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ABSTRACT

We introduce morphisms  V aAW of bicategories, more general than the original ones of B�nabou.

When  V = 1,  such a morphism is a category enriched in the bicategory  W.   Therefore these morphisms can
be regarded as categories enriched in bicategories "on two sides".   There is a composition of such enriched
categories, leading to a simple kind of tricategory  Caten whose objects are bicategories.  It follows that a
morphism from  V to  W in  Caten induces a 2-functor  V-Cat aAW-Cat,  while an adjunction between  V
and  W  in  Caten induces one between the 2-categories  V-Cat and  W-Cat.  Left adjoints in  Caten are
necessarily homomorphisms in the sense of B�nabou, while right adjoints are not.  Convolution appears as
the internal hom for a monoidal structure on  Caten.  The 2-cells of  Caten are functors; modules can also be

defined, and we examine the structures associated with them.   

1.  Introduction

For any monoidal category  M = (M⁄, ⊗ ⁄, I⁄⁄)  we have the notion of a category
enriched i n M (or an M-category⁄), along with the notions of M-functor and M-natural
transformation. The totality of all these things constitutes a 2-category  M-Cat⁄;  see [B2],
[EK], [K2].  Appearing in [B1] is the notion of what is now called a monoidal functor ⁄⁄Φ :
M aAM⁄⁄',  consisting of a functor ⁄⁄φ : M aAM⁄⁄', ⁄⁄a morphism ⁄⁄φ⁄0 ⁄⁄⁄:⁄⁄⁄I⁄' aAφ⁄I, ⁄⁄and a
natural transformation  φ⁄2 having components  φ⁄2; X⁄⁄,⁄⁄Y : φX⁄⁄⊗ ' ⁄⁄φY aAφ(X ⊗ Y),  with
these data satisfying three "coherence" axioms.  A monoidal functor  Φ induces a 2-
functor  Φ∗ : M-Cat⁄ aAM⁄⁄' -Cat which we may think of as a "change of base".  Further
introduced in [EK] is the notion of a monoidal natural transformation α : Φ ⇒ Ψ : M
aAM⁄⁄⁄'  providing the 2-cells for a 2-category  MonCat.⁄ The process sending  M to  M-
Cat and  Φ to  Φ∗ extends to a 2-functor  ( ⁄⁄)∗ : MonCataA2-Cat.

The nature of adjunctions  ΨJΦ : M aAM⁄⁄'  in  MonCat was determined in [K1].
Indeed, the monoidal  Ψ = (ψ , ψ ⁄0 , ψ ⁄2) : M aAM⁄⁄'  admits a right adjoint in  MonCat

1

1 Among the authors, Kelly and Street gratefully acknowledge the support of the Australian Research
Council, while Labella and Schmitt thank the European Community HCM project EXPRESS CHRX-CT93-0406
that allowed them to collaborate.



precisely when the functor  ψ : M aAM⁄⁄'  admits a right adjoint in  Cat and all the
morphisms  ψ ⁄0 , ψ ⁄2;⁄⁄X⁄⁄,⁄⁄Y are invertible.  We note, without going into details here, that
we can repeat the above with monoidal categories replaced by the more general
promonoidal categories of [D1].

Our primary concern in the present paper is with a different generalization.  To give
a bicategory  V with a single object  ∗ is equally to give the monoidal category  M =
V⁄⁄(∗ ⁄⁄,⁄⁄∗ );  and such a  V is called the suspension ΣM of  M (although often one speaks
loosely of "the bicategory  M ",  meaning the bicategory  ΣM ).  Around 1980 it was
observed that certain important mathematical structures can be fruitfully described as
categories enriched in a bicategory V,  or V-categories. There is a 2-category  V-Cat of V-
categories, V-functors, and V-natural transformations, which reduces to the 2-category
M-Cat above when  V = ΣM has one object.  (No real ambiguity arises in practice from
the fact that (ΣM)-Cat is another name for  M-Cat⁄.)  Categories enriched in a bicategory
were first treated in print in the articles [W1], [W2] of Walters, who acknowledges earlier
notes [Bt1] on the subject by Renato Betti (also see [Bt2]).  A little later, more complete
and systematic treatments of the 2-category  V-Cat were given in [St3] and [BCSW].
Familiarity with the basic results concerning  V-Cat contained in those papers is not a
prerequisite for reading the present paper, since these results recur as special cases of our
results below.  Finally, we mention that B�nabou's fundamental paper [B3] on
bicategories already contains, under the name of polyad, the definition of a V-category
for a general bicategory  V Ñ this, however, not being developed further except in the
case  V = ΣM.

The present investigation began as the study of "change of base" for categories
enriched in bicategories. Given bicategories  V and  W,  we seek a notion of "morphism"
F : V aAW ⁄⁄that will induce, in a well-behaved functorial way, a 2-functor ⁄⁄F∗ : V-Cat
aAW-Cat.  A first idea, since it reduces when  V and  W are suspensions of monoidal

categories  M and  N to a monoidal functor  Φ : M aAN⁄⁄⁄,  is to take for  F  a lax functor
F : VaAW (that is, a morphism of bicategories in the terminology of [B3]).  Recall that
such an  F  takes an object  X  of  V to an object  FX  of  W,  and comprises functors  FX,Y :
V⁄⁄(X⁄⁄,⁄⁄Y) aAW ⁄⁄(FX⁄⁄,⁄⁄FY),  along with arrows  F0;⁄⁄X : 1FX

aAF1X and arrows  F2;⁄⁄⁄f⁄, g : Ff ⊗ ' Fg
aA F(f ⊗ g)  natural in  f  and  g  and subject to coherence conditions:  here  ⊗ and  ⊗ '

denote horizontal composition in  V and  W,  respectively.  Certainly such an  F  does
indeed give a 2-functor  F∗ : V-CataAW-Cat with  1∗ = 1  and  (HF)∗ = H∗ F∗ ,  just as i n
the more classical special case where  V = ΣM and  W = ΣN⁄.  However the following
consideration led us to look for "morphisms"  V aAW between bicategories that are
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more general than lax functors.
When the lax functor  F : V aAW is such that each functor  FX,Y : V⁄⁄(X⁄⁄,⁄⁄Y)

aAW ⁄⁄(FX⁄⁄,⁄⁄FY)  admits a right adjoint  RX,Y in  Cat and such that all the arrows  F0;⁄⁄X ,

F2;⁄⁄⁄f⁄, g are invertible, it turns out that the 2-functor  F∗ : V-CataAW-Cat admits a right

adjoint  F∗ : W-CataAV-Cat.  Yet there is in general no lax functor  G : W aAV here

for which  G∗ ≅ F∗ .  There will, however, be such a  G  among the more general
morphisms we shall now introduce.  (Note. A lax functor  F : VaAW with all the  F0;⁄⁄X
and all the  F2;⁄⁄⁄f⁄, g invertible was called by B�nabou in [B3] a homomorphism o f
bicategories; we shall also call it a pseudo-functor from  V to  W.) 

We obtain a type of "morphism"  F : V aAW,  more general than a lax functor, as
follows.  Instead of the function  obF : obV aAobW which forms part of a lax functor  F,
we take instead a span

    ob S obV W
( ) ( )

;− +←   →

and instead of the  FX,Y : V⁄⁄(X⁄⁄,⁄⁄Y) aAW ⁄⁄(FX⁄⁄,⁄⁄FY)  we take functors  Fs,t : V⁄⁄(sÐ ⁄⁄,⁄⁄tÐ ⁄⁄)
aAW ⁄⁄(s+⁄⁄,⁄⁄t+⁄⁄),  along with appropriate analogues of  F0;⁄⁄X and  F2;⁄⁄⁄f⁄, g .  With these new

morphisms and the evident notion of 2-cell, we get a bicategory  BB whose objects are the

bicategories (in some universe);  and we further get, as desired, a 2-functor  ( )∗ : BB aA2-

Cat sending  V to  V-Cat .  In fact, we see at once that the 2-functor  ( )∗ is representable:
writing  1 for the "unit" bicategory with one object, one arrow, and one 2-cell, we find
that  BB (1⁄⁄,⁄⁄V⁄⁄) ≅ V-Cat (at least as categories  Ñ  for  BB as yet has no 3-cells).   This suggests

a totally new point of view: a morphism  F : V aAW in  BB may be thought of as a
category enriched i n V on one side, and i n W on the other; or better, a category
enriched f r o m V t o W.  To accommodate this point of view, we use instead of  F  a
letter more traditionally used for a "category", such as  A : VaAW,  with    

    ob ob obV A W
( ) ( )±←   →+

for the span above, and
A (A⁄⁄,⁄⁄B ⁄) : V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄)

for the earlier  Fs⁄⁄,⁄⁄t⁄⁄⁄.  Bicategories, unlike categories, are often named for their
morphisms; we shall use  Caten for the  BB above, since its morphisms are enriched
categories. 

We begin our formal treatment in the next section, defining  Caten as a bicategory,
giving examples of its morphisms, and discussing its basic properties. Then in Section 3
we add the 3-cells, exhibiting  Caten as a tricategory of a very special kind, which is
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almost a "3-category".  The reader in fact needs no prior knowledge of  V-Cat,  since we
re-find it below as the 2-category  Caten(1⁄⁄,⁄⁄V⁄⁄);  and the "change of base" 2-functor  V-Cat
aAW-Cat arising from  A : V aAW in  Caten is nothing but the 2-functor

Caten(1⁄⁄,⁄⁄V⁄⁄) aACaten(1⁄⁄,⁄⁄W ⁄⁄)  given by composition with  A .  Section 4 exhibits a
monoidal structure on  Caten and describes the internal homs  Conv(V⁄⁄,⁄⁄W ⁄⁄)  when  V is
locally small and  W is locally cocomplete. Local cocompletion is studied in Section 5,
and used in Section 6 to compare  Caten with a generalization  PCaten in which the
morphisms  V aAW are now procategories. Finally, we turn in Section 7 to modul e s
between categories enriched from  V to  W.  

Before going on, we make some comments about questions of size, such as the
distinction between small and large sets, or small and large categories. For the purposes
of this Introduction, one may be content to interpret such symbols as the  Cat,  M-Cat,
MonCat,  2-Cat,  V-Cat,  and  Caten above purely in a "metacategorical" sense: we are
merely talking about certain kinds of structure, with no reference whatever to matters of
size; and observing that, for instance, in this context  Cat and  MonCat are 2-categories,
while  2-Cat is a 3-category that may be seen merely as a 2-category, whereupon  M
jAM-Cat is a 2-functor  MonCat aA2-Cat.  When, however, we leave the mere
naming of structures and embark upon concrete mathematical arguments, which are to
be free of Russel-type paradoxes, we need a safer context, such as is provided by
supposing that the morphisms of any category Ñ or equally the 2-cells of any bicategory
Ñ form a set.  And by a set here is understood an object of a chosen category  Set of sets
Ñ meaning a 2-valued Boolean topos with natural-number-object Ñ large enough for
the purpose at hand: moreover, being "large enough" includes the existence of another
category  set of sets, called the category of small sets, which is a category-object in  Set
(also called a category internal to  Set ).

Now, by "a category  A" is meant a category-object in  Set ;  it is locally-small if each
A ⁄(A⁄⁄,⁄⁄B)  is small, and is smal l if  obA is small; in particular the category  set is locally
small.  Similarly a bicategory Ñ or in particular a 2-category Ñ is one internal to  Set ,
and it is smal l when its set of 2-cells is in  set ;  while an M-category or a V-category  A
has  obA ⁄⁄∈ ⁄⁄Set ,  being smal l if  obA ⁄⁄∈ ⁄⁄set .

We write  Cat ,  M-Cat ,  2-Cat for the 2-categories of categories, M-categories, or 2-
categories (these last really form a 3-category) in the sense above. But now the category
Set is not itself an object of  Cat ,  since  ob(Set)  is not a set.  Yet nothing is lost by this,
since the meaning of "set" can be flexible (if one admits the existence of arbitrarily large
inaccessible cardinals).  For  Set is an object of the 2-category  CAT of category-objects i n
a larger category  SET of sets, containing  Set as a category-object.  Similarly  2-Cat is an
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object of the appropriate  2-CAT (or  3-CAT ),  and so on.  It suffices, of course, to discuss
Cat and  2-Cat ,  since whatever is true of these (in the appropriate language) is also true
of  CAT and of  2-CAT .

