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Abstract. The Yang—Baxter equation has been studied extensively in the context of monoidal cat-
egories. The fusion equation, which appears to be the Yang—Baxter equation with a term missing,
has been studied mainly in the context of Hilbert spaces. This paper endeavours to place the fusion
equation in an appropriate categorical setting. Tricocycloids are defined; they are new mathematical
structures closely related to Hopf algebras.
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Introduction

This note was inspired by reading [2] and [14]. | am very grateful to Dr Huu
Hung Bui for showing me those papers which already hint at connections between
the fusion equation and monoidal categories. The fusion equation as written there
certainly has five terms and so suggests a geometric interpretation as a pentagon
as for the axiom on the associativity constraint of a monoidal category. It is also
pointed out that the fusion equation is the Yang—Baxter equation with the middle
term missing on one side and that the fusion equation is somehow the more basic.
My intention here is to clarify these relationships.

It should be recalled that the equation satisfied by a Yang—Baxter operator can
be written in a form which makes sense in any monoidal category [7, 9]. However,
the corresponding version of the fusion equation has an inextricable term involving
the switch map and, instead of five terms, there are six. In this form, the fusion
equation can be expressed in any braided monoidal category. | contend that this
is the appropriate level of generality; indeed, the equation is then none other than
the 3-cocycle condition. | would say that the fusion equation is more basic in the
sense that it is an expression of an associativity constraint rather than a commu-
tativity constraint. Yet it is more sophisticated because it requires the context of a
commutativity constraint for its expression.

We begin by establishing the bijection between fusion operators and 3-cocycles,
and show how these arise from bialgebras. Some constructions with 3-cocycles are
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described showing, in particular, the relation to the Stasheff-Mac Lane pentagon.
An object equipped with an invertible 3-cocycle is calletieocycloid it should

be regarded as a generalised Hopf algebra, and hence, as a generalised (quantum)
group. By considering representations and using techniques of Tannaka duality,
Hopf algebras are associated with tricocycloids. We make some speculations on
higher cocycloids. Finally, in Section 6, we construct the generic tricocycloid.

1. Definition and Examples of Fusion Operators and 3-Cocycles

We work in a fixed braided monoidal categd¥yin the sense of Joyal-Street, and
we freely appeal to the coherence theorems [9]; in particular, we writélag/ére
strictly associative. We also provide proofs using string diagrams which was shown
to be rigorous in [8].

ForanyarronV:A® A — A® Ain 'V, we put

Vo=V ® 1,4, Vos=1,®V, and
Via= (14 ®caa) NV OLDAa®can): ARARA > AR AR A.

From the equality

2K

we see that we also have the formula
Vis=(caa®@1)AA @ V)(caa®1) H ARARA > AQARA.

PROPOSITION 1.1.AnarrowV: A® A — A ® A in 'V satisfies the ‘fusion
equation’

Va3Vio = V12Vi3Vas
if and only if the arrowv = ¢4 4V satisfies the3-cocycle condition’
(W®1)(Ls ®can)(v®1y) = (14 ®@v)(v® 1) (14 Q V).
Proof. We shall use the following two identities | and 1.

X %
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The 3-cocycle condition fov = c4 4V is satisfied if and only if

Cc@DVRIDARNCERD(VRD
=1®)AaV)(cdah(VehleolaV)
=190 V)(c®@DA®)VisVas,

which, using equation I, is equivalent to

CcDHVRIDVARA) RV
= (1 ® C) (C ® 1)(1 ® C) V12V13V23
=(c®D(A®c)(c®1ViaVizVas.

Multiplying both sides by the inverse ¢f ® 1)(1 ® ¢)(c ® 1), we see that this is
equivalent to

VioV1zVaz = (c @ D' (1@ ) (VDA ®c)c @ D(V ® ).

Using equation Il, we see that this is equivalentWtgVi3Vo3 = Vo3Viy, as re-
quired. O

REMARKS. (a) If1zA ® A — A ® A satisfies the 3-cocycle condition and is
invertible therw ! satisfies the 3-cocycle condition for threerse braiding

(b) It is possible to define theerveof a tricategory [6]. A braided monoidal
categoryV (or rather, its ‘double suspension’) is a tricatega@ryV with only one
object and only one arrow. A 3-cocydeyields a commutative 4-simplex B2V,
that is, an element of dimension 4 of the nerv&dfV. This is a reason why braided
monoidal categories are an appropriate setting for 3-cocycles.

