κa : f⁄⁄(a)∧ aAf⁄⁄(a∧ ⁄⁄),  a⁄⁄∈ ⁄⁄A,  of morphisms in  B  such that the

following two diagrams commute.    

f⁄⁄(a)⁄⁄⊗ ⁄⁄f⁄⁄(a  ⁄⁄)

f⁄⁄(a⁄⁄⊗ ⁄⁄a  )

χf⁄⁄(a)⁄⁄⊗ ⁄⁄f⁄⁄(a)⁄
f⁄⁄(a)⁄⁄⊗ ⁄⁄κ  a

 j 

⁄⁄α f(a)

f⁄⁄(j) f⁄⁄(α   ) a
 ι 

∧ ∧

∧

f⁄⁄(a  ⁄⁄)⁄⁄⊗ ⁄⁄f⁄⁄(a⁄⁄)

f⁄⁄(⁄⁄a  ⁄⁄⊗ ⁄⁄a⁄)

χf⁄⁄(a)   ⁄⁄⊗ ⁄⁄f⁄⁄(a)⁄⁄
⁄⁄ κ   ⁄⁄⊗ f⁄⁄(a) a

 j 

⁄⁄β f(a)

f⁄⁄(j) f⁄⁄(β   ) a
 ι 

∧ ∧

∧

We call  f  strong right autonomous when  κ is invertible.  If  f : A aAB  is strong monoidal
(so that the  χ ⁄⁄i are invertible), there is a unique  κa rendering the second of these diagrams
commutative; moreover, it is invertible,  V-natural in  a,  and also renders the first diagram
commutative. That is, strong monoidal functors between right autonomous monoidal
categories are automatically strong right autonomous.  However, a monoidal functor can be
strong right autonomous without being strong monoidal.
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3.  Autonomous monoidal lax functors
The purpose of this section is to "categorify" the notion of autonomous monoidal

functor and to examine when such things preserve dualization.
Let  M and  N be right autonomous monoidal bicategories.  A monoidal lax functor  F :

M aAN is called right autonomous when it is equipped with a pseudonatural family of
morphisms  

κA :  (FA)¡ aAF(A¡)  
and modifications

F(A)⁄⁄⊗ ⁄F(A¡⁄⁄)

F ⁄⁄(A⁄⊗ ⁄⁄A¡)
χ

F ⁄(A)⁄⁄⊗ ⁄⁄F⁄⁄(A)¡⁄
F(A)⁄⁄⊗ ⁄⁄κ  A

 I

⁄⁄e
 FA

F ⁄(I)
F ⁄⁄(e   ) A

 ι 
⇒
 ξ  A

F ⁄(A¡)⁄⁄⊗ ⁄⁄F(A)

F ⁄(⁄⁄A¡⁄⊗ ⁄⁄A⁄)

χF ⁄(A)¡⁄⁄⊗ ⁄⁄F ⁄⁄(A)⁄⁄
⁄⁄ κ   ⁄⁄⊗ F⁄(A) A

 I 

⁄⁄n
 F(A)

F ⁄(I) F ⁄⁄(n   ) A
 ι 

⇓ ζ  A

such that the following two pasting composites are equal to the identities of  1F(A) and  κA⁄,
respectively.

F⁄(A)

F ⁄(A)⁄⊗ ⁄F ⁄⁄(A)¡ ⁄ ⁄⊗ F ⁄(A)

F ⁄(I)⁄⁄⊗ ⁄⁄F⁄⁄(A)⁄⁄
F⁄(A)

F⁄(A)

F ⁄(A)⁄⊗ ⁄F⁄⁄(A¡)⁄ ⁄⊗ F⁄(A)
F(A) ⁄⁄⊗ ⁄⁄κ ⁄⁄⁄⁄⁄⁄⁄⁄⊗ ⁄⁄F(A)⁄ 

 A

F ⁄(A⁄⊗ ⁄A¡) ⁄ ⁄⊗ F⁄(A)

F⁄(A⁄⊗ ⁄A¡⁄⊗ ⁄⁄A)

χ ⊗ F(A)

F ⁄(A)⁄⊗ ⁄F ⁄⁄(A¡⁄⊗ ⁄A)

1
 F(A)

1
 F(A)

1
 F(A)

F⁄(A)
1
 F(A)

F(A) ⊗ χ 

e ⊗ F(A)

F(A) ⊗ n

F ⁄(A)⁄⁄⊗ ⁄⁄F ⁄⁄(I)⁄⁄
F(A) ⊗  F(n)

F(e) ⊗ F(A)

χ 

χ 

≅

≅

≅F(A) ⊗ ι

 ι ⊗ F(A)
χ 

χ 

F(A ⊗ n)

F(e ⊗ A)

≅

≅

≅

≅

⇒
 ξ   ⊗ F⁄(A)  A

⇓ F⁄(A)⁄⊗ ⁄ζ 
 A
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F(A)¡⁄⁄⊗ ⁄⁄F(A) ⁄⁄⊗ ⁄⁄κ⁄⁄  A

F(I) ⊗ κ 

F(A)¡ ⊗ e

F⁄(I)⁄⁄⊗ ⁄⁄F⁄⁄(A)¡ ⁄⁄

≅

≅

≅F(A)¡ ⊗ ι

 ι ⊗ F(A)¡

χ 

≅

≅

≅

≅

⇒
 F⁄⁄(A¡)⁄ ⁄⊗ ξ  A

⇓ ζ  ⊗ F⁄(A)¡  A

F ⁄(A¡)⁄⊗ ⁄F ⁄⁄(A)⁄ ⁄⊗ F⁄(A¡)

F⁄(A¡⁄⊗ ⁄A)⁄ ⁄⊗ F⁄(A¡)

F⁄(A¡⁄⊗ ⁄A⁄⊗ ⁄⁄A¡)
χ ⊗ F(A¡)

F⁄(A¡)⁄⊗ ⁄F ⁄⁄(A ⁄⊗ ⁄A¡)

