
















































































Categorical structures 

subject to the following commutativity condition: 
(M) 

</>a o T(a) 
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EXAMPLE 12. Each 2-cell w: K => >.: k -t h in a bicategory B yields a modification 

whose component at a E B is the natural transformation given by horizontal composition 
on the left with the 2-cell w. 

Modifications m: (} -t </>. n: </> -t 1/1 can be composed to yield a modification 
m . n : 8 -t '1/J using pointwise vertical composition in X. Transformations (}: S => T, 
(}': T => U can be composed to yield a transfo1mation e o (}': S => U by putting 

and 

( 
, ( ) 

B 0 B )a = - 1 loll' ; 
(T(a) o B/, ) :____:_; Ba o o U(a)) o U(a) 

this composition is not strictly associative, but the associativity and identity constraints of 
X yield associativity and identity constrain ts here. This describes a bicategory Lax (B, X) 
whose objects are lax functors, whose arrows are transformations, and whose 2-cells 
are modifications. Write Psd(B, X) for the subbicategory of Lax(B, X) consisting of 
the pseudo functors T: B -t X, the strong transformations between these, and the 
modifications between these. Notice that Lax (B, X) and Psd(B, X) are 2-categories if X 
is a 2-category (there is no need for B to be). 

EXERCISE. Show that a lax functor 1 -t Lax(l , X) amounts to a pair of monads on the 
same object of X together with a distributive law .between the monads (see Section 5). 

For each bicategory B, there is a pseudo functor 

Y: B -t Psd(B, Cat)0 P 
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the letter "Y" is for Yoneda since this is a generalization of the Yoneda embedding 
of categories. The value of Y at a 2-cell w: K => >.: k --+ h in B is the displayed 
modification in Exercise 11. The data (LFa), (LFb) for Y are supplied by the identity 
and associativity constraints of B. 

For any pseudo functor T: B --+ Cat, we shall describe a strong transformation 

e: Psd(B, Cat)(Y, T) => T: B--+ Cat. 

For each k E B, the functor ek: Psd(B, Cat)(H1c , T) --+ T (k) takes an arrow m: 8--+ ¢ 
in the category Psd(B, Cat)(Hk , T ) to the arrow mk( l 1c): 8k(l1c) --+ ¢1c( l 1c) in the 
category T(k). For each K: k--+ h in B, the natural isomorphism 

whose component at the object 8 of Psd(B, Cat) (H1c, T) is the isomorphism 

PROPOSITION 9.1 (Bicategorical Yoneda Lemma [S3]). For each object k of the bicate
gory B and each pseudo functor T: B --+ Cat, the functor 

is an equivalence of categories. 

An arrow a: a --+ b in a bicategory B is called an equivalence when there exist an 

arrow {3: b --+ a and invertible 2-cells a o f3 => la, lb => f3 o a; write a : a ~ b. For 
example, using the axiom of choice, one can see that an arrow f: A --+ B in Cat is an 
equivalence if and only if the functor f: A--+ B is full, faithful and each object b of B 
is isomorphic to an object of the form f (a) for some a E A. As another example, an 
arrow 8 in Psd(B, X) is an equ ivalence if and only if each arrow Ba is an equivalence 
in X. 

Hence, the bicategorical Yoneda lemma states that e is an equivalence in the bicat
egory Psd(B, Cat). Notice that Y and hence Psd(B, Cat)(Y, T ) are 2-fu nctors if B is 
a 2-category, so we obtain the following result which is an example of a "coherence 
theorem". 

COROLLARY 9.2. If B is a 2-category then every pseudo functor T: B --+ Cat is equiva
lent, in the 2-category Psd(B, Cat), to a 2-functor. 

A lax functor T: B --+ X is called a biequivalence when it is a pseudo functor, each of 
the functors T: B(a, b) --+ X(T(a), T(b)) is an equivalence, and, for each object x of X, 
there exists an object a of B and an equivalence T(a) ~ x in X. Using the axiom of 
choice, we can see that T : B --+ X is a biequivalence if and only if there exists a lax 
functor S: X --+ B and equivalences To S ~ lo, lx ~ So T in the bicategories 
Lax(B, B), Lax(X, X), respectively. 



Categorical structures 571 

The following proof is due to R. Gordon and A.J. Power and was made public at the 
J 991 Summer Category Theory Conference in Montreal. 

PROPOSITION 9.3 [MP]. For every bicategory B, there exists a 2-categ01y K with a 
biequivalence B ~ K. 

PROOF. It follows from the bicategorical Yoneda lemma that the functors 

Y: B(a, b) ~ Psd(B, Cat)0 P(Ha, Hb ) 

are equivalences. So we can take K to be the sub-2-category of Psd(B, Cat)0 P obtained 
by restricting to those objects of the form Ha. Then Y gives the desired biequivalence. 

0 

A direct proof, based on the above recall (Example 2), that every monoidal cate
gory is monoidally equivalent to a strict monoidal category, can be found in [JSS]. 
The result [GPS] for the next dimension is that every tricategory is "triequivalent" to 
a Gray-category (not in general to a 3-category). These references also explain how to 
extract from this result the coherence theorems in the more familiar form "all diagrams 
commute". 

10. Nerves 

The purpose of forming the nerve of a categorical structure is to create an object which 
contains all the information of the structure and yet is in a form more able to be compared 
with familiar geometric structures. There is a notion of cubical nerve, but we shall deal 
with the more usual simplicial nerve. In preparation for this, we need to modify our 
discussion of cubes to extract simplexes. For each natural number r, consider the word 
O:r,n of length n in the symbols - , + which begins with r minuses and ends with n - r 

pluses. 

