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Abstract. The Yang–Baxter equation has been studied extensively in the context of monoidal cat-
egories. The fusion equation, which appears to be the Yang–Baxter equation with a term missing,
has been studied mainly in the context of Hilbert spaces. This paper endeavours to place the fusion
equation in an appropriate categorical setting. Tricocycloids are defined; they are new mathematical
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Introduction

This note was inspired by reading [2] and [14]. I am very grateful to Dr Huu
Hung Bui for showing me those papers which already hint at connections between
the fusion equation and monoidal categories. The fusion equation as written there
certainly has five terms and so suggests a geometric interpretation as a pentagon
as for the axiom on the associativity constraint of a monoidal category. It is also
pointed out that the fusion equation is the Yang–Baxter equation with the middle
term missing on one side and that the fusion equation is somehow the more basic.
My intention here is to clarify these relationships.

It should be recalled that the equation satisfied by a Yang–Baxter operator can
be written in a form which makes sense in any monoidal category [7, 9]. However,
the corresponding version of the fusion equation has an inextricable term involving
the switch map and, instead of five terms, there are six. In this form, the fusion
equation can be expressed in any braided monoidal category. I contend that this
is the appropriate level of generality; indeed, the equation is then none other than
the 3-cocycle condition. I would say that the fusion equation is more basic in the
sense that it is an expression of an associativity constraint rather than a commu-
tativity constraint. Yet it is more sophisticated because it requires the context of a
commutativity constraint for its expression.

We begin by establishing the bijection between fusion operators and 3-cocycles,
and show how these arise from bialgebras. Some constructions with 3-cocycles are
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178 ROSS STREET

described showing, in particular, the relation to the Stasheff–Mac Lane pentagon.
An object equipped with an invertible 3-cocycle is called atricocycloid; it should
be regarded as a generalised Hopf algebra, and hence, as a generalised (quantum)
group. By considering representations and using techniques of Tannaka duality,
Hopf algebras are associated with tricocycloids. We make some speculations on
higher cocycloids. Finally, in Section 6, we construct the generic tricocycloid.

1. Definition and Examples of Fusion Operators and 3-Cocycles

We work in a fixed braided monoidal categoryV in the sense of Joyal–Street, and
we freely appeal to the coherence theorems [9]; in particular, we write as ifV were
strictly associative. We also provide proofs using string diagrams which was shown
to be rigorous in [8].

For any arrowV :A⊗A→ A⊗ A in V, we put

V12= V ⊗ 1A, V23= 1A ⊗ V, and

V13= (1A ⊗ cA,A)−1(V ⊗ 1A)(1A ⊗ cA,A): A⊗ A⊗ A→ A⊗ A⊗ A.
From the equality

we see that we also have the formula

V13= (cA,A ⊗ 1A)(1A ⊗ V )(cA,A ⊗ 1A)
−1: A⊗ A⊗ A→ A⊗ A⊗ A.

PROPOSITION 1.1.An arrow V : A ⊗ A → A ⊗ A in V satisfies the ‘fusion
equation’

V23V12= V12V13V23

if and only if the arrowv = cA,AV satisfies the ‘3-cocycle condition’

(v ⊗ 1A)(1A ⊗ cA,A)(v ⊗ 1A) = (1A ⊗ v)(v ⊗ 1A)(1A ⊗ v).
Proof.We shall use the following two identities I and II.
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The 3-cocycle condition forv = cA,AV is satisfied if and only if

(c⊗ 1)(V ⊗ 1)(1⊗ c)(c ⊗ 1)(V ⊗ 1)

= (1⊗ c)(1⊗ V )(c⊗ 1)(V ⊗ 1)(1⊗ c)(1⊗ V )
= (1⊗ c)(1⊗ V )(c⊗ 1)(1⊗ c)V13V23,

which, using equation I, is equivalent to

(c⊗ 1)(V ⊗ 1)(1⊗ c)(c ⊗ 1)(V ⊗ 1)

= (1⊗ c)(c ⊗ 1)(1⊗ c)V12V13V23

= (c⊗ 1)(1⊗ c)(c⊗ 1)V12V13V23.