So we continue to understand "category" and "bicategory" in the internal-to-Set
sense above, writing "large category" or "large bicategory" for those internal to some
larger  SET;  and we turn now to a precise definition of that version of the tricategory
Caten which is based on  Set : in the sense that its objects are the bicategories Ñ meaning
those internal-to-Set ones Ñ and each morphism  A : V aAW in  Caten has
obA ⁄⁄∈ ⁄⁄Set . 

2.  The bicategory  Caten

2.1 We suppose the reader to be familiar with the bicategory  Span (⁄= Span(Set)⁄)  whose
objects are sets, whose hom-category  Span(X⁄⁄,⁄⁄Y)  is  Set/(X⁄⁄×⁄⁄Y),  and whose composition
law is that formed in the obvious way using pullbacks (defined in  Set by the usual
canonical construction);  see again [B3].  Given a function  f : X aAY,  we write  f∗ : X
aAY  and  f⁄∗ : Y aAX  for the respective spans

  X X Y Y X XX Xf f1 1
←   → ←   →, .

There is an adjunction  f∗ J f⁄∗ in  Span ,  and in fact [CKS] every left adjoint  φ : X aAY
in  Span is isomorphic to  f∗ for a unique  f : X aAY.

2.2 Let  V and  W be bicategories in which horizontal composition is denoted by  ⊗ and
⊗ ⁄'  respectively.  A category A enriched f r o m V t o W,  or just a category A : V aAW,
is given by the following data:

(i)  a set  obA of objects of A ,  provided with functions  (  )Ð , (  )+ as in

    ob ob obV A W
( ) ( )±←   →+ ; (2.1)

equivalently, we are given a span  (obA , (  )Ð , (  )+ ) : obVaAobW;

(ii)   for each pair  A, B  of objects of  A ,  a functor

A (A⁄,⁄⁄B) : V⁄⁄(AÐ , BÐ⁄⁄) aaAW ⁄⁄(A+ , B+⁄⁄)  ; (2.2)

(iii) for each object  A  of  A ,  a morphism (providing "identities")      

    
ηA A AA A: ( , )( )1 1

+ −
→ A (2.3)

in  W ⁄⁄(A+ , A+⁄⁄);
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(iv) for each triple  A, B, C  of objects of  A ,  a natural transformation (providing 
"composition")    

  µA C
B
, :  ⊗ ⁄' (A (B⁄,⁄⁄C) × A (A⁄,⁄⁄B))  ⇒  A (A⁄,⁄⁄C) ⊗ : 

V⁄⁄(BÐ , CÐ⁄⁄) × V⁄⁄(AÐ , BÐ⁄⁄) aAW ⁄⁄(A+, C+⁄⁄) , (2.4)
whose component at  (g⁄⁄,⁄⁄f⁄)⁄⁄∈ V⁄⁄(BÐ , CÐ⁄⁄) × V⁄⁄(AÐ , BÐ⁄⁄)  we may write as

  µA C
B
, (g⁄⁄,⁄⁄f⁄)  :  A (B⁄,⁄⁄C)(g⁄) ⊗ ⁄'A (A⁄,⁄⁄B)(f⁄) aAA (A⁄,⁄⁄C)⁄⁄(g ⊗ f⁄). (2.5)

These data are to satisfy the following left unit, right unit, and associativity axioms:

1   ⊗ ⁄' A⁄⁄(A⁄⁄,⁄⁄B⁄⁄)(f⁄)
B

A⁄⁄(B⁄⁄,⁄⁄B)(1   ) ⊗ ⁄' A⁄⁄(A ⁄,⁄⁄B⁄)(f )

 η   ⊗ ⁄' 1

µ         (⁄1   ,⁄⁄f )B
A, B A⁄⁄(A⁄⁄,⁄⁄B ⁄)(1   ⊗  f )

A⁄⁄(A⁄⁄,⁄B ⁄)(f⁄) 

A⁄⁄(A⁄⁄,⁄⁄⁄B ⁄)(l⁄⁄) 

 +  l ⁄'

B ÐB Ð

B Ð

B

(2.6)

 A⁄⁄(A⁄⁄,⁄⁄B ⁄⁄)(f⁄) ⊗ ⁄'  1
 A

A⁄⁄(A⁄⁄,⁄⁄B)(f ) ⊗ ⁄' A⁄⁄(A ⁄,⁄⁄A⁄)(1    )

1 ⊗ ⁄' η   

µ         (⁄f ,⁄⁄1    )A
A, B A⁄⁄(A⁄⁄,⁄⁄B ⁄)(f ⊗ 1    )

A⁄⁄(A⁄⁄,⁄B ⁄)(f⁄) 

A⁄⁄(A⁄⁄,⁄⁄⁄B ⁄)(r) 

 +  r⁄⁄⁄⁄'

A ÐA Ð

 A Ð

 A

(2.7)

B
A, C

A ⁄⁄(A⁄⁄,⁄⁄⁄D⁄)(a) 
(2.8)

 (A⁄⁄(C⁄⁄,⁄⁄D)(h) ⊗ ⁄' A⁄⁄(B⁄⁄,⁄⁄C)(g)) ⊗ ⁄' A⁄⁄(A ⁄,⁄⁄B)(f )
a⁄'

A ⁄⁄(C⁄⁄,⁄⁄D)(h) ⊗ ⁄' (A ⁄⁄(B⁄⁄,⁄⁄C)(g) ⊗ ⁄' A⁄⁄(A⁄,⁄⁄B)(f ))

A⁄⁄(C ⁄⁄,⁄⁄D)(h) ⊗ ⁄' A⁄⁄(A ⁄⁄,⁄⁄C)(g⁄⁄⊗ ⁄ f )

1 ⊗ ⁄' µ       (g⁄⁄, f⁄)   

A ⁄⁄(A⁄⁄,⁄⁄D)(h ⁄ ⊗ ⁄ (g⁄⁄⊗ ⁄ f ))

 (A ⁄⁄(B⁄⁄,⁄⁄D)(h ⊗ ⁄ g) ⊗ ⁄' A⁄⁄(A⁄,⁄⁄B)(f )

µ       (h ⁄⁄, g⁄) ⊗ ⁄' 1    C
B, D

 A⁄⁄(A⁄⁄,⁄⁄D)((h⁄ ⊗ ⁄ g) ⁄⁄⊗ ⁄ f )

µ       (h ⊗ ⁄ g⁄, f ) B
A, D

µ       (h , g ⊗ ⁄ f ) C
A, D

wherein  a , l , r and    a ⁄' , l⁄⁄⁄' , r ⁄'  denote the associativity and unit constraints in  V and
W respectively. 
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2.3  Examples

(a)  When  V is the unit bicategory  1,  a category  A from  V to  W is in effect just a  W-
category in the sense of [St3] and [BCSW]:  the function  ( )+ : obA aAobW sends each
A∈ A to its underlying W-value, and  A (A⁄,⁄⁄B) : 1 aAW ⁄⁄(A+ , B+⁄⁄)  is the hom-arrow
A (A⁄,⁄⁄B) : A+

aAB+⁄ in  W,  while  µ and  η provide the composition and its identities.

(b)  Among the categories  A enriched from  V to  W are those for which the span (2.1)
is of the form

    ob ob obV V W
1

←   →+( )
, (2.9)

so that in particular  obA = obV.  Such  A are precisely the lax functors F : V aAW,
where  FX = X + and where  FX Y = A (X⁄,⁄⁄Y) : V(X⁄,⁄⁄Y) aAW(FX⁄,⁄⁄FY).

(c)  We spoke in the Introduction of the case where a lax functor  F : V aAW has the
F0;⁄⁄X ,  F2;⁄⁄⁄f⁄, g invertible, while each  FX Y : V(X⁄,⁄⁄Y) aAW(FX⁄,⁄⁄FY)  has a right adjoint  RX Y :
W(FX⁄,⁄⁄FY) aAV(X⁄,⁄⁄Y)  in  Cat .  Here we obtain as follows a category  B enriched from
W to  V.  The objects of  B are those of  V,  and for the span (2.1) we take the span

    ob
obF

ob ob obW B V V←  =  →
1 ;

for the functor  B(X⁄⁄,⁄⁄Y)  we take  RX Y ;  the unit  1X
aARX X (1FX⁄⁄)   is the transpose of

  F X0
1

;
− : FX X (1X⁄⁄) aA 1FX under the adjunction  FX X

J RX X ;  and the composition

⊗ (RY Z × RX Y⁄⁄) aARX Z ⊗ ⁄'  is the mate (see [KS]) of    F 2
1− : FX Z⁄ ⊗ aA⊗ ⁄' (FY Z × FX Y⁄⁄)

under the adjunctions  FX Y
J RX Y and  FY Z × FX Y⁄⁄

J RY Z × RX Y⁄.

(d)  When  V = ΣM and  W = ΣN for monoidal categories  M and  N⁄⁄⁄⁄,  to give a lax
functor  F : VaAW is just to give a monoidal functor  Φ : VaAW.

(e)  The general category  A enriched from  ΣM to  ΣN⁄⁄⁄⁄,  however, does not reduce thus
to a monoidal functor  M aAN⁄⁄⁄.  It is given by a set  obA ,  along with functors  A (A⁄,⁄⁄B) :

M aAN for  A,⁄⁄B ⁄∈ obA ,  morphisms  ηA : I⁄' aAA (A⁄,⁄⁄A)(⁄I⁄),  and morphisms    µA C
B
, (Y⁄⁄,⁄⁄X)

: A (B⁄,⁄⁄C)(Y) ⊗ ⁄'A (A⁄,⁄⁄B)(X) aAA (A⁄,⁄⁄C)(Y⁄⁄⊗ ⁄⁄X)  for  X,⁄⁄Y⁄⁄∈ M,  satisfying the appropriate
axioms.

(f)  As a particular example of (e), let  C be an ordinary category provided with actions
° : C × M aAC and  ∗ : N × C aAC
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of the monoidal categories  M and  N⁄⁄⁄,  in the usual "to within isomorphism" sense;
and let there further be coherent natural isomorphisms  P ∗ (A ° X)  ≅ (P ∗ A) ° X ,  so
that  C is an "left N⁄⁄-, right M⁄-bimodule".  Finally, suppose that each  Ð ∗ A : N aAC

has a right adjoint  [A⁄⁄,⁄⁄Ð] : C aAN .  Then we get a category  A enriched from  ΣM to
ΣN⁄⁄⁄⁄⁄,  as in (e), by taking  obA = obC and  A (A⁄,⁄⁄B)(X) = [A⁄⁄,⁄⁄B ° X].