(c) The string diagram for the 3-cocycle condition is below.

(d) Every objectA is equipped with the canonical 3-cocyelgs: A ® A —
AR A.
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Recall that abialgebrain V is an objectA together with a multiplication
u. A® A - A,aunity: I — A, a comultiplications: A —- A® A, and a
counite: A — I which satisfy the following ten identities.

AA Y
KA Y1y

A1t Y-l

The bialgebra is called Bopf algebrawhen there exists an arrom A — A
satisfying the two identities below.

The arrowv: A — A is unigue and is called themtipode.

PROPOSITION 1.2.1f A is a bialgebra inV with the inverse braiding then the
arrow
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satisfies the fusion equation W with the original braiding. Moreover, ifA is a
Hopf algebra therV is invertible with inverse

V3i=(ewlievel)0el): AQA - AR A.

Proof. The string diagram fo¥ is below.

So the following calculation provides the proof thasatisfies the fusion equation.

O,
ONO, O,

& & «

If A is a Hopf algebra, a short direct diagrammatic calculation shows that the
following depicts an inverse for .
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Notice that, for a Hopf algebra, the antipode can be recaptured from the inverse
of the corresponding fusion operator as the value of the string diagram below.

Proposition 1.2 can be generalised somewhat. Suppdsea bialgebra irv.
A left B-moduleis an objectA together with an actiopw: B ® A — A which
is compatible with the multiplication and unit & in the usual way. Aright
B-comoduleis an objectA together with a coactiod: A — A ® B which is
compatible with the comultiplication and counit Bfin the usual way. AB-mixed
moduleis an objectA with a left B-module and righBB-comodule structure related
by the commutativity of the following diagram.

5;;\\\ ///ﬁZM

B®BR®A®B———>BRA®B®B
1®ec®1

PROPOSITION 1.3.1f A is a B-mixed module ir¥ with the inverse braiding then
the arrow

V=110 uw0l®1): ARA—>ARA

satisfies the fusion equation i with the original braiding. Moreover, iB is a
Hopf algebra therV is invertible with inverse

V3ieWonli@v®l)e1): ARA — AR A.

Proof. The proof uses the same string diagrams as Proposition 1.2 with strings
labelled byA and B instead ofA only. 0

2. Constructions on 3-Cocycles

PROPOSITION2.1.1f v: AQ A — A ® A is an invertible arrow satisfying
the 3-cocycle condition then a monoidal structure without unit is define@ as
follows
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the tensor productis given by« Y =A@ X Q Y;
the associativity constraint; (X xY) * Z — X % (Y x Z) is the composite

119181

ARARXRYRZ —— ARARXRYRZ

1®C®l®l

AQXQRAQRY R Z.

Proof. We must show that the proposed associativity constraint satisfies the
usual pentagon condition. This amounts to commutativity of the outside of the
diagram below. The top left region in the diagram commutes by the 3-cocycle
condition forv; the other regions can be seen to commute by using string diagrams
in the braided monoidal category.

1evelslelel 181® c 18181
AGABRARURBXRYRZ—>ARAQAQURXQYR®Z — > AQAQURARXRY®Z

v ®10l81e1el velel el@l@\ velelslelsl
ABABAOUSXEYOZj610cotslol

ARARARURXRYR®Z ARAQRURARXR®RY®Z
\16903181@1@1 1evelelelsl . le161
1oc, ouex®®! A®ABA®UOXOY®Z &hen,u®1®1® 1ecelslelsl
ARARUO®XQRAQRYR®Z v®1®1®\ ARURARARXR®Y®Z
v elelelelsl ARARAQRURXR®YR®Z 1®1evelslsl

W@l@l@l
AQARURXQARY®Z ARURA®ARX®Y®Z
1ecelglslel

ARUB®AB®X®ABYR®Z lelelecelel
O

REMARKS. (a) In the setting of Proposition 2.1, suppose we have an olject
and an arrow: I — A ® A* such that the following triangle commutes.