Multiplying both sides by the inverse of(c ⊗ 1)(1⊗ c)(c ⊗ 1), we see that this is
equivalent to

V12V13V23= (c⊗ 1)−1(1⊗ c)−1(V ⊗ 1)(1⊗ c)(c⊗ 1)(V ⊗ 1).

Using equation II, we see that this is equivalent toV12V13V23 = V23V12, as re-
quired. 2

REMARKS. (a) If v:A ⊗ A → A ⊗ A satisfies the 3-cocycle condition and is
invertible thenv−1 satisfies the 3-cocycle condition for theinverse braiding.

(b) It is possible to define thenerveof a tricategory [6]. A braided monoidal
categoryV (or rather, its ‘double suspension’) is a tricategory62V with only one
object and only one arrow. A 3-cocyclev yields a commutative 4-simplex in62V;
that is, an element of dimension 4 of the nerve of62V. This is a reason why braided
monoidal categories are an appropriate setting for 3-cocycles.

(c) The string diagram for the 3-cocycle condition is below.

(d) Every objectA is equipped with the canonical 3-cocyclecA,A: A ⊗ A →
A⊗ A.
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180 ROSS STREET

Recall that abialgebra in V is an objectA together with a multiplication
µ: A ⊗ A → A, a unit η: I → A, a comultiplicationδ: A → A ⊗ A, and a
counitε: A→ I which satisfy the following ten identities.

The bialgebra is called aHopf algebrawhen there exists an arrowν: A → A

satisfying the two identities below.

The arrowν: A→ A is unique and is called theantipode.

PROPOSITION 1.2. If A is a bialgebra inV with the inverse braiding then the
arrow

V = (1A ⊗ µ)(δ ⊗ 1A): A⊗ A→ A⊗A
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FUSION OPERATORS AND COCYCLOIDS IN MONOIDAL CATEGORIES 181

satisfies the fusion equation inV with the original braiding. Moreover, ifA is a
Hopf algebra thenV is invertible with inverse

V −1 = (1A ⊗ µ)(1A ⊗ ν ⊗ 1A)(δ ⊗ 1A): A⊗ A→ A⊗ A.

Proof.The string diagram forV is below.

So the following calculation provides the proof thatV satisfies the fusion equation.

If A is a Hopf algebra, a short direct diagrammatic calculation shows that the
following depicts an inverse forV .

2
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Notice that, for a Hopf algebra, the antipode can be recaptured from the inverse
of the corresponding fusion operator as the value of the string diagram below.

Proposition 1.2 can be generalised somewhat. SupposeB is a bialgebra inV.
A left B-moduleis an objectA together with an actionµ: B ⊗ A → A which
is compatible with the multiplication and unit ofB in the usual way. Aright
B-comoduleis an objectA together with a coactionδ: A → A ⊗ B which is
compatible with the comultiplication and counit ofB in the usual way. AB-mixed
moduleis an objectA with a leftB-module and rightB-comodule structure related
by the commutativity of the following diagram.

PROPOSITION 1.3.If A is aB-mixed module inV with the inverse braiding then
the arrow

V = (1A ⊗ µ)(δ ⊗ 1A): A⊗ A→ A⊗A
satisfies the fusion equation inV with the original braiding. Moreover, ifB is a
Hopf algebra thenV is invertible with inverse

V −1 = (1A ⊗ µ)(1A ⊗ ν ⊗ 1A)(δ ⊗ 1A): A⊗ A→ A⊗ A.
Proof.The proof uses the same string diagrams as Proposition 1.2 with strings

labelled byA andB instead ofA only. 2

2. Constructions on 3-Cocycles

PROPOSITION 2.1. If v: A ⊗ A → A ⊗ A is an invertible arrow satisfying
the3-cocycle condition then a monoidal structure without unit is defined onV as
follows:
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the tensor product is given byX ∗ Y = A⊗X ⊗ Y ;
the associativity constrainta: (X ∗ Y ) ∗ Z→ X ∗ (Y ∗ Z) is the composite

A⊗ A⊗X ⊗ Y ⊗ Z v⊗1⊗1⊗1−−−−→ A⊗ A⊗X ⊗ Y ⊗Z
1⊗c⊗1⊗1−−−−→ A⊗X ⊗A⊗ Y ⊗Z.