2.4 Given bicategories  V and  W and categories  A and  B enriched from  V to  W,  a
functor T : A aAB enriched f r o m V t o W,  or simply a functor T : A aAB,  is given
by the following data:

(i) a morphism

obA

obV obW 

obB

obT

(  ) (  )

(  ) (  )

 +

 + Ð

 Ð

(2.10)

of spans;  that is, a function  obT : obA aAobB,  for whose value  (obT)(A)  
we in fact write  TA,  satisfying the conditions

(TA)Ð = AÐ ,           (TA)+ = A+ ; (2.11)

(ii) for each pair  A, B  of objects of  A ,  a natural transformation
TA B :  A (A⁄,⁄⁄B) aAB(TA⁄⁄,⁄⁄TB)  : V⁄(AÐ

⁄, BÐ
⁄⁄) aAW ⁄(A+

⁄, B+
⁄⁄), (2.12)

whose component at  f⁄⁄∈ V⁄(AÐ
⁄, BÐ

⁄⁄)  we may write as
TA B⁄⁄(f⁄⁄)  :  A (A⁄,⁄⁄B)(f⁄⁄) aAB(TA⁄⁄,⁄⁄TB)(f⁄⁄) . (2.13)

These data are to satisfy the following two axioms, expressing the compatibility of the
TA⁄⁄⁄B with the identities and composition.  First, we require commutativity of the
following diagram in the category  W ⁄(A+

⁄, A+
⁄⁄):

1 A +
 A⁄⁄(A⁄⁄,⁄⁄A)(1    ) A Ð

η
 A T     (1    ) A A  A Ð  B⁄⁄(TA⁄⁄,⁄⁄TA)(1    ) A Ð

1 (TA) + η
 TA

 B⁄⁄(TA⁄⁄,⁄⁄TA)(1       ) (TA)
 Ð

  .
(2.14)

Secondly, we require commutativity of the following diagram of natural
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transformations (between functors from  V⁄(BÐ
⁄, CÐ

⁄⁄) × V⁄(AÐ
⁄, BÐ

⁄⁄)  to  W ⁄(A+
⁄, C+

⁄⁄) ) :

⊗ ⁄' (A⁄⁄(B⁄⁄,⁄⁄C) × A⁄⁄(A⁄,⁄⁄B))
µ   BA, C

⁄A⁄⁄(A⁄,⁄⁄C)  ⊗

⁄B⁄⁄(TA⁄,⁄⁄TC)  ⊗

T      ⊗ A C

⊗ ⁄' (B⁄⁄(TB ⁄⁄,⁄⁄TC) × B⁄⁄(TA ⁄,⁄⁄TB))
µ   TB

TA, TC

⊗ ⁄' (T      ×  T      )
B  C A  B

  ,

(2.15)

which may equally be written, in terms of the  (g⁄⁄,⁄⁄f⁄)-components for  g⁄⁄∈ V⁄(BÐ
⁄, CÐ

⁄⁄)  and
f⁄⁄∈ V⁄(AÐ

⁄, BÐ
⁄⁄),  as the commutativity of

A⁄⁄(B⁄⁄,⁄⁄C)(g ) ⊗ ⁄' A ⁄⁄(A⁄,⁄⁄B ⁄)(f)
µ          (⁄g ,⁄⁄f )B

A, C
A⁄⁄(A ⁄⁄,⁄⁄C⁄)(g ⊗ f)

T     (g ⊗ f)⁄

(2.16)

A, C

B ⁄⁄(TA ⁄⁄,⁄⁄TC⁄)(g ⊗ f)B⁄⁄(TB⁄⁄,⁄⁄TC)(g ) ⊗ ⁄' B⁄⁄(TA ⁄,⁄⁄TB⁄)(f)

T     (g) ⊗ ' T      (f) ⁄
B, C A, B

µ                   (⁄g ,⁄⁄f )TB
TA, TC

.

2.5  Examples

(a)  When  V here is the unit bicategory  1,  so that  A and  B are just W-categories, a
functor  T : A aAB is just a W-functor in the sense of [St3] and [BCSW];  in particular, it
is just an N-functor [EK] when  W = ΣN .

(b)  Consider the case when  A and  B both arise as in Example 2.3(b) from lax functors:
say from the respective lax functors  F, G : V aAW.  Then we necessarily have  obA =
obB = obV,  and the function  obT  of (2.10) must be the identity; so that (2.10) becomes
the assertion that  FX = GX  for all objects  X  of  V.  Here, therefore, the natural
transformations (2.12) have the form

TX⁄⁄Y :  F X⁄⁄Y aAG X⁄⁄Y :  V⁄(X⁄⁄,⁄⁄Y⁄) aAW ⁄(FX⁄⁄,⁄⁄FY⁄) = W ⁄(GX⁄⁄,⁄⁄GY⁄), (2.17)
with component at  f∈ V⁄(X⁄⁄,⁄⁄Y⁄)  a 2-cell in  W of the form

TX⁄⁄Y (f⁄)  :  F X⁄⁄Y (f⁄) aAG X⁄⁄Y (f⁄) . (2.18)
When we rewrite (2.18) as
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FX

FY

GX

GY

F ⁄⁄(f⁄⁄) G⁄⁄(f⁄⁄)⇒
T    (f⁄⁄)

X Y

1

1
,

(2.19)

and recall the axioms (2.14) and (2.15), along with the naturality of (2.19) in  f ,  we see
that such a functor  T : A aAB is just what has been called an optransformation [B3; p.
59], a right lax transformation [St0; p. 222], or an oplax natural transformation [K0; p. 189],
with the extra property that each component  TX⁄⁄ : FX aAGX  is an identity.

(c)  When the  V and  W in (b) are of the forms  ΣM and  ΣN for monoidal  M and  N⁄⁄⁄,
we observed in Example 2.3 (d) that to give such lax functors  F  and  G  is just to give
monoidal functors  Φ, Ψ : M aAN.  In this case (2.17) reduces to a single natural
transformation  T : Φ aAΨ : M aAN ,  and the axioms (2.14) and (2.16) are just the
conditions for  T  to be a mono ida l natural transformation in the sense of [EK; p. 474].

2.6 We henceforth denote a category  A enriched from  V to  W by using the arrow
notation  A : V aAW,  and look upon a functor  T : A aAB : VaAW as a 2-cell of the
form

WV ⇓ T

A 

B 

;

(2.20)

we sometimes, as here, use a double arrow for such a  T,  to emphasize its "dimension"
Ñ but have no fixed rule about using double or single arrows.  There is an evident
"vertical" composite  S T : A aAC : VaAW of  T : A aAB : VaAW and  S : B aAC

: VaAW,  as well as an evident identity  1A : A aAA :  VaAW,  so that the categories
enriched from  V to  W and the functors between these constitute a (large) category
Caten(⁄V⁄,⁄W ⁄⁄).  

Then, for bicategories  V, W, U,  it is straightforward to define a "horizontal
composition" functor

° =  
    
o

V U
W :  Caten(⁄W ⁄,⁄U ⁄) × Caten(⁄V⁄,⁄W ⁄) aaACaten(⁄V⁄,⁄W ⁄) . (2.21)

We describe this first at the object level: categories  A : V aAW and  C : W aAU have
a composite  C ° A : VaAU where  ob(C ° A )  is the span composite

10



obA

obV obW 

(  ) (  ) + Ð
obC

obU 

(  ) (  ) + Ð

, (2.22)

so that 
ob(C ° A )  =  { (C⁄⁄,⁄⁄A)∈ obC × obA  C⁄Ð = A⁄+ } (2.23)

with
(C⁄⁄,⁄⁄A)⁄Ð =  A⁄Ð and      (C⁄⁄,⁄⁄A)⁄+ =  C⁄+ , (2.24)

and where
(C ° A ) ((C⁄⁄,⁄⁄A) , (C⁄' ⁄⁄,⁄⁄A '⁄))  :  V⁄(A⁄Ð⁄,⁄⁄A '⁄Ð ) aAU(C⁄+⁄,⁄⁄C⁄' + )

is the composite

    V
A

W W
C

U( , © )
( , ©)

( , © ) ( , © )
( , ©)

( , © ) ,A A
A A

A A C C
C C

C C− − + + − − + + → =  → (2.25)

the identity  
η (C⁄⁄,⁄⁄A) :    1( , )C A +

aAC(C⁄,⁄C)(A (A⁄,⁄A)  ( )( , )1 C A −
)  

for  C ° A being given by the composite

    1 1 1 1C
C

C A
A

AC C C C
C C

C C A A
+ − + −

 → =  →
η η

C C
C

C A( , )( ) ( , )( )
( , )( )

( , )( ( , )( )) , (2.26)

and the composition  

  µ( , ),( ", ")
( ©, ©)
C A C A
C A : ⊗ " (C ⁄⁄(C⁄' ,⁄⁄C⁄") A ⁄⁄(A',⁄⁄A") × C ⁄⁄(C⁄,⁄⁄C⁄') A ⁄⁄(A,⁄⁄A')) aAC ⁄⁄(C⁄,⁄⁄C⁄") A ⁄⁄(A,⁄⁄A") ⊗

for  C ° A being given by the composite

    

⊗ × ×  →

⊗ ×  →

×
"( ( ©, ") ( , ©))( ( ©, ") ( , ©))

( , ") ©( ( ©, ") ( , ©))

, "
©

, "
©

( ( ©, ") ( , ©))

( , ")
C C A A

C A A

A A

C

C C C C A A A A

C C A A A A

C C
C

A A
A

A A A A

C C

µ

µ
 ⊗C A( , ") ( , ") ; ( . )C C A A 2 27

verification of the axioms (2.6) Ð (2.8) is immediate. Next we define the horizontal-
composition functor   ° on morphisms, its value  S ° T : C ° A aAD ° B in the
situation

WV ⇓ T

A 

B 

U⇓ S

C

D 

W

being given on objects by
(S ° T) (C⁄⁄,⁄⁄A)  =  (SC⁄⁄,⁄⁄TA) , (2.28)

while the "effect on homs"
(S ° T) (C⁄⁄,⁄⁄A), (C⁄⁄'⁄⁄,⁄⁄A'⁄) : (C ° A )((C⁄⁄,⁄⁄A)⁄⁄,⁄⁄(C⁄⁄' ,⁄⁄A')) aA(D ° B)((SC⁄⁄,⁄⁄TA)⁄⁄,⁄⁄(SC⁄⁄' ,⁄⁄TA'))

is the natural transformation given by the horizontal composite 
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SC⁄⁄⁄⁄C⁄⁄'⁄ ⋅⋅⋅⋅TA⁄⁄⁄A'⁄ : C(C⁄⁄,⁄⁄C⁄' )⁄⁄A ⁄⁄(A⁄,⁄⁄A') aAD(SC⁄⁄,⁄⁄SC⁄⁄' )⁄⁄B(TA,⁄⁄TA') ; (2.29)
that these data satisfy the axioms (2.14) Ð (2.15) is immediate.  Finally, it is clear from the

definition of (vertical) composition in  Caten(V,W)  that the operation  
    
o

V U
W of (2.21) is

indeed a functor.
In the situation

    V
A W C U E Z →  →  → ,

the only difference between  (E ° C) ° A and  E ° (C ° A )  is that the objects of the first are
triples  ((E⁄⁄,⁄⁄C),⁄⁄A)  with  EÐ = C+ and  CÐ = A+

⁄⁄,  while the objects of the second are triples
(E⁄⁄,⁄(⁄C,⁄⁄A))  having the same properties.  So we have an associativity isomorphism

a : (E ° C) ° A aaA E ° (C ° A ) (2.30)
which is clearly natural with respect to functors  T : A aAB,  S : C aAD,  and  R : E
aAF.  Moreover, the isomorphism, (2.30) clearly satisfies Mac Lane's pentagonal
coherence axiom.

Finally, there is an identity category 1V : VaAV for each bicategory  V,  given by
the identity span on  obV and the identity functors  V(X⁄⁄,⁄⁄Y) aAV(X⁄⁄,⁄⁄Y).  The categories
A ° 1V and  1V ° A differ from  A : VaAW only in the names of their objects, an object
of  A ° 1V for instance being a pair  (A⁄⁄,⁄⁄X)∈ obA × obV with  AÐ = X.  So there are also
natural isomorphisms

l : 1V ° A aAA , r :  A ° 1V
aAA , (2.31)

which clearly satisfy the usual coherence axiom involving  a , l ,  and  r.

Proposition 2.6 The data above constitute a (large) bicategory  Caten  with bicategories

as its objects and with the (large) hom-categories  Caten(V⁄⁄,⁄⁄W ⁄⁄).  There is an evident
"forgetful" pseudo-functor  ob : CatenaASpan sending a bicategory V to its set  obV o f
objects and a category A : VaAW to the span obA .

In Section 3 we shall provide  Caten with 3-cells, turning it from a bicategory (with
the italic name  Caten ) to a tricategory with the bold-face name  Caten .