F(A¡) ⊗ χ χ 

χ 
≅

F⁄(A¡)

1
 F(A¡)

F⁄(A¡)

F(n⊗ A¡)

F(A¡ ⊗ e)

≅

F⁄(A)¡

1
 F(A)¡

F⁄(A)¡

F⁄(A)¡⊗ ⁄⁄F ⁄⁄(I)

n⊗ F(A)¡

κ   ⊗ F(I) A

κ   A

F ⁄(A)¡⊗ ⁄F⁄⁄(A)⁄⊗ ⁄⁄F ⁄(A)¡

κ   A

F⁄(A)¡⊗ ⁄F(A)⊗ F⁄(A¡)

F ⁄(A)¡⊗ ⁄F⁄⁄(A⊗ A¡)

F⁄(A¡)⊗ ⁄⁄F⁄⁄(I)

F⁄(A¡)⊗ ⁄F(A)⊗ F⁄(A)¡

F(A¡) ⁄⁄⊗ ⁄⁄F(A)⁄⁄⊗ ⁄⁄κ⁄⁄ 
 A

⁄⁄ κ⁄⁄ ⁄⁄⊗ ⁄F(A)⁄⁄⊗ ⁄⁄F(A)¡ A

⁄ κ ⁄⁄ ⁄⁄⊗ ⁄F(A) ⁄⁄⊗ ⁄⁄F(A¡) A

F ⁄(I)⊗ ⁄⁄F⁄⁄(A¡)
χ  A

F(A¡) ⊗ F(e)

F⁄(A¡⊗ ⁄A)⊗ F ⁄(A)¡

χ ⊗ F(A)¡
≅

F(A¡ ⁄⁄⁄⊗ ⁄⁄A)⁄⁄⊗ ⁄⁄κ⁄⁄ 
 A

⁄ κ ⁄⁄ ⁄⁄⊗ ⁄F(A⁄⁄⊗ ⁄⁄A¡) AF(A)¡ ⊗ χ 

F(A)¡ ⊗ F(e)

F(n) ⊗ F(A)¡ F(n) ⊗ F(A¡)

≅

≅

A lax functor  F : MaAN ⁄⁄will be said to be special when
the identity constraint  1FA

aAF(1A⁄)  is invertible for all objects  A  of  M⁄⁄;  and 
if  f : A aAB  is a map then the composition constraint  F(g)⁄⁄°⁄⁄F(f⁄) aAF(g⁄⁄°⁄⁄f⁄)  is 
invertible.

The first of these says that  F  is norma l while the second implies that  F  is a pseudofunctor
on the subbicategory of  M consisting of the maps.  

If one is careful, it is possible to use pasting diagrams involving a special lax functor  F :
MaAN⁄⁄⁄.  Given a 2-cell

A 0

A 1

A 2 .  .  .

A n

f 1

f 2
f n

B 1g 1 g 2 B 2
.  .  .

g
 n

⇓ σ

for which  g1 ⁄⁄, g2° g1 ⁄⁄, . . . , gnÐ1⁄⁄°⁄⁄gn-2⁄⁄°⁄ . . . ° g1 are all maps,  by abuse of language, we write
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F(A  ) 0

 1
 2 .  .  .

 n

F(f  ) 1

 2

 n

 1
 2

.  .  .  n

⇓ F(σ)

F(f  )
F(f  )F(A  )

F(A  )

F(A  )
F(g  ) 1 F(B  )

F(B  )F(g  ) 2

F(g  )

for the 2-cell  F(fn)⁄⁄°⁄⁄ . . . ⁄⁄°⁄⁄F(f2)⁄⁄°⁄⁄F(f1) ⇒ F(gn)⁄⁄°⁄⁄ . . . ⁄⁄°⁄⁄F(g2)⁄⁄°⁄⁄F(g1)  obtained by conjugating the
actual  F(σ) : F(fn⁄⁄°⁄⁄ . . . ⁄⁄°⁄⁄f2 ⁄⁄°⁄⁄f1) ⇒ F(gn⁄⁄°⁄⁄ . . . ⁄⁄°⁄⁄g2 ⁄⁄°⁄⁄g1)  by the composition constraints of  F. 

Proposition 3.1 Special lax functors take maps to maps.  More precisely, if  F : MaAN is a

special lax functor and f : A aAB  is a map in M then  F(f⁄) J⁄F(f⁄*)  i n N⁄⁄.

Proof Let  ε : f⁄⁄°⁄⁄f⁄⁄* ⇒ 1B and  η : 1A ⇒ f⁄⁄* ⁄°⁄⁄f  be the counit and unit for  f⁄⁄.  Define  ε'  and  η '
such that the following diagrams commute.⁄⁄

F(f ⁄) ° F(f⁄*) F(f ⁄ ° f⁄*)

F(1  ) B 1  F(B) 

F(ε)ε'

F(f ⁄*⁄) ° F(f ⁄) F(f ⁄*⁄° f⁄)

F(1  ) A 1  F(A) 

F(η)η'

(The bottom and top-right arrows are invertible.)  It is easily checked that  ε'  and  η '  are a
counit and unit for  F(f⁄) J⁄F(f⁄*).  Q.E.D.

Theorem 3.2 Suppose  F : M aAN is a right autonomous monoidal special lax functor.  If
⁄⁄A ⁄⁄is a left autonomous pseudomonoid i n⁄⁄⁄⁄⁄M ⁄⁄⁄t h e n⁄⁄ F(A) ⁄⁄is a left autonomous pseudomono id

in  N⁄ ⁄⁄⁄⁄with left dualization given by the composite 

  F A F A F AA F d( ) ( ) ( )( )°  → °  →
κ

equipped with the following two 2-cells.