Proof. We must show that the proposed associativity constraint satisfies the
usual pentagon condition. This amounts to commutativity of the outside of the
diagram below. The top left region in the diagram commutes by the 3-cocycle
condition forv; the other regions can be seen to commute by using string diagrams
in the braided monoidal category.

2

REMARKS. (a) In the setting of Proposition 2.1, suppose we have an objectA∗
and an arrown: I → A⊗ A∗ such that the following triangle commutes.

ThenA∗ acts as a ‘lax’ unit for the tensor product∗ in the sense that we have
natural transformations

l = n⊗ 1X: X→ A∗ ∗X, r = (1A ⊗ c)(n⊗ 1X): X→ X ∗A∗
such that the following triangle commutes.

In particular, ifn is invertible, this defines a monoidal structure onV with tensor
product∗.

(b) Let I denote theV-category with one object 0 andV-valued homI(0,0)
equal to the unit I for the tensor product ofV. One interpretation of Proposition 2.1
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184 ROSS STREET

is that an invertible 3-cocyclev: A⊗A→ A⊗A provides a nonunital promonoidal
structure onI. Then the new nonunital tensor product of Proposition 2.1 is the
convolution structure onV = VI [3]. Moreover, the tensor product of promonoidal
structures from [4, p. 313] suggests the following ‘bicrossed product’ (compare
[14, Proposition 5.2]).

PROPOSITION 2.2. Provided V is symmetric, ifv: A ⊗ A → A ⊗ A and
w: B ⊗ B → B ⊗ B satisfy the3-cocycle condition then so does the arrowu:
A ⊗ B ⊗ A ⊗ B → A ⊗ B ⊗ A ⊗ B defined by commutativity of the following
square.

3. Tricocycloids and Their Modules

DEFINITION. A tricocycloid is an objectA of V together with an invertible arrow
v: A⊗A→ A⊗A satisfying the 3-cocycle condition. We denote a tricocycloid by
its underlying objectA and use the same letterv for the 3-cocycle unless confusion
seems possible.

We can regard tricocycloids as generalised Hopf algebras (Proposition 1.2). It
therefore makes sense to consider the possibility of modules (or representations)
over tricocycloids.

DEFINITION. SupposeA is a tricocycloid. AnA-moduleis an objectM of V
together with an invertible arroww: A⊗M →M ⊗ A satisfying the condition

(w ⊗ 1A)(1A ⊗ cA,M)(v ⊗ 1M) = (1M ⊗ v)(w ⊗ 1A)(1A ⊗w).

A morphismof A-modules is an arrowf : M → N such that(f ⊗ 1A)w =
w(1A ⊗ f ). We denote the category ofA-modules by Mod(A). Dually, anA-
comoduleis an objectP of V together with an invertible arroww: P⊗A→ A⊗P
satisfying the condition

(v ⊗ 1P )(1A ⊗ cP,A)(w ⊗ 1A) = (1A ⊗w)(w ⊗ 1A)(1P ⊗ v).
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FUSION OPERATORS AND COCYCLOIDS IN MONOIDAL CATEGORIES 185

There is a category Comod(A) of A-comodules.

PROPOSITION 3.1.SupposeA is a Hopf algebra inV with the inverse braid-
ing regarded as a tricocycloid via Propositions1.1 and 1.2. Each leftA-module
(M,µ: A⊗M → M) becomes a module over the tricocycloidA when equipped
with the arrow

w = cA,M(1A ⊗ µ)(δ ⊗ 1M): A⊗M →M ⊗ A.