A®A®A A®AQ®A

IN 1®en
A

Then A* acts as a ‘lax’ unit for the tensor produetin the sense that we have
natural transformations

l=n®ly: X - A" x X, r=14Q0c0)n®1x): X - X x A"
such that the following triangle commutes.

(X*A )*YéX*(A *Y)

In particular, ifn is invertible, this defines a monoidal structure Brwith tensor
products.

(b) Let 4 denote theV-category with one object 0 arfd-valued hom{ (0, 0)
equal to the unit | for the tensor productBf One interpretation of Proposition 2.1
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is that an invertible 3-cocycle A® A — A® A provides a nonunital promonoidal
structure onf. Then the new nonunital tensor product of Proposition 2.1 is the
convolution structure ov = V! [3]. Moreover, the tensor product of promonoidal
structures from [4, p. 313] suggests the following ‘bicrossed product’ (compare
[14, Proposition 5.2]).

PROPOSITION 2.2. Provided V is symmetric, if: A®@ A — A ® A and
w: B® B — B ® B satisfy the3-cocycle condition then so does the arraw
ARBR®A®B > A® B® A® B defined by commutativity of the following

square.
A®BR®A®B — A®B®A®B
1ecel 1®ce®1
A®A®B®B yow A®RA®B®B

3. Tricocycloids and Their Modules

DEFINITION. A tricocycloidis an objectA of 'V together with an invertible arrow
v: AQ A — A® A satisfying the 3-cocycle condition. We denote a tricocycloid by
its underlying objecd and use the same lettefor the 3-cocycle unless confusion
seems possible.

We can regard tricocycloids as generalised Hopf algebras (Proposition 1.2). It
therefore makes sense to consider the possibility of modules (or representations)
over tricocycloids.

DEFINITION. Supposed is a tricocycloid. AnA-moduleis an objectM of V
together with an invertible arrow: A @ M — M ® A satisfying the condition

wWRLNAA®camv®1y) = Iy @u)(w®14)(1s ® w).

>

A morphismof A-modules is an arrowf: M — N such that(f ® 1,)w =
w(ls ® f). We denote the category of-modules by ModA). Dually, an A-
comodules an objectP of V together with an invertible arrow: PQA — AQP
satisfying the condition

W®1p)Ay ®cpA)(w®1y) =14 @w)(w® LA V).
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There is a category Com@d) of A-comodules.

PROPOSITION 3.1. Supposea is a Hopf algebra inV with the inverse braid-
ing regarded as a tricocycloid via Propositiorisl and 1.2. Each leftA-module
(M, u: A® M — M) becomes a module over the tricocycleidvhen equipped
with the arrow

W=canula@uE1ly) AQM - MQA.

Each rightA-comodule(P, §: P — P ® A) becomes a comodule over the trico-
cycloid A when equipped with the arrow

Ww=cpa(lp@u)d®14): PRA—-> AQP.

Proof. PutW = (1, ® 1)(8 ® 1,,) and proceed as in the proof of Proposition
1.2 to show that

Wo3Vio = VioWi3Woa.

(Appropriate occurrences of need to be replaced by .) Then proceed as in the
proof of Proposition 1.1 to show that = ¢, , W satisfies the module condition.
The comodule case is similar. O

THEOREM 3.2. For any tricocycloidA, there is a canonical monoidal structure
on the categorMod(A) of A-modules such that the forgetful functdiod(A) —

V preserves the tensor product. ExplicitlyMf, M’ are A-modules therd @ M’

is canonically anA-module when equipped with the composite arrow

AMeM % MoAoM 2 Mo M ® A.

If M is an A-module whose underlying object has a right dMal in 'V thenM has
aright dual inMod(A) whose underlying object i~ and whose module structure
is provided by the mat@: A@ MY - MV @ Aofw™ M®A > A® M.
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Proof. The following calculation shows that the displayed arrow satisfies the
module condition.

To see thaw is an A-module structure, take the inverse of the module condition
for w; that is,

WA Hw e =Auw Hw e hlev™).