2.7 We now examine the adjunctions in the bicategory  Caten .  First consider a lax
functor  F : V aAW,  giving as in Example 2.3 (b) a category  A : VaAW,  and suppose
that

(i)  the morphisms  F0;⁄⁄X and  F2;⁄⁄⁄f⁄, g are invertible (so that  F  is a pseudofunctor) and
(ii) each  FX Y : V(X⁄,⁄⁄Y) aAW(FX⁄,⁄⁄FY)  has a right adjoint  RX Y in  Cat .

Then we obtain, as in Examples 2.3 (c), a category  B : W aAV.  In fact we shall now see
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that  B is right adjoint to  A in  Caten .  The object span of  B ° A consists of the set
{ (X⁄⁄,⁄⁄X')  FX = FX' }  together with the two projections, and there is an evident functor
η : 1V

aAB ⁄⁄°⁄⁄A which is the diagonal on objects and for which the natural
transformation 

η ⁄X⁄⁄Y : 1V ⁄⁄(X
⁄,⁄⁄Y) aA(B ⁄⁄°⁄⁄A )((X⁄,⁄⁄X)⁄⁄,⁄⁄(Y⁄,⁄⁄Y)),    or  η ⁄X⁄⁄Y : 1V(X,Y)

aAB(X⁄,⁄⁄Y)⁄⁄A (X⁄,⁄⁄Y),  

is just the unit  1 aARX Y FX Y of the adjunction  FX Y
J RX Y .  Again, the object span of

A ⁄⁄°⁄⁄B is in effect

    ob
obF

ob
obF

obW V W←   → ,

although an object of  A ⁄⁄°⁄⁄B is more properly, by (2.23), a pair (X⁄⁄,⁄⁄X)  with  X∈ obV.  There
is an evident functor  ε : A ⁄⁄°⁄⁄B aA1W which is  obF  on objects and for which the
natural transformation ε ⁄(X,X),⁄⁄(Y,Y) : (A ⁄⁄°⁄⁄B)((X⁄,⁄⁄X)⁄⁄,⁄⁄(Y⁄,⁄⁄Y)) aA1W ⁄⁄(FX⁄,⁄⁄FY),  or  ε ⁄(X,X),⁄⁄(Y,Y) :

A (X⁄,⁄⁄Y)⁄⁄B(X⁄,⁄⁄Y) aA1W(FX,FY) ,  is just the counit  FX Y RX Y
aA1  of the adjunction  FX Y

J

RX Y .  Finally the triangular equations for  η and  ε follow at once from those for the
adjunction  FX Y

J RX Y ,  confirming that we do indeed have an adjunction  η , ε : A J

B : W aAV in  Caten .
In fact the adjunctions above are, to within isomorphism, the only adjunctions i n

Caten.  For, if  η , ε : A J B : W aAV is an adjunction, application of the pseudofunctor
ob : Caten aASpan gives an adjunction  obA J obB in  Span.  So, as we noted i n
Section 2.1, the span  obVSa obA aAobW may, after replacement by an isomorph, be
supposed to be of the form

    ob ob
f

obV V W
1

←   → ,

so that, as in Example 2.3 (b),  A arises from a lax functor  F  with  obF = f ;  and the span
obWSa obB aAobV may, again after replacement by an isomorph, be supposed to be
of the form

    ob
obF

ob obW V V←   →
1

,

so that the  B(X⁄⁄,⁄⁄Y)  have the form  RX Y : W(FX⁄⁄,⁄⁄FY) aAV(X⁄⁄,⁄⁄Y).  Now  η and  ε

provide us with adjunctions  FX Y
J RX Y .  Moreover the composition  µ for  B reduces

to morphisms  ⊗ (RY⁄⁄Z × RX⁄⁄Y⁄⁄) aARX⁄⁄Z ⊗ ⁄',  whose mates under the adjunctions  FX⁄⁄Z
J

RX⁄⁄Z and  FY Z × FX Y
J RY Z × RX Y are morphisms  ν : FX Z ⊗ aA⊗ ⁄' (FY Z × FX Y⁄),  which

are easily shown to be inverses to the  µ : ⊗ ⁄' ⁄⁄(FY⁄⁄Z × FX⁄⁄Y⁄) aAFX⁄⁄Z ⊗ ,  whose components
are the  F2;⁄⁄⁄f⁄, g ;  the argument in the monoidal case of one-object bicategories is given i n
[K1].  Finally, a similar argument shows the invertibility of  F0;⁄⁄⁄X ,  which completes the
proof.    
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Proposition 2.7 A category  A : VaAW has a right adjoint i n Caten if and only if it

arises from a pseudofunctor F and each of the functors FV V' : V⁄⁄(V⁄⁄,⁄⁄V')
aAW ⁄⁄(FV⁄⁄,⁄⁄F ⁄V'),  which we also write as A (V, V') : V⁄⁄(V⁄⁄,⁄⁄V') aAW ⁄⁄(A ⁄(V)⁄⁄,⁄⁄A ⁄(V')), has
a right adjoint.

2.8 We now exhibit a canonical decomposition of a general category  A : V aAW i n
Caten⁄⁄.  We have the function  ( )Ð : obA aAobV.  Define a bicategory  Z with  obZ =
obA by setting  Z(A⁄⁄,⁄⁄B) = V(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄)  and by using the composition in  V to define one i n
Z,  and similarly for identities.  We have of course a lax functor  L : Z aAV which is i n
fact a pseudofunctor, and more:  LA⁄⁄B : Z ⁄⁄(A⁄⁄,⁄⁄B) aAV⁄⁄(LA⁄⁄,⁄⁄LB) = V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄)  is actually an
equality of categories.  As such, it has of course a right adjoint  RA⁄⁄B : V⁄⁄(LA⁄⁄,⁄⁄LB)
aAZ ⁄⁄(A⁄⁄,⁄⁄B),  which is itself an equality.  Let us write  L : Z aAV for the category

determined by  L,  and  R : VaAZ for its right adjoint given by the  RA B .  Now observe

that there is a category  B : Z aAW, ⁄⁄whose object span⁄⁄⁄⁄     ob ob obZ B W
( ) ( )− +←   → is

⁄⁄
    ob ob obA A W

1
←   →+( ) , and whose effect-on-homs B(A⁄⁄,⁄⁄B) : Z(A⁄⁄,⁄⁄B) aA

W(A+⁄⁄⁄⁄,⁄⁄B+⁄⁄)  is just  A (A⁄⁄,⁄⁄B) : V(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW(A+⁄⁄,⁄⁄B+⁄⁄);  of course  B too arises from (let
us henceforth say that  B is ) a lax functor  Z aAW.  Moreover the composite

  V
R

Z
B

W →  → (2.32)    

is isomorphic to  A : VaAW ;  one could say that it is A ,  except that, by our definition
in Section 2.6 of  ob(B ° R),  the latter is not  obA but the diagonal  { (A,A)  A∈ obA } .

Proposition 2.8 Every category  A : V aAW admits an isomorphism  A ≅ B ° R

w h e r e R : V aAZ is a right-adjoint category w h o s e R ⁄⁄(V⁄⁄,⁄⁄V') are equivalences, and
where  B : Z aAW is a lax functor.  Furthermore, this gives a factorization system o n
Caten  in the sense (see [CJSV] for example) appropriate to bicategories.

2.9 We have a principle of duality,  in that there is an involutory automorphism of
bicategories

(  )° : CatenaaACaten (2.33)
given as follows.  First, for a bicategory  V,  we set

V⁄⁄° =  V⁄⁄op (2.34)

in the usual sense, whereby  V⁄⁄op(X⁄⁄,⁄⁄Y⁄) =  V⁄(Y⁄⁄,⁄⁄X⁄)  and the composition

⊗ ⁄⁄op :  V⁄⁄op(Y⁄⁄,⁄⁄Z⁄) × V⁄⁄op(X⁄⁄,⁄⁄Y⁄) aAV⁄⁄op(X⁄⁄,⁄⁄Z⁄)
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is the composite

    V V V V V( , ) ( , ) ( , ) ( , ) ( , ) .Z Y Y X Y X Z Y Z X× ≅ ×
⊗

 → (2.35)

(Note in particular that  (Σ⁄M⁄)⁄op =  Σ⁄(M⁄rev)  for a monoidal category  M ;  here  M⁄rev is

M as a category but with  A ⊗ ⁄rev B  =  B ⊗ A .)  Now for a category  A : V aAW i n

Caten,  we define  A ⁄° : V⁄⁄° aAW ⁄⁄° by setting  ob(A ⁄°) = obA as spans and with  A ⁄°(A⁄⁄,⁄⁄B ⁄)

: V⁄⁄op(AÐ⁄⁄,⁄⁄BÐ
⁄) aAW ⁄⁄op(A+⁄⁄,⁄⁄B+

⁄)  equal to 

A (B⁄⁄,⁄⁄A ⁄) : V⁄⁄(BÐ⁄⁄,⁄⁄AÐ
⁄) aAW ⁄⁄(B+⁄⁄,⁄⁄A+

⁄) . (2.36)

Similarly, for a functor  T : A aAB : VaAW,  we set  ob(T⁄°) = obT  and take

(T⁄°)A⁄⁄B :  A ⁄°(A⁄⁄,⁄⁄B ⁄) aAB ⁄°(TA⁄⁄,⁄⁄TB⁄)
to be 

T ⁄B ⁄⁄A :  A ⁄(B⁄⁄,⁄⁄A ⁄) aAB ⁄(TB⁄⁄,⁄⁄TA⁄) . (2.37)

Note that  A ⁄op would not be an appropriate name for  A ⁄° because, when we have a

W-category  A : 1aAW,  the usual meaning of  A ⁄op is the composite

        1
A W W

o

 →  →op H (2.38)

for a suitable isomorphism  H  of bicategories (often of the form  ΣD  for a monoidal

isomorphism  D : M⁄rev aAM ).  Similarly, tensor products of W-categories arise from a
homomorphism  W × W aAW. 

3.  The tricategory  Caten

The very name "functor" for the 2-cells of the bicategory  Caten naturally leads to
the expectation that there should be 3-cells called "natural transformations".  We now
introduce these, which provide the 3-cells turning the bicategory  Caten into a
tricategory  Caten⁄.

3.1 Given bicategories  V and  W,  categories  A , B : V aAW,  and functors  T, S : A
aAB,  we now define the notion of a natural transformation α : T aAS,  which we
may also write as

α : T aAS : A aAB : VaAW
to present the information succinctly.  There is no real need to speak of such a natural
transformation as "enriched from  V to  W ⁄⁄⁄" :  since the categories  A and  B are so
enriched, the functors  T  and  S  are necessarily so, as is the "natural transformation"  α .
Such an  α is a function assigning to each pair  A, B  of objects of  A a natural
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transformation (in the usual sense)
αA B :  A (A⁄,⁄⁄B) aAB(TA⁄⁄,⁄⁄SB)  : V⁄(AÐ

⁄, BÐ
⁄⁄) aAW ⁄(A+

⁄, B+
⁄⁄), (3.1)

whose component at  f⁄⁄∈ V⁄(AÐ
⁄, BÐ

⁄⁄)  we may write as
αA B⁄⁄(f⁄⁄)  :  A (A⁄,⁄⁄B)(f⁄⁄) aAB(TA⁄⁄,⁄⁄SB)(f⁄⁄) , (3.2)

subject to the condition that, for all  f⁄⁄∈ V⁄(AÐ
⁄, BÐ

⁄⁄)  and  g⁄⁄∈ V⁄(BÐ
⁄, CÐ

⁄⁄),  we have
commutativity in the diagram

A⁄⁄(B⁄⁄,⁄⁄C)(g ) ⊗ ⁄' A⁄⁄(A⁄,⁄⁄B ⁄)(f)

(3.3)B⁄⁄(TA⁄⁄,⁄⁄SC⁄)(g ⊗ f)B⁄⁄(SB⁄⁄,⁄⁄SC )(g ) ⊗ ⁄' B⁄⁄(TA ⁄,⁄⁄SB⁄)(f)