F ⁄(A¡)⁄⁄⊗ ⁄⁄F(A)

F ⁄(⁄⁄A¡⁄⊗ ⁄⁄A⁄)

F ⁄(A)¡⁄⁄⊗ ⁄⁄F ⁄(A)⁄⁄
⁄⁄ κ   ⁄⁄⊗ F⁄(A) A

 I 

⁄⁄n
 F(A)

F ⁄(I)

F ⁄⁄(n   ) A

 ι 

⇓ ζ  A

χ

F ⁄(A)⁄⁄⊗ ⁄⁄F(A)

F ⁄(A⁄⁄⊗ ⁄⁄A⁄)

F ⁄(A)F ⁄(j )

≅

⇓ F(α) F ⁄(p)

χ

F ⁄(d)⊗ F⁄(A)

F ⁄(d⊗ A)

15



F(A)⁄⁄⊗ ⁄F(A¡⁄⁄)

F ⁄⁄(A⁄⊗ ⁄⁄A¡)

F ⁄(A)⁄⁄⊗ ⁄⁄F⁄⁄(A)¡⁄
F(A)⁄⁄⊗ ⁄⁄κ  A

 FA

F ⁄(I)

F ⁄⁄(e   ) A

⇓ ξ  A
⁄⁄e

 I  ι 

χ

F ⁄(A)⁄⁄⊗ ⁄⁄F(A)

F ⁄(A⁄⁄⊗ ⁄⁄A⁄)

F ⁄(A)

F(A)⁄⁄⊗ ⁄F(d)

≅

⇓ F(β) F ⁄(p)

χ

F ⁄(j )

F ⁄(A⊗ d)

Proof The proof requires some rather large diagrams which make use of the two conditions
on  α and  β and the two conditions on  ξΑ and  ζΑ .  The crux of the argument for the proof
of the first condition for a left dualization structure is supplied by the following equations i n
which most of the objects have been omitted to save space.

F ⁄(A)⊗ ⁄F(A¡)⊗ F⁄(A) F ⁄(A⁄⊗ ⁄A⊗ A)

≅

≅

≅

≅

≅

χ 

χ 

χ ⊗ F ⁄(A) 

F ⁄(A) ⊗ χ  

F ⁄(A) ⊗ F ⁄(n) 

F ⁄(A) ⊗ F ⁄(j)  

F ⁄(j) ⊗ F ⁄(A)  

F ⁄(e) ⊗ F⁄(A) 
χ 

χ 

χ 

χ 

F ⁄(A ⊗ n)  

F ⁄(e ⊗ A)  

F ⁄(j ⊗ A)  

F ⁄(p ⊗ A) 

F ⁄(A ⊗ p) 

F ⁄(A ⊗ d ⊗ A) 

F ⁄(A ⊗ j)  

⇓

⇓

F(β⁄⁄⊗ A)

F(A⁄⊗ ⁄⁄α)
=
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F ⁄(A)⊗ ⁄F(A¡)⊗ F⁄(A) F ⁄(A⁄⊗ ⁄A⊗ A)

≅

≅

≅

≅

≅χ 

χ 

χ ⊗ F ⁄(A) 

F ⁄(A) ⊗ χ  

F ⁄(A) ⊗ F ⁄(n) 

F ⁄(A) ⊗ F ⁄(j)  

F ⁄(j) ⊗ F ⁄(A)  

F ⁄(e) ⊗ F⁄(A) 

χ 

χ 

χ 

χ 

F ⁄(p ⊗ A) 

F ⁄(A ⊗ p) 

F ⁄(A ⊗ d ⊗ A) 

⇓

⇓

F(β)⁄⁄⊗ F(A)

F(A)⁄⊗ ⁄⁄F(α)

=

F ⁄(p)⊗ F⁄(A)  

F ⁄(A ⊗ d)⊗ F(A)  

F ⁄(A) ⊗ F ⁄(p) 
F ⁄(A) ⊗ F(d⊗ A)  

F ⁄(A)⊗ ⁄F(A¡)⊗ F⁄(A) F ⁄(A⁄⊗ ⁄A⊗ A)

≅

≅

≅

≅

≅χ ⊗ F ⁄(A) 

F ⁄(A) ⊗ χ  

F ⁄(A) ⊗ F ⁄(n) 

F ⁄(A) ⊗ F ⁄(j)  

F ⁄(j) ⊗ F ⁄(A)  

F ⁄(e) ⊗ F⁄(A) 

χ 

χ 

χ 

χ 

F ⁄(p ⊗ A) 

F ⁄(A ⊗ p) 

F ⁄(A)⊗ F(d)⊗ F(A)  

⇓

⇓

F(β)⁄⁄⊗ F(A)

F(A)⁄⊗ ⁄⁄F(α)

F ⁄(p)⊗ F⁄(A)  

F ⁄(A ⊗ d)⊗ F(A)  

F ⁄(A) ⊗ F ⁄(p) 
F ⁄(A) ⊗ F(d⊗ A)  

χ ⊗ F ⁄(A) 

F ⁄(A) ⊗ χ  

  Q.E.D. 

4.  Formal representation theory 
This section  provides a conceptual setting for examining categories of representations of

objects of  M.   We are interested in "finite" representations.  
Since the monoidal category  V = M(I⁄⁄,⁄⁄I)  is braided, if  u : I aAI  is a map then  u*  is a

map  (in fact,  u** ≅ u ⁄⁄).  We need to assume that, for all objects  A  of  M⁄⁄, 
i f r  and  s : I aAA  are maps then so is r *⁄⁄°⁄⁄s.

Write  Vfin for the monoidal full subcategory of  V = M(I⁄⁄,⁄⁄I)  consisting of the maps  u : I aAI⁄;
it is autonomous and braided.  We shall suppose further that  V is cocomplete as a monoidal
category so we do indeed have the monoidal bicategory  VÐMod.  

We shall describe three monoidal special lax functors
Rep  :  M⁄ aAVÐMod ,
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Repω :  Map(M⁄;⁄I) aAMap(VÐMod⁄⁄;⁄⁄Vfin⁄⁄)   and
Rep' : Map'(M⁄;⁄I) aAMap'(VÐMod⁄⁄;⁄⁄Vfin⁄⁄).   