Each rightA-comodule(P, δ: P → P ⊗ A) becomes a comodule over the trico-
cycloid A when equipped with the arrow

w = cP,A(1P ⊗ µ)(δ ⊗ 1A): P ⊗ A→ A⊗ P.

Proof. PutW = (1A ⊗ µ)(δ ⊗ 1M) and proceed as in the proof of Proposition
1.2 to show that

W23V12= V12W13W23.

(Appropriate occurrences ofA need to be replaced byM.) Then proceed as in the
proof of Proposition 1.1 to show thatw = cA,MW satisfies the module condition.
The comodule case is similar. 2

THEOREM 3.2. For any tricocycloidA, there is a canonical monoidal structure
on the categoryMod(A) ofA-modules such that the forgetful functorMod(A)→
V preserves the tensor product. Explicitly, ifM,M ′ areA-modules thenM ⊗M ′
is canonically anA-module when equipped with the composite arrow

A⊗M ⊗M ′ w⊗1−−−−→M ⊗ A⊗M ′ 1⊗w′−−−−→M ⊗M ′ ⊗ A.

If M is anA-module whose underlying object has a right dualM∨ in V thenM has
a right dual inMod(A)whose underlying object isM∨ and whose module structure
is provided by the matew: A⊗M∨ →M∨ ⊗ A ofw−1: M ⊗ A→ A⊗M.
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186 ROSS STREET

Proof. The following calculation shows that the displayed arrow satisfies the
module condition.

To see thatw is anA-module structure, take the inverse of the module condition
for w; that is,

(v−1⊗ 1)(1⊗ c−1)(w−1⊗ 1) = (1⊗w−1)(w−1⊗ 1)(1⊗ v−1).

This, together with the diagram calculus for duals, gives the following equalities.

Substituting in the diagram forw, we obtain the equality:

which gives the equation

(1⊗ v−1)(w ⊗ 1)(1⊗ c) = (w ⊗ 1)(1⊗w)(v−1⊗ 1),

and hence the desired equation

(w ⊗ 1)(1⊗ c)(v ⊗ 1) = (1⊗ v)(w ⊗ 1)(1⊗w).
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The remaining details are even more straightforward. 2

Let Mod(A)r denote the full subcategory of Mod(A) consisting of thoseA-
modules whose underlying object has a right dual inV. Let Comod(A)l denote the
full subcategory of thoseA-comodules whose underlying objectP has a left dual
P ∗ in V.

COROLLARY 3.3. For any tricocycloidA, the categoryMod(A)r (respectively,
Comod(A)l) is right- (respectively, left-) autonomous monoidal and the underly-
ing functorUA: Mod(A)r → V (respectively,U∧A : Comod(A)l → V) preserves
tensor product.

This puts us in a position to apply Tannaka duality [10]. With appropriate
assumptions onV, we obtain Hopf algebras

S(A) = End∨(UA), S∧(A) = End∨(U∧A)

which should be compared with the Hopf algebrasS, S∧ of [14, Theorem 3.3].

COROLLARY 3.4. For any tricocycloidA in the categoryV = Vect, the monoidal
categoryMod(A)r (respectively,Comod(A)l) is equivalent to the monoidal cate-
goryComod(S(A))f (respectively,Comod(S∧(A))f ) of finite dimensional comod-
ules over the Hopf algebraS(A) (respectively,S∧(A)).

Proof. SinceA⊗- preserves colimits and is left exact, it is easy to see that
Mod(A)r is Abelian andUA is exact. ClearlyUA is faithful. So the representation
theorem [10, Section 7, Theorem 3] applies. 2

There is an interesting variant of Theorem 3.2. As mentioned in the remark
of Section 1, each objectA of the braided monoidal categoryV becomes a tri-
cocycloid by equipping it with the braiding isomorphismcA,A. We might consider
objects ofV which are modules for all these tricocycloids simultaneously in a
natural way. Such objects can be thought of as modules for the bialgebra (used in
[11, 12])

F =
∫ A

A⊗ A∨

even when the coend and the duals do not exist inV. More precisely, we define a
monoidal categoryFV whose objects are pairs(M,w) whereM is an object ofV
andw is a family of invertible arrows

wA: A⊗M ∼−→M ⊗ A
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such that the following equation holds.