This, together with the diagram calculus for duals, gives the following equalities.

which gives the equation

1evHwehleg=wehlewmw '®l),
and hence the desired equation

@WRDHA®)WRD =1’ DH(1RwW).
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The remaining details are even more straightforward. O

Let Mod(A), denote the full subcategory of Madl) consisting of thosed-
modules whose underlying object has a right duabir,et ComodA); denote the
full subcategory of thosd-comodules whose underlying objethas a left dual
P*iny.

COROLLARY 3.3. For any tricocycloidA, the categoryMod(A), (respectively,
ComodA),) is right- (respectively, lef)-autonomous monoidal and the underly-
ing functorU,: Mod(A), — 'V (respectivelyU;: ComodA), — V) preserves
tensor product.

This puts us in a position to apply Tannaka duality [10]. With appropriate
assumptions of¥, we obtain Hopf algebras

8(A) = End’'(U,), $"(A) = End"(U})

which should be compared with the Hopf algebfasS” of [14, Theorem 3.3].

COROLLARY 3.4. For any tricocycloidA in the categoryy = Vect, the monoidal
categoryMod(A), (respectivelyComodA),) is equivalent to the monoidal cate-
gory Comod 4(A)) ; (respectivelyComod 4" (A)) ;) of finite dimensional comod-
ules over the Hopf algebr&(A) (respectivelys”(A)).

Proof. Since A®- preserves colimits and is left exact, it is easy to see that
Mod(A), is Abelian andlU,4 is exact. Clearlyl/, is faithful. So the representation
theorem [10, Section 7, Theorem 3] applies. O

There is an interesting variant of Theorem 3.2. As mentioned in the remark
of Section 1, each object of the braided monoidal categofiy becomes a tri-
cocycloid by equipping it with the braiding isomorphism 4. We might consider
objects of vV which are modules for all these tricocycloids simultaneously in a
natural way. Such objects can be thought of as modules for the bialgebra (used in
[11, 12])

A
F:/ ARQAY

even when the coend and the duals do not exist.iMore precisely, we define a
monoidal categoryFy whose objects are paitd/, w) whereM is an object ofy
andw is a family of invertible arrows

Wi AQM —>MQ®A
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such that the following equation holds.

Anarrow f: (M, w) - (M',w’) in Fy is an arrowf: M — M’ in 'V such that
wy(1a ® f) = (f ® Lo)wy

forall A € V. The tensor product is given by
(M, w)® (M',w') = (MM, (1y ® wy)(wa ® 1y)).

PROPOSITION 3.5.For each braided monoidal categofy, there is a monoidal
categoryFv as defined above. The forgetful func#®s — V is monoidal and has
a monoidal section taking' € V to (X, c_ x) € Fv. An object(M, w) € ¥y has
a right dual if and only ifM € 'V has a right dual.
Proof. The same string diagrams as in the proof of Theorem 3.2 can bemised.

4. Abelian Tricocycloids

This short section is motivated by the cohomology of Abelian groups [5, 9, Section
3] and by the notion of symmetry [3, p. 23] (or more precisely, braiding [9, Section
5]) for a promonoidal category.

DEFINITION. An Abelian tricocycloidis a triplet (A, v, y) where (A, v) is a
tricocycloid andy: A — A is an invertible arrow such that the following two
diagrams commute.

1@ @1
v/'A®A-—Y>A®A\l yA@A—L———>A®A
A®K A®A A®K A®A

Y®N /;1 1% /;Y
A®A—v—»A®A A®AT>A®A

PROPOSITION 4.1.1f (A, v, ) is an Abelian tricocycloid then a braiding
kxy: XxY —>YxX

for the unitless monoidal structure of Propositigri is defined by the composite

AXeY 2 Ao x oy 22 Ay ®X.
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5. Speculations on Higher Cocycloids

A nonunital coalgebra in a monoidal categddyis precisely an object together

with an arrowé: A — A ® A which is coassociative. By referring to the non-
Abelian cocycle conditions as expressed in [15], we see that coassociativity is
precisely the Zocycle condition.