For an object  A  of  M⁄⁄,  we have a Vfin-category  Rep(A); the objects are the maps  r : I
aAA, while, for such objects  r  and  r',  we put  Rep(A)(r⁄⁄,⁄⁄r') = r⁄* ⁄⁄°⁄⁄r '⁄⁄∈ ⁄⁄Vfin.  The unit of the
adjunction  r J⁄⁄r* provides the identity  1I

aARep(A)(r⁄⁄,⁄⁄r)  of  r  while the counit of  r' J⁄⁄r ' *
induces composition   

Rep(A)(r'⁄⁄,⁄⁄r") ° Rep(A)(r⁄⁄,⁄⁄r')  aaARep(A)(r⁄⁄,⁄⁄r").
In particular,  Rep(I) = Vfin⁄⁄.  

Objects  εA : A aAI  of  Map(M⁄;⁄I)  will be denoted by  A,  suppressing the augmentation
εA.   The value of  Repω at such an  A  is denoted by

ωA :  Rep(A) aAVfin .  
Now  ωA is in fact a V-functor, not merely a left adjoint V-module;  it is defined on objects by
composition with  εA

⁄⁄,  and its effect  

Rep(A)(r⁄⁄,⁄⁄r') aAVfin(εA⁄⁄°⁄⁄r⁄⁄,⁄⁄εA⁄⁄°⁄⁄r')  
on homs is induced by the unit of  εA

J⁄⁄εA
⁄*.  Of course,  Rep'  agrees with  Repω on objects.   

Next we define  Rep  on a morphism  u : A aAB  of  M⁄⁄ to be the V-module  Rep(u⁄) :
Rep(A) aARep(B)  defined by

Rep(u)(s⁄⁄,⁄⁄r)  =  s⁄* ⁄⁄°⁄⁄u ⁄⁄°⁄⁄r .
For a morphism  (u⁄⁄,⁄⁄σ) : A aAB  of  Map(M⁄;⁄I),  we define  Repω(u⁄⁄,⁄⁄σ)  to be the V-module
Rep(u⁄)  together with the V-module morphism  ωB ° Rep(u⁄⁄,⁄⁄σ) ⇒ ω A whose component at
(x⁄⁄,⁄⁄r)  is the composite

    
x s s u r x u r x rB

s p B x counit u r
B

x r
A

B
s

* * * * .Re ( ) * *
o o o o o o o o o o

o o o o o oε ε ε
ε σ∈

∫
∫

 →  →

Of course,  Rep'  agrees with  Repω on morphisms. 
The formula  s⁄* ⁄⁄°⁄⁄u ⁄⁄°⁄⁄r  is appropriately functorial in the variable  u  so that  Rep  is easily

defined on 2-cells.  This lifts in the obvious way to 2-cells in both  Map(M⁄;⁄I)  and  Map'(M⁄;⁄I),
which, in the last case, sees the image 2-cell landing in  Map'(VÐMod⁄⁄;⁄⁄Vfin⁄⁄).  So we have
defined all three lax functors on objects, morphisms and 2-cells.  

Now we need to see how  Rep  relates to horizontal composition. Take  u : A aAB  and
v : B aAC  in  M⁄⁄.  We define the composition constraint

Rep(v) ° Rep(u)  aARep(v⁄⁄°⁄⁄u ⁄)
to have component at  (t⁄⁄,⁄⁄r)  given by the 2-cell

    
t v s s u r t v u rs p B t v counit u rs

* * * .Re ( ) *
o o o o o o o o

o o o o∈
∫

∫
 →

Clearly  Rep  is normal since  Rep(1A⁄⁄,⁄⁄  1εA
)(s⁄⁄,⁄⁄r) = s⁄* ⁄⁄°⁄⁄r = Rep(A)(s⁄⁄,⁄⁄r)  which is the component

of the identity V-module of  Rep(A)  at  (s⁄⁄,⁄⁄r).  The coherence conditions for a lax functor are
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easily checked.  It is important to notice that the V-module  Rep(u) : Rep(A) aARep(B)  is
actually representable by a V-functor when  u  is a map.  Similarly, the V-module  Rep(u)  is
the right adjoint of a V-module represented by a V-functor when  u  is the right adjoint  w*  of
a map  w : B aAA.    It follows that the composition constraint

Rep(v) ° Rep(u)  aARep(v⁄⁄°⁄⁄u)
is invertible if either  u  is a map or  v  is a right adjoint.  In particular, it follows that  Rep  is
indeed a special lax functor.

It is easy to see that, if  (u⁄⁄,⁄⁄σ) : A aAB  and  (v⁄⁄,⁄⁄τ ) : B aAC  are morphisms of  Map(M⁄;⁄I),
then the composition constraint  Rep(v) ° Rep(u) aARep(v⁄⁄°⁄⁄u ⁄)  is in fact a 2-cell

Repω(v⁄⁄,⁄⁄τ ) ° Repω(u⁄⁄,⁄⁄σ) aARepω(v⁄⁄°⁄⁄u ⁄⁄,⁄⁄(σ ⁄⁄°⁄⁄u)⁄⁄τ )
in  Map'(VÐMod⁄⁄;⁄⁄Vfin⁄⁄).  It therefore follows that both  Repω and  Rep'  are special lax functors.

Next we describe the monoidal structure on  Rep.  In fact, there is a fully faithful V-
functor  χA⁄⁄,⁄⁄B : Rep(A)⁄⁄⊗ ⁄⁄Rep(B) aARep(A⁄⁄⊗ ⁄⁄B).  On objects we define  χA⁄⁄,⁄⁄B(r⁄⁄,⁄⁄s) = r⁄⁄⊗ ⁄⁄s : I
aAA⊗ B.  To define  χA⁄⁄,⁄⁄B on homs, we make use of the canonical isomorphisms

I

A⁄⁄⊗ ⁄⁄B

I

I

B A

≅ ≅

≅

r'⁄⁄⊗ ⁄⁄s' r*⁄⁄⊗ ⁄⁄s*

r'⁄⁄⊗ ⁄⁄B
A⁄⁄⊗ ⁄⁄s

s'

s* r'

r* 

to obtain the required invertible morphism  
(Rep(A)⁄⁄⊗ ⁄⁄Rep(B))((r⁄⁄,⁄⁄s)⁄⁄,⁄⁄(r'⁄⁄,⁄⁄s')) akARep(A⁄⁄⊗ ⁄⁄B)(r⁄⁄⊗ ⁄⁄s⁄⁄,⁄⁄r '⁄⁄⊗ ⁄⁄s').