Clr n = - - · · · - + + · • · + 
' "--,,..-'"--,,..-' 

r n-r 

Let Smp[n, m] denote the sub-m-category of Cub[n, m] obtained by taking only the 
objects C¥r,n · The m-category Smp[n, m] is the n-simplex with commuting (m + 1 )
faces. (There is an analogue of Proposition 4.1.) In particular, Smp[n, l J is a linearly 
ordered set wi th n + 1 clements; it is more usual to use the ordered set 

[n] = {0,1, ... ,n}. 

Also, we have the 2-categories (using "position" notation): 
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Smp[3, 2] 

Smp [O, 2] 

Smp [1, 2] 

Smp (2, 2] 

~ 

~-1+~ 
~ 

-++ 

~ 

R. Street 

1 
--+ 

2)~ 
-+ ++ 

~-

123 = 
r~ 12 ~ 
-++ 

~ 
+++ +++ 

123 

Recall that (Cat) denotes the category of (small) categories and functors. The category 
L1 of finite nonempty ordinals and order-preserving function s is the full subcategory L1 
of (Cat) consisting of the categories [n]. A simplicial set is a functor S: L1°P --+ Set; 
its value at [n] is denoted by Sn. The nerve N(A) of a category A is the simplicial set 
obtained by restricting the representable functor 

(Cat)(-, A): (Cat)0P--+ Set to L1°P; 

so 

N(A)n = (Cat) (In], A). 

This construction is obviously functorial in A E (Cat), so we obtain nerve as a functor 

N: (Cat) --+ [L1°P, Set] 

into the category [L1°P, Set] of simplicial sets. It is easily seen that this functor is full , 
faithful, and has a left adjoint which preserves finite products. The simplicial sets S 
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which are isomorphic to nerves of categories can be characterized as those functors 
S: L.1°P -t Set which preserve pullbacks; but they can also be characterized as those S 
for which each admissible horn has a unique filler (see [S4, SS, S7] for this terminology). 

There is a canonical 2-functor Smp[n, 2] -t Smp[n, I] which is the identity function on 
objects and identifies the 2-cells. Each functor f: Smp[n, l] -t Smp[n', I] has a lifting 
to a 2-functor f': Smp[n, 2] -t Smp[n' , 2] uniquely determined by the condition that 
each arrow f'(r: a,.,n -t a,.+1,n) is given by the natural ordering of f(ar,n)\f(ar+1,n) · 
This gives a functor 

j: L1 -t (2-Cat), [n] >-t Smp[n,2], f >-+ J'. 

The nerve N(K) of a 2-category K is the simplicial set obtained by composing the 
functor j 0 P: L.1°P -t (2-Cat)0P with the representable functor 

(2-Cat)(-, K): (2-Cat)0 P--+ Set. 

So, an element of N(K) of dimension n is a 2-functor x: Smp[n , 2] -t K ; we think of 
this as an n-simplex in K with commuting 3-faces. We obtain a nerve functor 

N: (2-Cat)-+ [L1°P,Setj 

with a left adjoint; but this time the functor is not full. We need to take account of more 
structure on the simplicial set N(K), namely, those elements of dimension 2 which are 
commutative triangles. It is possible [S4] to characterize (up to isomorphism) nerves 
of 2-categories as simplicial sets, with some distinguished elements (called "hollow" or 
"thin"), satisfying some axioms the main one of which states that each admissible horn 
should have a unique thin filler. 

There is also a notion of nerve for a bicategory [DS] which has not received much 
attention. Let Bicatnorm denote the category whose objects are bicategories and whose 
arrows are normalized lax functors. As every category is a bicategory, we can regard L1 
as a subcategory of Bicatnorm· For each bicategory B, the composite of the inclusion of 
L.1°P in Bicatnorm(- , B) with the representable 

Bicatnorm ( - , B): Bicat~~rm -t Set 

is defined to be the nerve N(B) of B; so 

N(B)11 = Bicatnorm([n], B) . 

EXERCISE. For a 2-category K, the nerve of Kasa 2-category is isomorphic to the nerve 
of K as a bicategory. 

EXERCISE. Biequivalent bicategories have homotopically equivalent nerves. (See [GZ] 
for homotopy for simplicial sets.) 

The nerve of an m-category was made precise in [SS] , and other approaches appear 
in [Al , JW, ASn]. Essentially each proceeds as above after giving a precise description 



574 R. Street 

of Smp[n, m]. Verity [V] has shown that this nerve functor, defined on (m-Cat) and 
viewed as landing in the category of simplicial sets with distinguished "hollow" (or 
"thin") elements, is fully faithful. A good deal of progress has been made by Michael 
Zaks and Dominic Verity on the characterization (up to isomorphism) of these nerves; 
but at the time of writing (November 1992), the conjecture of John Roberts (see [SS]) 
remains unproved. 

Finally, we remark that categorical structures can be considered inside categories whose 
objects are more geometric than sets. Nerves then are simplicial geometric objects whose 
"geometric realizations" are "classifying spaces" [Sg]. 
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reading in the area. 

There have been two notable developments in the last three years. In July 1993, 
Dominic Verity completed the proof of the Roberts conjecture (see the end of Section 10). 
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