An arrowf : (M,w)→ (M ′, w′) in FV is an arrowf : M →M ′ in V such that

w′A(1A ⊗ f ) = (f ⊗ 1A)wA

for all A ∈ V. The tensor product is given by

(M,w)⊗ (M ′, w′) = (M ⊗M ′, (1M ⊗w′A)(wA ⊗ 1M ′)).

PROPOSITION 3.5.For each braided monoidal categoryV, there is a monoidal
categoryFV as defined above. The forgetful functorFV → V is monoidal and has
a monoidal section takingX ∈ V to (X, c−,X) ∈ FV . An object(M,w) ∈ FV has
a right dual if and only ifM ∈ V has a right dual.

Proof.The same string diagrams as in the proof of Theorem 3.2 can be used.2

4. Abelian Tricocycloids

This short section is motivated by the cohomology of Abelian groups [5, 9, Section
3] and by the notion of symmetry [3, p. 23] (or more precisely, braiding [9, Section
5]) for a promonoidal category.

DEFINITION. An Abelian tricocycloidis a triplet (A, v, γ ) where (A, v) is a
tricocycloid andγ : A → A is an invertible arrow such that the following two
diagrams commute.

PROPOSITION 4.1.If (A, v, γ ) is an Abelian tricocycloid then a braiding

kX,Y : X ∗ Y → Y ∗X
for the unitless monoidal structure of Proposition2.1 is defined by the composite

A⊗X ⊗ Y γ⊗1X⊗1Y−−−−→ A⊗X ⊗ Y 1A⊗cX,Y−−−−→ A⊗ Y ⊗X.
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5. Speculations on Higher Cocycloids

A nonunital coalgebra in a monoidal categoryV is precisely an objectA together
with an arrowδ: A → A ⊗ A which is coassociative. By referring to the non-
Abelian cocycle conditions as expressed in [15], we see that coassociativity is
precisely the 2-cocycle condition.

Recall that for a tricocycloid we asked that the 3-cocycle should be invertible.
Invertibility can be regarded as amounting to an arrow in the opposite direction
also satisfying a dual 3-cocycle condition together with a compatibility condition
with the original 3-cocycle. I propose that the correct notion ofbicocycloidis pre-
cisely a nonunital-or-counital bialgebra such that the arrowV of Proposition 1.2 is
invertible. That is, rather than ask for the unlikely requirement thatδ: A→ A⊗A
should be invertible, we ask for an arrowµ: A⊗A→ A in the opposite direction
which satisfies the dual 2-cocycle condition (associativity) and some compatibility
requirements withδ.

Now suppose thatV is a symmetric monoidal category (so that we can suspend
V as many times as we wish). By referring to the diagram for a 5-simplex [15], we
see that the 4-cocycle conditionon an arrowt : A⊗A→ A⊗A⊗A is the equation

(t ⊗ 1A ⊗ 1A ⊗ 1A)(1A ⊗ t ⊗ 1A)(1A ⊗ 1A ⊗ cA,A)(t ⊗ 1A)

= (1A ⊗ 1A ⊗ cA,A ⊗ 1A ⊗ 1A)(1A ⊗ 1A ⊗ 1A ⊗ t)(1A ⊗ t ⊗ 1A)

(cA,A ⊗ 1A ⊗ 1A)(1A ⊗ t).
The string diagram for this equation is as follows: it occurred in the simplicial case
of the ‘Pascal triangle’ of [1].