There is also the fully faithful V-functor  ωI : I aAVfin which picks out the unit object  1I of
Vfin ;  this gives a V-functor  ι : I aARep(I).  The coherence conditions can be verified showing
Rep  to be monoidal.  Furthermore,  when  A  and  B  are in  Map(M⁄;⁄I),  we see that the V-
functor  χA⁄⁄,⁄⁄B commutes up to isomorphism with the augmentations into  Vfin .  Certainly  ι :
I aARep(I)   commutes with the augmentations.  So  Repω and  Rep'  become monoidal. 

We shall now see that our three monoidal lax functors are right autonomous.  There is a
canonical equivalence of V-categories

κA :  Rep(A)⁄opaARep(A¡).
On objects it takes  r : I aAA  to  r⁄*¡ : I aAA¡  and on homs we have

Rep(A)⁄op(r⁄⁄,⁄⁄s)  =  Rep(A)(s⁄⁄,⁄⁄r)  =  s*°⁄⁄r  ≅ (s*°⁄⁄r)¡  ≅ r⁄¡°⁄⁄s*¡ ≅ Rep(A¡)(r⁄*¡, s⁄*¡),
using  x¡ ≅ x  for  x : I aAI  and using  r⁄* ¡J⁄⁄r⁄¡.

There is a canonical invertible V-module morphism  ξA :   
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Rep(A) ⊗ ⁄Rep(A)op Rep(A) ⊗ ⁄Rep(A¡)

Rep(A ⊗ A¡)

 I Rep(I)

e
⇒

" 1  " I 

 ξ A 

1⁄⊗ ⁄⁄κ A 

 χ

Rep(e)

since the components of both legs of the diagram at  (x⁄⁄,⁄⁄r⁄⁄,⁄⁄s),  for objects  x  of  Rep(I) = Vfin

and  (r⁄⁄,⁄⁄s)  of  Rep(A)⁄⁄⊗ ⁄⁄Rep(A)⁄op,  are isomorphic to  x*⁄⁄°⁄⁄s*⁄⁄°⁄⁄r  (using the fact that  e ⁄⁄°⁄⁄(A⁄⁄⊗ ⁄⁄s*¡)
≅ s* ).  There is a canonical V-module morphism  ζA :

Rep(A)   ⊗ ⁄Rep(A)op Rep(A¡) ⊗ ⁄Rep(A)

Rep(A¡ ⊗ A)

 I Rep(I)

n ⇓

" 1  " I 

 ζ A 

κ  ⁄⊗ ⁄1⁄ A 

 χ

Rep(n)

;

the component of the domain leg of the diagram at an object  t  of  Rep(A¡⊗ A)  is the coend
over all objects  (r⁄⁄,⁄⁄s)  of  Rep(A)⁄op⁄⁄⊗ ⁄⁄Rep(A)  of the expression  t *⁄⁄°⁄⁄(r*¡⊗ ⁄⁄s)⁄⁄°⁄⁄s*⁄⁄°⁄⁄⁄r⁄⁄,  while the
component of the codomain leg at  t  is  t *⁄⁄°⁄⁄n ⁄⁄;  so  ζA(t)  is induced by the composite with  t *
of the mate  (r*¡⊗ ⁄⁄s)⁄⁄°⁄⁄s*⁄⁄°⁄⁄⁄r⁄ ⇒ n  of the isomorphism  s*⁄⁄°⁄⁄⁄r⁄ ≅ (r¡⊗ ⁄⁄s*)⁄⁄°⁄⁄n  under the adjunction
r*¡⊗ ⁄⁄s J r¡⊗ ⁄⁄s*.  As one might expect from the canonical nature of  ξ and  ζ ⁄⁄,  it can be seen
that the two conditions required to make  Rep  right autonomous do indeed hold.
Furthermore, if  A  is in  Map(M ⁄;⁄⁄I)  then  κA commutes with the augmentations, while  ξA

and  ζA are 2-cells in  Map'(VÐMod⁄⁄;⁄⁄Vfin⁄⁄).  So  Repω and  Rep'  become right autonomous.
As corollaries of Theorem 3.2 we obtain a variety of results, some of which we list in:

Theorem 4.1 (i)  If  A is a left autonomous pseudomonoid in  M then  Rep(A)  is a left

autonomous pseudomonoid in  VÐMod.   
(ii)  If  A is a left autonomous map pseudomonoid in  M then  Rep(A)  is a left

autonomous monoidal  V-category.  
(iii) If  εA : A aAI  is a left autonomous pseudomonoid i n Map(M⁄⁄; ⁄I)  then the V-

functor  ωA : Rep(A) aAVfin is a left autonomous pseudomonoid in  Map(VÐMod⁄⁄;⁄⁄Vfin⁄⁄).
(iv) If in (iii) one of the structure 2-cells  χ : εA⁄⁄°⁄⁄p ⇒ ε A⁄⁄⊗ ⁄⁄εA , ι : εA⁄⁄°⁄⁄j ⇒ 1I o r κ :

εA⁄⁄°⁄⁄d⁄⁄⇒ ⁄⁄⁄⁄(εA)*¡ is invertible then the corresponding  V-module morphism 
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Rep(A) ⊗ Rep(A) Rep(A)

V   ⊗ Vfin fin fin

⇐ω ⁄⊗ ⁄ω A  A ω ⁄ A 

Rep(A)

fin

ω ⁄ A 

 I 

⇐ω ⁄ I 

Rep(A) Rep(A)

fin

op

fin

⇐ω A ω ⁄ A 
(Ð)*V V V  op V 

is also invertible.
(v)  If A  is as in (ii) and  εA : A aAI  is a map which is a pseudomorphism of pseudo-

monoids then the  V-functor  ωA : Rep(A) aAVfin is strong monoidal.