α       (g) ⊗ ' T      (f)⁄
B  C A  B

µ          (⁄g ,⁄⁄f )SB
TA, SC

B⁄⁄(TB⁄⁄,⁄⁄SC )(g ) ⊗ ⁄' B⁄⁄(TA ⁄,⁄⁄TB ⁄)(f)

S      (g) ⊗ ' α      (f⁄⁄)⁄
B  C A  B

TB
TA, SC

 µ          (⁄g ,⁄⁄f )

of the category  W ⁄(A+
⁄, C+

⁄⁄)⁄⁄.   
The (classical) natural transformations  αA⁄⁄⁄B above (which themselves have the

components  αA⁄⁄⁄B(f⁄⁄)⁄⁄)  might be called the two-sided components of the natural
transformation  α : T aAS : A aAB : VaAW;  alongside these, it is useful to introduce
what we might call the one-sided components, or simply the components, of such a
natural transformation  α ,  which provide an alternative way of describing  α ⁄⁄.  For each
A ⁄⁄⁄∈ ⁄⁄obA ⁄⁄,  the (one-sided) component of  α is the morphism

α ⁄A :   1A+
aA

    B( , )( )TA SA A1 −

of  W ⁄(A+
⁄, C+

⁄⁄)  given by the composite 

    1 1
1

1A
A

A
A A A

AA A TA SA
+ − −

 →  →−
η α

A B( , )( )
( )

( , )( ). (3.4)

Using (2.14), (2.6), and (2.7) as well as (3.3), we observe that these components make
commutative the diagram

A⁄⁄(A⁄,⁄⁄B⁄)(f) 1   ⊗ ⁄' A⁄⁄(A ⁄,⁄⁄B⁄)(f) B  +
 l⁄⁄⁄' Ð1

B⁄⁄(TB⁄⁄,⁄⁄SB )(1    ) ⊗ ⁄' B⁄⁄(TA ⁄,⁄⁄TB⁄)(f) B Ð

α   ⊗ ' T      (f)⁄
B A  B

µ         (⁄1    ,⁄⁄f )TB

TA, SB  B Ð

B⁄⁄(TA ⁄⁄,⁄⁄SB⁄)(1   ⊗ f). B Ð

B⁄⁄(TA⁄⁄,⁄⁄SB⁄)(f).
B⁄⁄(TA⁄⁄,⁄⁄SB⁄)(l )

A⁄⁄(A⁄⁄,⁄⁄B)(f ) ⊗ ⁄'  1 A  +

 r⁄⁄⁄' Ð1

B⁄⁄(SA ⁄⁄,⁄⁄SB )(f ) ⊗ ⁄' B⁄⁄(TA ⁄,⁄⁄SA⁄)(1    ) A  Ð

S      (f) ⊗ ' α
A  B A

B⁄⁄(TA⁄⁄,⁄⁄SB )(f  ⊗ ⁄ 1    ) A  Ðµ         (⁄f , ⁄⁄1    )SA
TA, SB  A  Ð

B⁄⁄(TA ⁄⁄,⁄⁄SB⁄)(r ⁄) (3.5)

each leg being the morphism  αA B⁄⁄(f⁄⁄).  
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Conversely, given a family of morphisms  α ⁄A :   1A+
aA

    B( , )( )TA SA A1 −
in  W

making (3.5) commutative,  upon defining  αA B ⁄⁄(f⁄⁄)  to be the diagonal of the square (3.5),
we easily see that each  α A ⁄⁄B is natural and (using (2.8) and (2.16)) that each leg of (3.3) is
equal to the composite

    A A A B( , )( ) © ( , )( ) ( , )( )
( )

( , )( ) ;B C g A B f A C g f
g f

TA SC g fA C
B

A C⊗  → ⊗
⊗

 → ⊗
µ α

(3.6)

moreover the composite (3.4) gives back  α ⁄A⁄ ,  as we see using (2.14) and (2.7)⁄.  Thus a
natural transformation  α : T aAS : A aAB may equally be defined as a family of (one-
sided) components  α ⁄A satisfying (3.5). 

It is of course the one-sided components  α ⁄A that correspond to the familiar  α ⁄A :
TA aASA  for a classical natural transformation, or to the somewhat less familiar  α ⁄A : I
aAB(TA⁄⁄,⁄⁄SA)  when  T, S : A aAB are M-functors for a monoidal category  M ;  while

in the classical case  α ⁄⁄A⁄⁄B : A (A⁄⁄,⁄⁄B) aAB(TA⁄⁄,⁄⁄SA)  takes  f⁄⁄∈ A (A⁄⁄,⁄⁄B)  to the common
value of  S(f) α ⁄A and  α ⁄B T(f) .  In the present generality, although we find it convenient
to refer both the  α ⁄⁄A⁄⁄B and to the  α ⁄⁄A⁄⁄⁄⁄,  it is the former that we use in our basic
definition: essentially because the  α ⁄⁄A⁄⁄B are simply described as classical natural
transformations, while it would require a lengthy diversion to establish the existence

and properties of certain "underlying ordinary categories"      BA A TA SA
− +

( , ) containing as

morphisms the  α ⁄A :   1A+
aA

    B( , )( )TA SA A1 −
.    

3.2 We now describe a category  Caten(V⁄,⁄⁄W)(A ⁄⁄,⁄⁄B)  whose objects are the functors  T : A
aAB and whose arrows  α : T aAS  are the natural transformations.    The composite
β⁄⋅⋅⋅⋅⁄⁄α : T aAR  of  α : T aAS  and  β : S aAR  is defined by taking the (one-sided)
component  (β⁄⋅⋅⋅⋅⁄⁄α)A to be the composite

    

1 1 1 1 1

1 1
1 1 1

1
A A A

A A
A A

TA RA
SA

A A
A A A

SA RA TA SA

TA RA
TA RA

TA RA

+ + + − −

− −

− − −

−
 → ⊗

⊗
 → ⊗

 → ⊗  →

r

r

B B

B
B

B

© ©
©

( , )( ) © ( , )( )

( , )
( , )( )

( , )( )
( , )( )

,

β α

µ
;;

(3.7) 

given the coherence of  a ⁄⁄, l⁄⁄, r and  a ' ⁄⁄, l⁄⁄⁄⁄' ⁄⁄, r ⁄⁄',  the associativity of this composition
follows at once from (2.8).  Again, we obtain a natural transformation  1T : T aAT : A
aAB on taking   (1T)A :    1A+

aA
    B( , )( )TA TA A1 −

to be  η ⁄TA ;  for when we set  S = T  and
αA = η ⁄TA in (3.5), it follows directly from (2.6) and (2.7) that each leg equals  TA B(f⁄⁄).  That
1T is the identity for the composition above also follows at once from (2.6) and (2.7).
Note that the two-sided component  (1T)A B of  1T is  TA B : A (A⁄⁄,⁄⁄B ⁄) aAB(TA⁄⁄,⁄⁄TB⁄). 
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3.3 We now go on to show that we have a (large) 2-category  Caten(V⁄,⁄⁄W ⁄⁄) whose
underlying category is  Caten(V⁄,⁄⁄W ⁄⁄)  and whose (large) hom-categories are none other
than the  Caten(V⁄,⁄⁄W ⁄⁄⁄)(A ⁄⁄,⁄⁄B)  of 3.2.  We must extend the vertical composition 

Caten(V⁄,⁄⁄W)(B ⁄⁄,⁄⁄C) × Caten(V⁄,⁄⁄W)(A ⁄⁄,⁄⁄B) aACaten(V⁄,⁄⁄W)(A ⁄⁄,⁄⁄C)
of the bicategory  Caten by defining it on natural transformations

α : T aAS : A aAB,      γ : P aAQ : B aAC
in such a way as to obtain a functor         

Caten(V⁄,⁄⁄W ⁄)(B ⁄⁄,⁄⁄C) × Caten(V⁄,⁄⁄W ⁄)(A ⁄⁄,⁄⁄B) aACaten(V⁄,⁄⁄W ⁄)(A ⁄⁄,⁄⁄C). (3.8)
To this end, we define the composite 

γ α : PT aAQS : A aAC
by taking for its two-sided components  (γ α)A B⁄ the composite natural transformations

    A B C( , ) ( , ) ( , ) .,A B TA SB PTA QSBA B TA SBα γ
 →  → (3.9) 

The reader will easily verify the commutativity of the diagram (3.3) for  γ ⁄⁄α ,  using the
commutativity of the diagram (3.3) for  α and that the diagram (3.3) for  γ not only
commutes but has the γ ⁄−version of (3.6) as its diagonal.

The proof that (3.8) is indeed a functor is complicated by the fact that we found it
convenient to use one-sided components in the definition (3.7) of vertical composit ion
in the 2-category  Caten(V⁄,⁄⁄W ⁄),  but to use two-sided components in the definition (3.9)
of horizontal composition. The following is a fairly short proof using the partial
functors of (3.8).

First, note from (3.9) and two applications of (3.4) that the one-sided component
(γ ⁄⁄α)A is the composite

    1 1
1

1A
A

A
TA SA A

ATA SA PTA QSA
+ −

−

−
 →  →

α γ
B C( , )( )

( )
( , )( ) ., (3.10)

Let us write  Pα : PT aAPS  for  1P⁄⁄α and  γT : PT aAQT  for  γ ⁄1T .  Since  (1P)TA, SA ,  as
we saw in Section 3.2, is  PTA, SA ,  (3.10) gives:

(Pα)A is       1 1
1

1A
A

A
TA SA A

ATA SA
P

PTA PSA
+ −

−

−
 →  →

α
B C( , )( )

( )
( , )( ) ., (3.11) 

Again, since  (1T)A =  η TA ,  (3.10) and (3.4) give:

(γT)A is    γ TA :     1 1A APTA QTA
+ −

 → C ( , )( ) . (3.12)

In particular, either of (3.11) or (3.12) gives
1P 1T (  =  P1T =  1PT )   =  1PT . (3.13)

Now we verify the functoriality of  
( T jAPT ,  α jAPα ) : Caten(V⁄,⁄⁄W ⁄)(A ⁄⁄,⁄⁄B) aACaten(V⁄,⁄⁄W ⁄)(A ⁄⁄,⁄⁄C).

In fact, it preserves identities by (3.13), and is easily seen to preserve composition by
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(3.11), (3.7) and the diagram (2.16) for  P.  Next, the functoriality of
( P jAPT ,  γ jAγT ) : Caten(V⁄,⁄⁄W ⁄)(B ⁄⁄,⁄⁄C) aACaten(V⁄,⁄⁄W ⁄)(A ⁄⁄,⁄⁄C)

is immediate from (3.12), (3.13), and (3.7).  It now remains to show that these are indeed
the partial functors of (3.8), in the sense that each triangle in

P T P S

Q T Q S

γ T γ Sγ α 

Pα

Qα (3.14)
commutes.  If we use the top leg of (3.5) to express  γ TA, SA in terms of  γ SA ,  and so to
express  (γ α)A in terms of  αA and  γ SA using (3.10), we find that this is precisely the
composite  ((γ S ⁄)⁄⁄⋅⁄⁄(Pα))A given by (3.11), (3.12), and (3.7).  Similarly, if we use instead the
bottom leg of (3.5) to express  γ TA, SA in terms of  γ TA ,  we find that ⁄⁄

(γ α)A = ((Qα ⁄)⁄⁄⋅ ⁄(αT))A .
To complete the proof that  Caten(⁄V⁄,⁄W ⁄)  is a 2-category, it remains only to verify the

associativity and the unit laws for the horizontal composition.  In fact, this associativity
is immediate from (3.9), as is the fact that the natural transformations      11A

: 1A
aA1A act

as horizontal identities.     