PROPOSITION 5.1.SupposeV is symmetric monoidal. For any bialgebraA in
V, the arrow

t = c321(1A ⊗ µ⊗ 1A)(δ ⊗ δ): A⊗ A→ A⊗ A⊗ A,
wherec321 = (cA,A ⊗ 1A)(1A ⊗ cA,A)(cA,A ⊗ 1A): A ⊗ A ⊗ A → A ⊗ A ⊗ A,
satisfies the4-cocycle condition.

A tetracocycloidshould consist of an objectA, an arrowt : A ⊗ A → A ⊗
A⊗ A satisfying the 4-cocycle condition, and an arrowt̄ : A⊗ A⊗ A→ A⊗ A
satisfying the dual 4-cocycle condition, subject to some compatibility condition
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which we shall not explore at this time. We would define anA-comodule to consist
of an objectM equipped with an arrowt : M ⊗ A→ A⊗M ⊗M satisfying the
string version of the 4-cocycle condition with strings appropriately labelled withA

andM.

PROPOSITION 5.2. If (M, t) and (N, t ′) areA-comodules for a tetracocycloid
A then so isM ⊗N equipped with the following composite arrow.

M ⊗N ⊗ A 1⊗t ′−−−−→ M ⊗ A⊗N ⊗N t⊗1−−−−→ A⊗M ⊗M ⊗N ⊗N
1⊗1⊗c⊗1−−−−→ A⊗M ⊗N ⊗M ⊗N

We expect to be able to characterize those comodules with duals for the ten-
sor product of comodules provided by Proposition 5.2 and then to apply Tannaka
duality to obtain a Hopf algebra from the tetracocycloidA.

6. Fusion Groups

Recall [9] that the braid categoryB is the free monoidal category containing an
object bearing a Yang–Baxter operator. The braid category is the disjoint union
of the braid groupsBn, n > 0. In this section we shall describe the free braided
monoidal categoryFuscontaining a tricocycloid.

LetFusn denote the group generated by symbolsy1, y2, . . . , yn−1 andv1, v2, . . . ,

vn−1 subject to the relations

yiyi+1yi = yi+1yiyi+1, vivi+1vi = vi+1yivi+1,

viyi+1yi = yi+1yivi+1, yiyi+1vi = vi+1yiyi+1,

yiyj = yjyi, vivj = vjvi, yivj = vjyi,
for j−i > 1. There is a canonical homomorphismφn: Bn→ Fusn taking the braid
which passes theith string over the(i + 1)th string to the generatoryi . Let Fusbe
the groupoid obtained as the disjoint union of the groupsFusn, n > 0: the objects
are the natural numbers andFus(m, n) is empty unlessm = n in which case it is
the groupFusn. There is a canonical strict monoidal structure⊕: Fus×Fus→ Fus
on the categoryFusgiven on objects by additionm⊕ n = m+ n and determined
on arrows byyi ⊕ 1n = yi, vi ⊕ 1n = vi, 1m⊕ yi = ym+i , 1m ⊕ vi = vm+i . There
is a strict monoidal functorφ: B → Fus which is the identity on objects and is
given by the homomorphismsφn on arrows. Indeed,Fusadmits a unique braiding
such thatφ: B→ Fus is braided. Furthermore,v1 is a 3-cocycle on the object 1 of
Fus.

PROPOSITION 6.1. Supposey, v: A ⊗ A → A ⊗ A are invertible arrows in
a strict monoidal categoryV such thaty is a Yang–Baxter-operator andv is a
3-cocycle(that is, the equations

(1⊗ y)(y ⊗ 1)(1⊗ y) = (y ⊗ 1)(1⊗ y)(y ⊗ 1),
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(1⊗ v)(y ⊗ 1)(1⊗ v) = (v ⊗ 1)(1⊗ v)(v ⊗ 1)

hold). Then there exists a unique strict monoidal functorF : Fus→ V such that

F1= A, Fy1 = y and Fv1 = v.
It would be interesting to know whether there is a satisfactory geometric model

of Fus.
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