5.  Comonoids and pro-Hopf algebras
Let  V be a braided monoidal category. The purpose of this section is to describe and

analyse a monoidal bicategory  Comod⁄⁄(V⁄⁄⁄)  to be taken as  M in Section 4 so that the formal
representation theory applies.  We identify the left autonomous pseudomonoids i n
Comod⁄⁄(V⁄⁄⁄);  they generalize both the "braided groups" of Majid and the quasi-Hopf algebras
of Drinfeld (see [Maj]). 

In order to construct the right autonomous monoidal bicategory  Comod⁄⁄(V⁄⁄⁄)  we shall
assume the condition: 

each of the functors X⁄⁄⊗ ⁄⁄Ð : VaAV⁄ preserves equalizers.
In order for  Comod⁄⁄(V⁄⁄⁄)  to satisfy the condition we needed on  M in Section 5, we assume
that  V satisfies the condition:

every regular subobject of an object with a right dual has a right dual.
(A regular subobject is one that occurs as an equalizer.)  Of course, because of the braiding,
right duals in  V are automatically left duals.

The quick description of  Comod⁄⁄(V⁄⁄⁄)  is that it is the monoidal full sub-bicategory of
(V⁄⁄opÐMod)⁄⁄op consisting of the one-object V⁄⁄op-categories.  There is the technical problem
(which does not arise in the one-object case) that defining the horizontal composition i n
(V⁄⁄opÐMod)⁄⁄op requires stronger conditions of completeness on  V than we have; and, in any
case, to make calculations we will need to make the definition more explicit. 

The objects of  Comod⁄⁄(V⁄⁄)  are comonoids  C  in  V;  we depict the comultiplication  δ : C
aAC⁄⁄⊗ ⁄⁄C  as a string diagram of the form

C

C C

and the counit  ε : C aAI  as a string diagram
 •

C
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so that the comonoid axioms become the equations

 •

= =
 •

==
defin.

 . 

The hom-category  Comod⁄⁄(V⁄⁄⁄)(C⁄⁄,⁄⁄D)  is the category of Eilenberg-Moore coalgebras for the
comonad  C⁄⁄⊗ ⁄⁄Ð ⁄⁄⊗ ⁄⁄D  on the category  V.   This implies that the morphisms  M : C arAD  i n
Comod⁄⁄(V⁄⁄⁄)  are comodules from  C  to  D;  that is, left CÐ, right D-comodules.  So  M  is an
object of  V together with a coaction  δ : M aAC⁄⁄⊗ ⁄⁄M ⁄⁄⊗ ⁄⁄D  depicted by

C DM

M

satisfying the equations

=
 • •

==
defin.

 . 

It is sometimes useful to deal with the left and right actions  δl : M aAC⁄⁄⊗ ⁄⁄M  and  δr : M
aAM ⁄⁄⊗ ⁄⁄D  which are depicted by

 •

=
C M

M

and
 •

=

DM

M .

The 2-cells  f :  M ⇒ M' :  C arAD  in  Comod⁄⁄(V⁄⁄⁄)  are morphisms  f : M aAM'  in  V⁄⁄⁄

satisfying the equations
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C D

M

 f 

M⁄⁄'
C D

M

 f 

M⁄⁄'

M⁄⁄'=

.

Composition of comodules  M : C arAD  and  N : D arAE  is given by the equalizer 

N ⁄⁄°⁄⁄M  =  
  
M N

D
⊗  → M ⁄⁄⊗ ⁄⁄N  

    

δ

δ

r⊗ →

⊗
 →

1

1 l

M ⁄⁄⊗ ⁄⁄D⁄⁄⊗ ⁄⁄N .

The identity comodule  1C :  C arAC  is  C  with coaction

.

The remaining details describing  Comod(V⁄⁄⁄)  as a bicategory should now be clear.

Each comonoid morphism  f : CaAD  determines a comodule  f∗ : C arAD  defined to
be  C  together with the coaction

C D f  ∗ 

 f  ∗ 

C D

=

C

C

 f 

and a comodule  f⁄⁄∗ : D arAC  defined to be  C  together with the coaction

D C f  ∗ 

 f  ∗ 

D C

=

C

C

 f 

 . 

Notice that we have  γ f :  f∗
⁄⁄°⁄⁄ f⁄⁄∗ ⇒ 1D which is defined to be  f : C aAD  since   f∗ ⁄⁄°

⁄⁄f⁄⁄∗ =⁄ f⁄⁄∗
  
⊗
C

f ∗ =  C   with coaction

 f  f 

 . 
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Also,  f∗
⁄⁄
  
⊗
D

f⁄⁄∗ =⁄ ⁄ f⁄⁄∗ ° f ∗ is the equalizer

f∗
⁄⁄
  
⊗
D

f⁄⁄∗  → C⁄⁄⊗ ⁄⁄C  
    

(C f C) ( C)

(C f C) ( )

⊗ ⊗ ⊗

⊗ ⊗ ⊗

 →
 →

o

o

δ

δC
C⁄⁄⊗ ⁄⁄D⁄⁄⊗ ⁄⁄C    ;

and, since

C   → C⁄⁄⊗ ⁄⁄C  
  

δ

δ

⊗

⊗

 →
 →

C

C
C⁄⁄⊗ ⁄⁄C⁄⁄⊗ ⁄⁄C

is an (absolute) equalizer, we have a unique morphism  C aAf∗
⁄⁄
  
⊗
D

f⁄⁄∗ commuting with the

morphisms into  C⁄⁄⊗ ⁄⁄C;  this gives us   ωf : 1C ⇒ ⁄ f⁄⁄∗ ° f ∗ .  Indeed,   γ f ,  ωf are the counit and

unit for an adjunction   f∗
J⁄ f⁄⁄∗ in the bicategory  Comod(V⁄⁄⁄).  