3.4 We now extend the functor (2.21) to a 2-functor

° =  
    
o

V U
W :  Caten(⁄W ⁄,⁄U ⁄) × Caten(⁄V⁄,⁄W ⁄) aaACaten(⁄V⁄,⁄W ⁄) . (3.15)

Given natural transformations  
α : T aAP : A aAB : VaAW and       β : S aAQ : C aAD : W aAU,

we define the natural transformation
β ° α :  S ° T aAQ ° P : C ° A aAD ° B : VaAU

by taking the (classical) natural transformation
(β ° α)(C⁄⁄,⁄⁄A)⁄⁄, (D⁄⁄,⁄⁄B) :  (C ° A )((C⁄⁄,⁄⁄A)⁄⁄,⁄⁄(D⁄⁄,⁄⁄B))  aaA(D ° B)((SC⁄⁄,⁄⁄TA)⁄⁄,⁄⁄(QD⁄⁄,⁄⁄PB))

to be the horizontal composite
βC⁄⁄⁄⁄D α ⁄⁄A⁄⁄⁄⁄B :  C(C⁄⁄,⁄⁄D) A (A ⁄⁄,⁄⁄B) aAD(SC⁄⁄,⁄⁄QD) B(TA⁄⁄,⁄⁄PB) (3.16)

of (classical) natural transformations.  The commutativity of (3.3) for  β⁄⁄°⁄⁄α follows easily
from its commutativity for  β and for  α ,  using (3.16) along with (2.27) and (2.29), so that
β⁄⁄°⁄⁄α is indeed a natural transformation  S ⁄⁄⁄°⁄⁄⁄T aAQ⁄⁄⁄°⁄⁄⁄P.  To complete the verification
that we now have a 2-functor (3.15), it remains to show that  ⁄⁄°⁄⁄⁄ preserves both
horizontal and vertical composites of natural transformations, as well as the horizontal
and vertical identities.  For the horizontal identities and composites, this is immediate
from (3.16) and (3.9).  In order to deal with vertical identities and composites, it is
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convenient to transform (3.16) using (3.4), to obtain the one-sided components of  β ° α ;
in the light of (2.26), we easily obtain

    1 1 1 1 3 17C
A

C A
A

ASC QC SC QC
SC QC

SC QC TA PA
+ − + −

 → =  →
γ α

D D
D

D B( , )( ) ( , )( )
( , )( )

( , )( ( , )( )) ( . )

as the value of

      1 1( , )
( , )

( , )
( )

( )(( , ),( , ))( ) .C A
C A

C ASC TA QD PB
+ −

 →
β αo

oD B (3.18)

Now, using (2.26) and the result  (1T)A = η TA from Section 3.2, it is immediate from
(3.17) that  ° preserves vertical identities; while, using (2.27) and (3.7), it is immediate
from (3.17) that  ° preserves vertical composition.

3.5 To conclude the proof that  Caten is a (large) tricategory (of an especially well-
behaved kind), it remains only to verify that the isomorphisms  a :  (E ° C ⁄) ° A aAE °

(C ° A ),  l :  1V ° A aAA ,  and  r :  A ° 1V
aAA of (2.30) and (2.31) are not only natural

but 2-natural.  This is immediate since, as we saw in Section 2.6, these correspond to a
trivial re-naming of the objects of these categories.

3.6 More needs to be said about the well-behaved kind of tricategory exemplified by
Caten. The structure is what one obtains by taking the "local definition" of bicategory as
given in [B3; pp. 1-6] and replacing the hom categories by hom 2-categories, the
composition functors by composition 2-functors, and the unit and associativity natural
isomorphisms by unit and associativity 2-natural isomorphisms; let us call such a
structure a bi-2-category. (In fact, every such tricategory is equivalent to a 3-category
[GPS; Corollary 8.4].) Similarly, we can rewrite, at this higher level, the notions of lax
functor (= morphism of bicategories), of pseudofunctor (= homomorphism), of lax
natural transformation (= transformation), of pseudo-natural transformation, and of
modification, while retaining the same terminology.  Thus we may speak of
pseudonatural transformations between pseudofunctors from one bi-2-category to
another.   

4. ÊA monoidal structure on ⁄Caten,  and convolution

4.1 Bicategories are algebraic structures and therefore there is a cartesian product  U × V

of two bicategories  U, V.  This is the product, in the usual categorical sense, in the
category of bicategories and strict structure-preserving morphisms.  It is no t the
bicategorical product in the bicategory  Caten: the categories  Caten(W, U × V⁄⁄)  and
Caten(W, U ⁄) × Caten(W, V⁄⁄)  are generally not equivalent.  However, the cartesian
product of bicategories is the object-function of a pseudofunctor 
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Ð × Ð  :  Caten × CatenaACaten (4.1)
making  Caten into a monoidal bicategory (see [GPS], [DS], [McC; Appendix A]).  The
definition of the pseudofunctor on arrows and 2-cells is the straightforward pointwise
one;  and it can be extended in the same pointwise way to 3-cells: for  α : T aAS : A
aAC : VaAV⁄⁄⁄'  and  β : P aAQ : B aAD : W aAW ⁄⁄'  we have

α × β : T × P aAS ⁄× Q : A × B aAC × D : V × W aAV⁄⁄' × W ⁄⁄'
where

(α × β)(A,B)⁄⁄,⁄⁄(A',B'⁄⁄) =  αA A' × βB ⁄⁄⁄B' :  A (A⁄⁄,⁄⁄A '⁄) × B(B⁄⁄,⁄⁄B '⁄) aAC(TA⁄⁄,⁄⁄SA'⁄) × D(PB⁄⁄,⁄⁄QB'⁄) .
Now the value of (4.1) on the hom-categories extends to a 2-functor  

Ð × Ð  :  Caten(V⁄⁄,⁄⁄V⁄⁄⁄' ⁄) × Caten(W ⁄⁄,⁄⁄W ⁄⁄⁄' ⁄) aACaten(V ⁄× W, V⁄⁄' × W ⁄⁄' ⁄) , (4.2)
and the coherent constraints of the pseudofunctor become 2-natural.  The associativity
and unit constraints

(U ⁄× V⁄⁄)⁄⁄ × W ≅ U ⁄× (V⁄⁄ × W ⁄), 1 ⁄⁄×⁄ V ≅ V,   V × ⁄1 ≅ V (4.3)
are the evident ones, and clearly satisfy the appropriate coherence conditions. Thus
Caten is a monoidal tricategory of a particularly simple kind: for example, (4.1) extends
to a pseudofunctor  Caten × Caten aACaten in the sense of Section 3.6.  In view of the
evident isomorphism

U ⁄× V ≅ V ⁄× U , (4.4)
the monoidal structure is symmetric.

4.2  Before discussing the extent to which this monoidal structure on  Caten is closed, we
need to introduce some further notions related to size.  Recall from [BCSW] that a
bicategory  W is said to be locally cocomplete when each hom-category  W ⁄⁄( W⁄⁄,⁄⁄W')  is
cocomplete (that is, admits small colimits) and each functor  W ⁄⁄(f⁄⁄,⁄⁄g)  preserves small
colimits.  (In view of our terminology in Section 3.6, a locally cocomplete bicategory
could be called a "bi-cocomplete-category"; however we shall retain the established
term.) A bicategory  V is locally smal l when each hom-category  V⁄(V⁄⁄,⁄⁄V ⁄')   is a small
category (at least to within equivalence).

4.3 Given bicategories  V and  W,  can we find a bicategory  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  such that to
give a category  A : U × V aAW is equally to give a category    A : U aAConv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄) ?
The name  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  was chosen for this "internal hom" because we shall see that its
horizontal composition is given by a convolution formula closely related to [D3].

Since the object span for  A : U × V aAW has the form

    ob ob ob obU V A W× − +←   →
(( ) , ( ) ) ( )0 , (4.5)

and since to give such a span is equally to give a span
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    ob ob ob obU A V W
( ) (( ) , ( ) )− +←   → ×0 , (4.6)

we are led to take
ob⁄Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  =  obV × obW (4.7)

and
ob  A =  obA (4.8)

with (4.6) providing the object span for    A .  Next, to give functors
A ⁄(A⁄⁄,⁄⁄B) : U(AÐ , BÐ ⁄⁄) × V(A0 , B0) aAW(A+ , B+⁄⁄) (4.9)

describing the effect-on-homs of  A is equally to give functors 

  A (A⁄⁄,⁄⁄B) : U(AÐ , BÐ ⁄⁄) aA[V(A0 , B0) , W(A+ , B+⁄⁄)] (4.10)
where square brackets denote the functor category;  here (4.9) and (4.10) are connected by

A ⁄(A⁄⁄,⁄⁄B)(f⁄⁄,⁄⁄g)  =    A (A , B)(f)(g) , (4.11)
along with a similar equation for morphisms  α : f aAf⁄⁄'  in  U(AÐ , BÐ ⁄⁄)  and  β : g aAg⁄'
in  V(A0 , B0).  Accordingly we are led to take

Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)⁄((V,W)⁄⁄,⁄⁄(V',W'))  =  [V⁄⁄(V⁄⁄,⁄⁄V')⁄⁄, W ⁄⁄( W⁄⁄,⁄⁄W')] , (4.12)
with  A ⁄(A⁄⁄,⁄⁄B)  and    A (A⁄⁄,⁄⁄B)  related as in (4.11).  

To give the identities for  A is,  by (2.3),  to give for each  A  in  obA a morphism

    ηA A A A A AA A A A: ( , )( , ) ( , )( )( ) .1 1 1 1 1
0 0+ − −

 → =A A (4.13)

We want this to be the same thing as giving for each  A  a natural transformation

    ηA A A AA A: ( , )( ) ;( , )1 1
0 +

 →
−

A (4.14)

and we can achieve this when the category  V(A0, A0)  is locally small and  W is locally
cocomplete by taking for the identity  1(V⁄⁄,⁄⁄W) in the bicategory  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  the functor
V(V, V)  aAW( W⁄,⁄⁄W)  given by

    1 1 1( , )( ) ( , )( , ) ,V W V Wf V V f= •V (4.15)

where,  for a set  Λ and a morphism  w : W aAW'  in  W,  the morphism  Λ• ⁄⁄w  is the
coproduct in  W ⁄⁄( W⁄⁄,⁄⁄W')  of  Λ copies of  w.  For then to give an    ηA as in (4.14) is
equally to give a natural transformation

    V W A( , )( , ) ( , )( , ( , )( )( )) ,A A A A A AA A A0 0 1 1 1
0

−  → −+ + + −

and hence by Yoneda to give a morphism  ηA as in (4.13).
Finally, we have the composition law for  A ⁄⁄,  given by components

    µA C
B f h g k B C f h A B g k A C f g h k, (( , ),( , )) : ( , )( , ) ( , )( , ) ( , )( , )A A A⊗  → ⊗ ⊗ (4.16)

natural in  f⁄⁄⁄⁄∈ U ⁄⁄(BÐ ,⁄⁄CÐ ⁄⁄), h ⁄⁄⁄∈ V(B0 ⁄⁄,⁄⁄C0 ⁄), g⁄⁄⁄∈ U ⁄⁄(AÐ ⁄⁄⁄,⁄⁄BÐ ⁄⁄)  and  k ⁄⁄⁄∈ V(A0 ⁄⁄,⁄⁄B0 ⁄);  here we have
abandonned our notational distinctions between the horizontal compositions in the
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three bicategories  U, V, W, denoting each by an unadorned  ⊗ ⁄⁄.  We want the giving of
such a natural  µ to be equivalent to the giving of components

    µA C
B f g B C f A B g A C f g, ( , ) : ( , )( ) ( , )( ) ( , )( )A A A⊗  → ⊗ (4.17)

in the functor category  [V(A0 , C0) , W(A+ , C+⁄⁄)],  natural in  f  and  g⁄⁄,  where  ⊗ denotes
the (yet to be defined) horizontal composition in  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄).  We can achieve this
when  V is locally small and  W is locally cocomplete by defining the composition i n
Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  as follows.  The functor
⊗ : [V⁄⁄(V⁄' ,⁄⁄V "⁄)⁄⁄,⁄⁄W ⁄⁄( W⁄' ,⁄⁄W ⁄" ⁄)]⁄⁄⁄×⁄⁄⁄⁄[V⁄⁄(V⁄,⁄⁄V '⁄)⁄⁄,⁄⁄W ⁄⁄( W⁄,⁄⁄W ⁄')]⁄⁄⁄aA[V⁄⁄(V⁄,⁄⁄V "⁄)⁄⁄,⁄⁄W ⁄⁄(W,⁄⁄W ⁄" ⁄⁄)] (4.18)
is described on objects by the convolution formula

    
P Q V V h k P h Q k

h V V k V V
⊗ = ⊗ − • ⊗

∈ ∈

∫ V
V V

( , ")( , ) ( ( ) ( ))
( ©, "), ( , ©)

; (4.19)

that such a formula does describe a functor is classical  Ñ  for example, see [K2; Section
3.3].  Now to give (4.17), natural in  f  and  g ,  is to give components

    V A A A( , )( , ) ( ( , )( , ) ( , )( , ) ( , )( , ))A C h k B C f h A B g k A C f g0 0 ⊗ − • ⊗  → ⊗ −

natural in  f, g, h,  and  k : which is equivalent by Yoneda to the giving of (4.16).
Notice that the formula (4.19) says that  P⁄⁄⊗ ⁄⁄Q  is the (pointwise) left Kan extension

of the composite

    V V W W W( ©, ©©) ( , ©) ( ©, ©©) ( , ©)
©

( , ©©)V V V V
P Q

W W W W W W×
×

 → ×
⊗

 →

along the functor  ⊗ :     V V V( ©, ©©) ( , ©) ( , ©©)V V V V V V× → .  Similarly, (4.15) says that

1(V⁄⁄,⁄⁄W) : V⁄⁄(V⁄⁄,⁄⁄V) aAW ⁄⁄( W⁄,⁄⁄W)  is the left Kan extension of  1W : 1 aAW ⁄⁄( W⁄,⁄⁄W)  along
1V : 1 aAV⁄⁄(V⁄,⁄⁄V).  Note, too, that  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  is, like  V and  W,  an honest bicategory
Ñ one internal to  Set .