Recall that for a tricocycloid we asked that the 3-cocycle should be invertible.
Invertibility can be regarded as amounting to an arrow in the opposite direction
also satisfying a dual 3-cocycle condition together with a compatibility condition
with the original 3-cocycle. | propose that the correct notiobiobcycloidis pre-
cisely a nonunital-or-counital bialgebra such that the arvoaf Proposition 1.2 is
invertible. That is, rather than ask for the unlikely requirementdhat —- A ® A
should be invertible, we ask for an arrgww A ® A — A in the opposite direction
which satisfies the dual 2-cocycle condition (associativity) and some compatibility
requirements witha.

Now suppose thaV is a symmetric monoidal category (so that we can suspend
V as many times as we wish). By referring to the diagram for a 5-simplex [15], we
see that the4ocycle conditioron an arrow: AQA — ARQ AR A is the equation

LR ®1NAARtRLNAL® 1y ®caa)t ®1y)
=(li®1i®csa®14a®@ 1)L R®11 1, @1)(1s @1 ® 1y)
(ca,a @14 LA, ®1).

The string diagram for this equation is as follows: it occurred in the simplicial case
of the ‘Pascal triangle’ of [1].

PROPOSITION 5.1. SupposeV is symmetric monoidal. For any bialgebr& in
Vv, the arrow

r=c301au®1)BR8): ARA > ARARA,

WhereC321 = (CA,A & 1A)(1A & CA,A)(CA,A & 1A): ARARA - ARAR A,
satisfies the&-cocycle condition.

A tetracocycloidshould consist of an object, an arrows: A A — A ®
A ® A satisfying the 4-cocycle condition, andanarrowVA @ AQ A —- AQ® A
satisfying the dual 4-cocycle condition, subject to some compatibility condition
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which we shall not explore at this time. We would definedanomodule to consist
of an objectM equipped with an arrow. M ® A — A ® M ® M satisfying the
string version of the 4-cocycle condition with strings appropriately labelled Avith
andM.

PROPOSITION5.2.1f (M, t) and (N, t') are A-comodules for a tetracocycloid
A then so isM ® N equipped with the following composite arrow.

% MASNON -2 AQMOMON®N

AQMRINRIM N

MON®A
191®c®1
—_

We expect to be able to characterize those comodules with duals for the ten-
sor product of comodules provided by Proposition 5.2 and then to apply Tannaka
duality to obtain a Hopf algebra from the tetracocycldid

6. Fusion Groups

Recall [9] that the braid categoly is the free monoidal category containing an
object bearing a Yang—Baxter operator. The braid category is the disjoint union
of the braid group®8,, n > 0. In this section we shall describe the free braided
monoidal categoryus containing a tricocycloid.

LetFus, denote the group generated by symbalsy,, ..., y,_1 andvy, vo, .. .,
v,_1 Subject to the relations

YiYi+1Yi = Yi+1YiYi+1, ViVi+1Vi = Vi4+1YiVi+1,
ViYi+1Yi = Yi+1)iVi+1, YiVi41Vi = Vit1YiYi+1,
Yiy; =YjYi, ViVj =v;V;, YiVj =1V;y;,

for j—i > 1. There is a canonical homomorphigm B, — Fus, taking the braid
which passes thah string over thdi + 1)th string to the generator. Let Fusbe
the groupoid obtained as the disjoint union of the grops,, n > 0: the objects
are the natural numbers akdis(m, n) is empty unless = n in which case it is
the groupFus,. There is a canonical strict monoidal structéreFusx Fus — Fus
on the categoryus given on objects by additiom & n = m + n and determined
onarrows by, ®1, =y, vy ®1, =v;, L, DYy = Ymyi» Ln ®v; = v,,4;. There
is a strict monoidal functop: B — Fus which is the identity on objects and is
given by the homomorphisn#, on arrows. Indeed;us admits a unique braiding
such thatp: B — Fusis braided. Furthermorey is a 3-cocycle on the object 1 of
Fus.

PROPOSITION 6.1. Supposey,v: A® A — A ® A are invertible arrows in
a strict monoidal categoryy such thaty is a Yang—Baxter-operator and is a
3-cocycle(that is, the equations

13y ehAey =0 nN(el),
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1y RDIARY)=0veHARv)(ve 1l

hold). Then there exists a unique strict monoidal funckorFus — V such that
Fl1=A, Fy,=y and Fvi=v.

It would be interesting to know whether there is a satisfactory geometric model
of Fus.
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