For any comodule  M : C arAD  and any comonoid morphism  g : D aAE,  we have
g∗ ⁄⁄°
⁄⁄M  =⁄ M ⁄⁄

  
⊗
D
¡⁄g∗ =  M  :  C arAE

with coaction
C EM

M

 g 

 . 
D

Similarly,  for  h : D aAC  and  N : D arAE,  we have

N ⁄⁄°⁄⁄h ∗ =⁄ h ∗ ⁄
  
⊗
D
⁄N  =  N : C arAE

with coaction
C EN

N

 h 

 . 
D

Proposition 5.1 A comodu l e M : C arAD has a right adjoint i n Comod(V⁄⁄⁄)  if and only i f
its composite ε∗ ⁄⁄°

⁄⁄M with ε∗ : D arAI  has a right adjoint.  If  H  and K : I arAD  h a v e
right adjoints then so does H*⁄⁄°⁄⁄K. 

Proof A comodule  M : C arAD  has a right adjoint if and only if, for all comonoids  E,  the

functor  Comod(V⁄⁄⁄)(E⁄⁄,⁄⁄M) : Comod(V⁄⁄⁄)(E⁄⁄,⁄⁄C) aAComod(V⁄⁄⁄)(E⁄⁄,⁄⁄D)  has a right adjoint.
Consider the following commutative triangle of functors.
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Comod(V⁄⁄)(E⁄⁄,⁄⁄C) Comod(V⁄⁄)(E⁄⁄,⁄⁄D)
Comod(V⁄⁄)(E⁄⁄,⁄⁄M)

Comod(V⁄⁄)(E⁄⁄,⁄⁄I)

Comod(V⁄⁄)(E⁄⁄,⁄ε   )∗

The right side is comonadic via the comonad induced by tensoring with the comonoid  D.  So,
by Dubuc's Adjoint Triangle Theorem [Dbc],  the top side has a right adjoint if and only if the
left side does.

The unit  1D
aAε∗

⁄⁄°⁄⁄ε∗ of the adjunction  ε∗
Jε∗ is an equalizer so  

H*⁄⁄°⁄⁄K aAH*⁄⁄°⁄⁄ε∗
⁄⁄°⁄⁄ε∗ ⁄°

⁄⁄K  ≅ (ε∗ ⁄°
⁄⁄H)* °⁄⁄(ε∗ ⁄°

⁄⁄K)

is a regular monomorphism.  Now  ε∗ ⁄°
⁄⁄H  and  ε∗ ⁄°

⁄⁄K  have right adjoints (duals) since  H, K
and  ε∗ do.  But, since  ε∗ ⁄°

⁄⁄H  and  ε∗ ⁄°
⁄⁄K   are in the braided monoidal  V,  they also have left

duals.  So  (ε∗ ⁄°
⁄⁄H)* °⁄⁄(ε∗ ⁄°

⁄⁄K)  has a right dual.  By our assumption on  V,  it follows that  H*⁄⁄°⁄⁄K
has a right dual.  Q.E.D.

Suppose  C, D  are comonoids.  Then  C⁄⁄⊗ ⁄⁄D  becomes a comonoid with coaction

  C D C C D D C D C DC c DC D⊗  → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗⊗ ⊗ ⊗δ δ ,

where  c  is the braiding and, as justified by coherence theorems, we ignore associativity in  V;
the string diagram for this coaction is

C

C CD D

D

 . 

For comodules  M : C arAC'  and  N : D arAD',  we obtain a comodule  M ⁄⁄⊗ ⁄⁄N : C⁄⁄⊗ ⁄⁄D
arAC'⁄⁄⊗ ⁄⁄D'  where the coaction is given by

M

C C'D D'

N

 . 

NM

This extends to a pseudofunctor  ⊗ : Comod(V⁄⁄⁄) × Comod(V⁄⁄⁄) aAComod(V⁄⁄⁄).  The remaining
structure required to obtain  Comod(V⁄⁄⁄)  as a monoidal bicategory should be obvious.

Write  C⁄⁄° for  C  with the comultiplication
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C C

C
.

There is a pseudonatural equivalence between the category of comodules  M : C⁄⁄⊗ ⁄⁄D arAE

and the category of comodules    ÃM : D arAC⁄⁄°⁄⁄⊗ ⁄⁄E ,  where  M =   ÃM as objects,  while the

coaction of    ÃM is given by

E

M

M
D C

 . 
It follows that  C⁄⁄° is a right bidual for  C ⁄;  the unit  n : I arAC⁄⁄°⊗ ⁄⁄C  is  C  with coaction

and the counit is  e : C⁄⁄⊗ ⁄⁄C⁄⁄°arAI  is  C  with coaction

.
This gives the structure of right autonomous monoidal bicategory to  Comod(V⁄⁄⁄).  

Definition A pro-Hopf comonoid in the braided monoidal category⁄⁄ V⁄⁄ is a left autonomous

pseudomonoid  H  in  Comod(V⁄⁄⁄).  We denote the multiplication, unit and dualization
comodules by  P : H⁄⁄⊗ ⁄⁄H arAH,  J : I arAH  and  S : H⁄⁄°arAH⁄;  indeed, we use the term
antipode rather than "dualization" for  S.   A quasi-Hopf comonoid in  V is a pro-Hopf
comonoid for which the multiplication, unit and antipode comodules are of the form  P = p∗ ⁄⁄,
J = j ∗ and  S = s∗ for comonoid morphisms  p : H⁄⁄⊗ ⁄⁄H aAH,  j : I aAH  and  s : H⁄⁄° aAH,
and the unit constraints  λ and  ρ are identities. 
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More explicitly, a pro-Hopf comonoid  H  is a comonoid together with a multiplication
comodu l e P : H⁄⁄⊗ ⁄⁄H arAH  and a unit comodule J : I arAH,  which are associative and
unital up to coherent isomorphisms  φ , λ ⁄⁄, ρ (as at the beginning of Section 1 or, more fully,
in [DS; Section 3]), and an antipode comodule S : H⁄⁄°arAH  such that the comodule

    
( ) ( ) ( )H n H S H P H

H H H H H H
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗o
:  H aAH⁄⁄⊗ ⁄⁄H

is right adjoint to  P.  Alternatively to the last clause, we require comodule morphisms
α :  n

    
⊗
⊗H Ho

(S⁄⁄⊗ ⁄⁄H)
  

⊗
⊗H H

P  aAJ     and     β :  e⁄⁄⊗ ⁄⁄J aA(H⁄⁄⊗ ⁄⁄S)
  

⊗
⊗H H

P

satisfying two conditions as given in Section 1. 