Proposition 4.3 Consider bicategories V and W with V locally small an d W locally

cocomplete.  There is a locally-cocomplete bicategory Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  defined by (4.7),
(4.12), (4.15) and (4.18),  and having certain canonical associativity and unit constraints
described below. There is a family of isomorphisms

Caten(⁄⁄⁄U ⁄⁄×⁄⁄V,⁄⁄W ⁄⁄)  ≅ Caten(⁄⁄U ⁄⁄,⁄⁄Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)) 
of 2-categories, pseudonatural in  U ⁄⁄∈ Caten⁄⁄,  given on objects by (4.8), (4.11) and t h e
bijections  ηSrA η , µSrAµ described above . In particular, taking  U = 1 gives a
canonical bijection between categories enriched f r o m V t o W and categories enriched
i n Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄).

Proof We begin with a "several-object" version of the calculations of [D1; pp. 19-20];  a
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more detailed account in the case where  V and  W are suspensions of monoidal
categories appears in [IK].  We first need to produce the coherent associativity constraints
for the composition (4.18).  The fact that colimits commute with colimits and are
preserved by  Ð ⊗ w⁄⁄,  along with the Yoneda isomorphism and the definition (4.19), give
us a series of isomorphisms

    
( ) ( , ©©©)( , ) ( ( )( ) ( ))

,
P Q R V V m n P Q m R n

m n
⊗ ⊗ = ⊗ − • ⊗ ⊗∫ V

    
≅ ⊗ − • ⊗ • ⊗ ⊗∫ ∫V V( , ©©©)( , ) ( ( ©, ©©©)( , ) ( ( ) ( )) ( ))

, ,
V V m n V V h k m P h Q k R n

m n h k

    
≅ ⊗ − × ⊗ • ⊗ ⊗∫ ( ( , ©©©)( , ) ( ©, ©©©)( , )) (( ( ) ( )) ( ) )

, , ,
V VV V m n V V h k m P h Q k R n

m n h k

    
≅ ⊗ ⊗ − • ⊗ ⊗∫ V ( , ©©©)(( ) , ) (( ( ) ( )) ( ) )

, ,
V V h k n P h Q k R n

n h k
. (4.20)

In the same way, we have

    
( ) ( , ©©©)( ( ), ) ( ( ) ( ( ) ( )))

, ,
P Q R V V h k n P h Q k R n

n h k
⊗ ⊗ ≅ ⊗ ⊗ − • ⊗ ⊗∫ V (4.21)

By (4.20) and (4.21), the associativity constraints for  V and  W give associativity
constraint for  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄);  moreover, the coherence pentagon for the latter constraint
follows from the corresponding pentagons for the former ones.  Similarly for the unit
constraints; using (4.15), we have for  P∈ [V⁄⁄(V⁄⁄,⁄⁄V '⁄)⁄⁄, W ⁄⁄( W⁄⁄,⁄⁄W '⁄)]  the isomorphisms

    
P V V h k P h kV W

h k
V W⊗ = ⊗ − • ⊗∫1 1( , )

,
( , )( , ©)( , ) ( ( ) ( ))V

    
= ⊗ − • ⊗ •∫ V V( , ©)( , ) ( ( ) ( ( , )( , ) ))

,
V V h k P h V V k

h k
V W1 1

    
≅ ⊗ − × • ⊗∫ ( ( , ©)( , ) ( , )( , )) ( ( ) ))

,
V VV V h k V V k P h

h k
V W1 1

    
≅ ⊗ − • ⊗∫ V ( , ©)( , ) ( ( ) )

,
V V h P h

h k
V W1 1 ,

so that the right-unit constraints for  V and  W give the desired right-unit constraint

  P PV W⊗ ≅1( , )

for  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄).  Similarly, the coherence triangle relating the unit and associativity
constraints follows from those for  V and  W.  Thus  Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  is a bicategory, which
by (4.12) and (4.19) is clearly locally cocomplete.

We need to show that the data for  A : U × V aAW satisfy the axioms (2.6) Ð (2.8) if
and only if those for    A : U aAConv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)  do so.  This follows easily when, for

instance, we extend the discussion in Section 4.3 of the relationship between    µA C
B
, and
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  µA C
B
, to establish a bijection between natural transformations

    ( ( , )( ) ( , )( )) ( , )( ) ( , )(( ) )A A A AC D f B C g A B h A D f g h⊗ ⊗  → ⊗ ⊗

and natural transformations

    ( ( , )( , ) ( , )( , )) ( , )( , ) ( , )(( ) ,( ) )A A A AC D f u B C g v A B h w A D f g h u v w⊗ ⊗  → ⊗ ⊗ ⊗ ⊗ .

So we do indeed have the object bijection A SrA  A for a pseudonatural isomorphism
of 2-categories

  
ρ

U V W, ,
:   Caten(⁄⁄⁄U ⁄⁄×⁄⁄V,⁄⁄W ⁄⁄)  ≅ Caten(⁄⁄U ⁄⁄,⁄⁄Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)). (4.21)

To save space, we leave it to the reader to complete the description of the
isomorphism (4.21), showing that to give a functor  T : A aAB : U ⁄⁄×⁄⁄VaAW is equally
to give a functor    T :   AaA  B : U aAConv(V⁄⁄,⁄⁄W ⁄⁄),  and similarly for natural
transformations, with these bijections respecting all types of composition: the
calculations, although a little long, are straightforward, and the reader will see that they
basically depend on the compactness (sometimes called the autonomy) of the monoidal
bicategory  Span and the cartesian closedness of  Cat.  Finally, the reader will easily
verify the pseudonaturality in  U of the isomorphism  (4.21). Q . E . D .

From general principles applied to the pseudonatural isomorphism (4.21), we see
that  Conv can be made the object-function of a pseudofunctor into  Caten⁄ from the full
subtricategory of  Caten⁄⁄op × Caten⁄⁄ consisting of the pairs  (V⁄⁄,⁄⁄W ⁄⁄)  of bicategories
satisfying the conditions of Proposition 4.3;  this construction is the essentially unique
one forcing pseudo-naturality of the isomorphisms (4.21).  Again from the same kind of
general principles, the pseudo-naturality in the locally small  U and  V,  and in the
locally cocomplete  W,  implies a biequivalence of the bicategories  Conv(⁄U ⁄⁄×⁄⁄V,⁄⁄W ⁄⁄)  and
Conv(U ⁄⁄,⁄⁄Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)).  In fact, however, we have a stronger result: a direct calculation,
which we leave to the reader,  gives a pseudonatural i s omorph i sm

Conv(⁄U ⁄⁄×⁄⁄V,⁄⁄W ⁄⁄)  ≅ Conv(U ⁄⁄,⁄⁄Conv⁄⁄(V⁄⁄,⁄⁄W ⁄⁄)) (4.22)
of bicategories.

4.4 Finally, we note the special case given by  Conv⁄⁄(ΣM⁄⁄,⁄⁄ΣN⁄⁄),  where  M = (⁄M⁄⁄, ° , J⁄⁄)  is a
small monoidal category and  N = (⁄N⁄⁄⁄⁄, ° , I⁄⁄)  is a cocomplete one for which  N ⁄⁄⊗ ⁄⁄Ð  and
Ð ⁄⁄⊗ ⁄⁄N  preserve small colimits.  It is immediate that

Conv⁄⁄(ΣM⁄⁄,⁄⁄ΣN⁄⁄)  =  Σ [M⁄⁄,⁄⁄N⁄⁄⁄⁄] , (4.23)
where  [M⁄⁄,⁄⁄N⁄⁄⁄⁄]  is the functor category provided with Day's "convolution monoidal
structure"  ( [M⁄⁄,⁄⁄N⁄⁄⁄⁄] , ∗ , K )  as in [D1].  Thus  K = M⁄⁄⁄(⁄⁄J⁄⁄,⁄⁄Ð)⁄⁄• ⁄⁄I ,  while
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P Q h k P h Q k

h k
∗ = ⊗ − ⊗∫ •M ( , ) ( ( ) ( )) .

,
(4.24)

5. ÊLocal cocompletion of bicategories

5.1 We say that a category  A : VaAW is a local left adjoint when the functor  A (A⁄,⁄⁄B) :
V⁄⁄(AÐ⁄⁄, BÐ⁄⁄) aAW ⁄⁄(A+⁄, B+⁄⁄)  has a right adjoint for all objects  A, B  of  A .  This is the case
in particular when  A is a left adjoint in  Caten (see Proposition 2.7).  We write
Lla⁄(V⁄⁄,⁄⁄W ⁄⁄)  for the full sub-2-category of  Caten⁄(V⁄⁄,⁄⁄W ⁄⁄)  consisting of the local left adjoint
categories  A : VaAW.

5.2 Suppose  V and  W are locally cocomplete.  We say that a category  A : VaAW is
locally cocontinuous when each of the functors  A (A⁄,⁄⁄B) : V⁄⁄(AÐ , BÐ⁄⁄) aAW ⁄⁄(A+ , B+⁄⁄)
preserves small colimits.  This is the case in particular when  A is a local left adjoint. If

the homs of  V are presheaf categories Ñ that is, of the form  [K⁄⁄⁄op, set⁄⁄]  for some small
category  K (see below) Ñ then every locally cocontinuous  A : V aAW is a local left
adjoint.  