We can be even more explicit in the case of a quasi-Hopf comonoid  H.  We have
comonoid morphisms  p : H⁄⁄⊗ ⁄⁄H aAH,  j : I aAH  and  s : H⁄⁄° aAH  together with
comodule morphisms

α :  n
    

⊗
⊗H Ho

(p⁄⁄°⁄⁄(s⁄⁄⊗ ⁄⁄1H))∗
aAj ∗ and     β :  (p⁄⁄°⁄⁄(⁄⁄1H⁄⁄⊗ ⁄⁄s))∗

    
⊗
⊗H Ho

⁄⁄e⁄⁄ aAj ∗

satisfying two conditions.  From our earlier observations about composing a comodule with

an  f∗ or  a  g∗ ,  we see that  n
    

⊗
⊗H Ho

(p⁄⁄°⁄⁄(s⁄⁄⊗ ⁄⁄1H))∗ is just  n = H : I arAH  with coaction

s

H

H

and  (p⁄⁄°⁄⁄(⁄⁄1H⁄⁄⊗ ⁄⁄s))∗

    
⊗
⊗H Ho

⁄⁄e  is just  e = H : H arAI  with coaction

s

H

H

.

Therefore the condition that  α and  β are comodule morphisms is that they are morphisms
α and  β : H aAI  in  V satisfying
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s
α=

j

α and s
β=

j

β

.

The other two conditions on  α and  β are:

φ

s

β α
=

j

φ

s

α β
= s

 -1 .

It is now easy to see that a quasi-Hopf algebra is precisely a quasi-Hopf comonoid in  V⁄ =
Vect⁄op,  the dual of the category of vector spaces and linear functions.  The reader can refer to
[Maj; Section 2.4, page 62-63] for the definition of quasitriangular quasi-Hopf algebra; to obtain
a definition of quasi-Hopf merely drop the "quasitriangular" element and the two axioms
involving it; also he omits to explicitly say that the antipode should be an algebra
antimorphism.

To digress a little, we should also point out that a quasi-Hopf algebra is a one-object
example of a Hopf Vect-algebroid.  Moreover, for any Hopf V-algebroid  H ,  the convolution
structure (see [DS; Proposition 19, page 143]) on the V-functor V-category  [H , Vfin]  is right
autonomous:  the tensor product is pointwise and dualization  M jAM*  is given by  M*C =
(MSC)*.    

Return now to  M = Comod(V⁄⁄⁄).  We wish to apply the formal representation theory of
Section 4 to this  M⁄⁄.   

We need to identify the Vfin-category  Rep(C)  for any comonoid  C  in  V.  The objects are
right C-comodules  M  with right duals in  V (Proposition 5.1).  The Vfin-valued hom object
Rep(C)(M⁄⁄,⁄⁄N) = M*⁄⁄°⁄⁄N = N⁄

  
⊗
C
⁄M*  is determined up to isomorphism as an equalizer

Rep(C)(M⁄⁄,⁄⁄N)   → V(M⁄⁄,⁄⁄N) 
      

V

V

( , )

( , ) ( )

M

N C C

δ

δ

 →
 →

⊗ −⊗o

V(M⁄⁄,⁄⁄N ⁄⁄⊗ ⁄⁄C) ,

where we write  V(X⁄⁄,⁄⁄Y)  for the internal hom in  V;  the equalizer is induced by the
isomorphisms of the form  V(X⁄⁄,⁄⁄Y) ≅ Y⁄⁄⊗ ⁄⁄X* when  X  has a right dual.  So we can think of
Rep(C)(M⁄⁄,⁄⁄N)  as the "object of right-C-comodule homomorphisms from  M  to  N".  (When
V is the category of complex vector spaces,  Rep(C)  is the complex-linear category denoted by
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Comodf⁄⁄(C)  in [JS3].)  Notice that each comonoid  C  can be canonically regarded as an object of
Map(M⁄⁄;⁄⁄I)  by augmenting  C  with the counit map  ε : C aAI⁄⁄.  

This puts us in a position to apply Theorem 4.1.  We highlight only a couple of cases
which have occurred already in the literature.  If  H  is a quasi-Hopf comonoid in  V then  p :
H⁄⁄⊗ ⁄⁄H aAH,  j : I aAH  and  s : H⁄⁄°aAH  are comonoid morphisms and so commute with
the counit map;  so we are in the position of Theorem 4.1 (iv).  It follows that the forgetful (or
"fibre") V-functor  ωH : Rep(H) aAVfin is "multiplicative" [Maj] or "quasi-strong-monoidal",
meaning that it preserves the unit and tensor product up to V-natural isomorphisms but
these isomorphisms are not required to satisfy the coherence conditions for a monoidal V-
functor.

The other case is the more special case of a Hopf algebra  H.  Here the multiplication is
associative so that  φ : p⁄⁄°⁄⁄(p⁄⁄⊗ ⁄⁄1) ⇒ p⁄⁄°⁄⁄(1⁄⁄⊗ ⁄⁄p)  is an identity.  It follows that Theorem 4.1 (v)
applies, implying that  ωH : Rep(H) aAVfin is a strong monoidal V-functor.    
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