5.3 Recall that  set denotes the category of small sets. For a small category  K ,  let  PK

denote the presheaf category  [K⁄⁄⁄op, set⁄⁄] ,  with  Y = YK : K aAPK for the Yoneda
embedding.  Suspending the cartesian monoidal category  set gives the locally
cocomplete bicategory  Σset ,  and for each locally small bicategory  V we define a new
locally-cocomplete bicategory  PV by setting  

PV =  Conv(V⁄⁄co, Σset) , (5.1) 

where  V⁄⁄co,  as usual, is the dual of  V obtained by reversing 2-cells, so that  V⁄⁄co⁄(V,⁄⁄V') =

V⁄(V,⁄⁄V')⁄⁄op.  Since the bicategory  Σset has only one object, we may identify ob(PV⁄⁄)  with
obV;  and then (4.12) gives

(PV⁄⁄)(V,⁄⁄V')  =  [V⁄(V⁄,⁄⁄V')⁄⁄op, set]⁄⁄(V⁄,⁄⁄V')  =  P(V⁄⁄(V⁄,⁄⁄V')) , (5.2)

which may also be written for brevity as  PV⁄⁄(V⁄,⁄⁄V') .  By (4.15),  the identity  1V of  V  i n
PV,  which we shall write as    1V to distinguish it from the identity  1V of  V  in  V,  is
given by

  1V =  V⁄(V⁄,⁄⁄V)⁄(⁄Ð ⁄⁄, 1V ⁄⁄)  =  YV⁄(V⁄,⁄⁄V)(1V ⁄⁄) . (5.3) 

Finally, by (4.19), we not only have commutativity to within isomorphism in
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 PV⁄⁄(V ⁄⁄'⁄⁄,⁄⁄V ⁄⁄"⁄⁄)  ×  PV⁄⁄(V ⁄⁄,⁄⁄V⁄⁄' ⁄⁄) PV⁄⁄(V ⁄⁄,⁄⁄V⁄⁄' ⁄⁄)

 V⁄⁄(V ⁄⁄'⁄⁄,⁄⁄V ⁄⁄"⁄⁄)  ×  V⁄⁄(V⁄⁄,⁄⁄V ⁄⁄'⁄⁄) V⁄⁄(V ⁄⁄,⁄⁄V⁄⁄' ⁄⁄) (5.4)  ,

≅Y × Y Y

⊗
Ð

⊗

but in fact Ñ see Section 3 of [IK] Ñ the functor  ⊗ here is the unique extension of
Y⁄⁄⊗ ⁄⁄Ð  that is separately cocontinuous in each variable (or equivalently, separately left-
adjoint in each variable).

We reiterate that  P ⁄V is defined only for a locally-small  V.  Observe that there is
then a category

Y =  YV : VaAP ⁄V (5.5)
which is in fact a pseudofunctor: it is the identity on objects, and its effect-on-homs

Y⁄⁄(V⁄,⁄⁄V') :  V⁄(V⁄,⁄⁄V') aA(P ⁄V⁄⁄)⁄(V⁄,⁄⁄V')
is just the Yoneda embedding

YV(V,⁄⁄V ⁄⁄'⁄⁄) :  V⁄(V⁄,⁄⁄V') aAPV⁄(V⁄,⁄⁄V'),⁄ (5.6)
whereupon (5.3) and (5.4) complete its structure as a pseudofunctor.  This category  YV
has the following universal property; note that, by (5.2), the locally-left-adjoint categories
PVaAW coincide with the locally-cocontinuous ones, for a locally-cocomplete  W. 

Proposition 5.3 W h e n V is locally small, the bicategory  P ⁄V is defined, and t h e
functor

Ð ° YV
⁄⁄ : Lla⁄(PV⁄⁄,⁄⁄W ⁄⁄)  aaACaten⁄(V⁄⁄,⁄⁄W ⁄⁄) (5.7) 

is an equivalence of 2-categories for each locally-cocomplete bicategory  W.

Proof Abbreviate  YV to  Y.  For any category  B : PV aAW,  the composite  A = B ° Y :

V aAW has  obA = obB by (2.23) Ñ an isomorphism that we may take to be an equality
Ñ while  A (A⁄⁄,⁄⁄B)  is by (2.25) the composite

    V V
B

W( , ) ( , ) ( , ) ( , ) .A B
Y

P A B A B A B− − − − + + →  → (5.8)

In terms of the identity  ηA for  B ⁄⁄,  that for  A ⁄⁄,  using the equality (5.4),  is the composite

    1 1 1 1A
A

A A AA A A A Y A B
+ − − −

 → = =
η

B B A( , )( ) ( , ) ( ) ( , )( ) ; (5.9)

and in terms of the composition  
  
µA C
B
, for  B ⁄⁄,  that for  A ⁄⁄,  using the isomorphism (5.4),

is the composite
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A A B B
B B A

( , )( ) ( , )( ) ( , )( ) ( , )( )
( , )

( , )( ) ( , )( ( )) ( , )( ) .

,B C g A B f B C Yg A B Yf
Yg Yf

A C Yg Yf A C Y g f A B g f

A C
B

⊗ = ⊗  →
⊗ ≅ ⊗ = ⊗

µ
(5.10)

Let us now show that the 2-functor (5.7) is essentially surjective on objects.  Given a
category  A* : V aAW,  we construct as follows a locally-left-adjoint category  B : PV
aAW with  A = B ° Y isomorphic to  A*.   We take  obB to be  obA*,   and take

B(A⁄⁄,⁄⁄B) : PV(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW(A+⁄⁄,⁄⁄B+⁄⁄)  to be the left-adjoint functor Ñ unique to within
isomorphism Ñ whose restriction  B(A⁄⁄,⁄⁄B)⁄⁄Y  as in (5.8) is isomorphic to  A*(A⁄⁄,⁄⁄B).  Now

(5.9) forces the value of the unit  ηA for  B ⁄,  and (5.10) forces the value of  
  
µA C
B
, on the

representables  (Yf⁄⁄,⁄⁄Yg)⁄⁄;  but this suffices to determine  
  
µA C
B
, completely, by [IK;

Proposition 3.1], since each leg of

PV (B   , C   ) × PV (A   , B   )ÐÐ Ð Ð W (B   , C   ) × W (A   , B   )++ + +
B (B , C) × B (A , B)

PV (A   , C   )ÐÐ W (A   , B   )++B (A , C)

  
µA C
B
, ⇓⊗Ð  ⊗

is cocontinuous in each variable.  That  B satisfies the axioms (2.6) Ð (2.8) now follows
from the principles developed in [IK].

It remains to show that the 2-functor (5.7) is fully faithful.  A functor  T : B aAB ⁄⁄' :
PV aAW gives us  S = T ° Y : A aAA ',  where  A = B ° Y and  A ' = B ⁄⁄' ° Y.  Clearly the
spans  obS  and  obT  coincide, while  SA⁄⁄B is the restriction  TA⁄⁄B Y  of the natural
transformation  TA⁄⁄B along  Y : V⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAPV⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄).  When  B(A⁄⁄,⁄⁄B)  and  B ⁄⁄' (A⁄⁄,⁄⁄B)
are left adjoints, there is a unique  TA⁄⁄B with  TA⁄⁄B Y  equal to a given  SA⁄⁄B ;  and the  TA⁄⁄B
satisfy the functorial axioms when the  SA⁄⁄B do so.  Thus (5.7) is fully faithful at the level
of 1-cells;  and a similar argument shows it to be fully faithful at the level of 2-cells, a
natural transformation  α : T aAR : B aAB ⁄⁄'  being uniquely recoverable from the
restriction of the natural transformation  αA⁄⁄B : B(A⁄⁄,⁄⁄B) aAB ⁄⁄'(TA⁄⁄,⁄⁄RB)  along  Y :
V⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAPV⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄).  Q . E . D .

6. ÊProcategories

We shall describe an extension of  Caten to an autonomous (also called "compact"
or "rigid") monoidal tricategory  PCaten whose arrows are called two-sided enriched
procategories.  
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6.1 We remind the reader of the bicategory  Mod of modules (also called "profunctors",
"distributors" or "bimodules").  The objects are (ordinary) categories (in our usual

internal-to-Set sense). The arrows  M : A aAB are functors  M : B ⁄op⁄⁄×⁄⁄A aASet⁄⁄.

Natural transformations  θ : M ⇒ N : B ⁄op⁄⁄×⁄⁄A aASet provide the 2-cells  θ : M ⇒ N : A
aAB of  Mod⁄;  they are called module morphisms. Vertical composition of 2-cells is

vertical composition of natural transformations.  The horizontal composite  N ⁄⁄⁄M : A
aAC of  M : A aAB and  N : B aAC is given by the coend formula

(⁄N ⁄⁄⁄M ⁄)(C⁄⁄,⁄⁄A)  =  
  
M B A N C B
B
( , ) ( , )×∫ , (6.1)

and this is clearly functorial in  M  and  N.  Each functor  F : A aAB can be identified
with the module  F : A aAB having  F ⁄(B⁄⁄,⁄⁄A) = B ⁄(B⁄⁄,⁄⁄FA),  and this gives an inclusion
Cat aAMod.  If idempotents split in  B then the modules  M : A aAB with right
adjoints in  Mod are those isomorphic to arrows in  Cat Ñ that is, to functors.

It is useful to have at hand the following observation, whose proof (involving two
applications of the Yoneda isomorphism) the reader will easily supply.

Lemma 6.1 Let M : A aAB and N : C aAD be modules, and let  T : A aAC and S :

B aAD be functors, identified with modules as above.  Then to give a modul e -
m o r p h i s m θ : S ⁄⁄⁄M aAN ⁄⁄⁄T  is equally to give a family of functions  θB ⁄⁄A : M(B⁄⁄,⁄⁄A)
aAN(SB⁄⁄,⁄⁄TA),  natural in B  and A. 

The cartesian product  A × B of categories defines an autonomous monoidal
structure on the bicategory  Mod⁄.  The dual of  A as an object of  Mod is its usual dual

A ⁄op as a category, in view of the canonical isomorphism of categories

Mod(C × A ⁄, D)  ≅ Mod(C, A ⁄op⁄⁄× D). (6.2) 

6.2 Suppose  V and  W are bicategories.  A procategory A : V aAW is defined in the
same way as a category from  V to  W except that in (2.2) we take a module ⁄⁄A (A⁄⁄,⁄⁄B ⁄) :
V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄) ⁄⁄rather than a functor, with the consequent changes in the data
(2.3) and (2.4).  Thus the unit (2.3) is now to be a module-morphism  ηA :   1A+

aAA (A⁄⁄,⁄⁄A ⁄)  1A−
,  where the functors    1A+

: 1 aAW(A+⁄⁄,⁄⁄A+⁄⁄)  and    1A−
: 1 aAV(AÐ ⁄⁄,⁄⁄AÐ ⁄)

are identified with the corresponding modules: so that, by Lemma 6.1, to give  ηA is
equally to give an element  

ηA∈ A (A⁄⁄,⁄⁄A ⁄)  ( , )1 1A A+ −
, (6.3)

Again, since (2.4) is now to be a module-morphism    µA C
B
, :  ⊗ ⁄' (A (B⁄,⁄⁄C) × A (A⁄,⁄⁄B))  ⇒
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A (A⁄,⁄⁄C) ⊗ ,  where  ⊗ ⁄'  and  ⊗ are functors, it becomes by Lemma 6.1 a family of
functions 

  
µA C
B (v⁄⁄,⁄⁄u ⁄⁄;⁄⁄g⁄⁄,⁄⁄f⁄⁄) :  A (B⁄⁄,⁄⁄C⁄)(v⁄⁄,⁄⁄g⁄) × A (A⁄⁄,⁄⁄B ⁄)(u⁄⁄,⁄⁄f⁄)  aAA (A⁄⁄,⁄⁄C⁄)(v⁄⁄⊗ ' ⁄⁄u ⁄⁄,⁄⁄g⁄⁄⊗ ' ⁄⁄f⁄) (6.4) 

natural in  f⁄⁄∈ ⁄⁄V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄),  g⁄⁄∈ ⁄⁄V⁄⁄(BÐ ⁄⁄,⁄⁄CÐ ⁄⁄),  u ⁄⁄∈ ⁄⁄W ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄),  v ⁄⁄∈ ⁄⁄W ⁄⁄(B+⁄⁄,⁄⁄C+⁄⁄).  In this language,

the axioms (2.6) Ð (2.8) become the two equations:

A (A⁄⁄,⁄⁄B ⁄)(⁄l⁄⁄⁄Ð1⁄⁄,⁄⁄l⁄⁄⁄⁄) (
  
µ η ξA B
B

B B Bu f( , ; , )( , )1 1
+ −

)  =  ξ , (6.5)

A (A⁄⁄,⁄⁄B ⁄)(⁄r ⁄⁄Ð1⁄⁄,⁄⁄r ⁄⁄)  (
  
µ ξ ηA B
A

A A Au f( , ; , )( , )1 1
+ −

)   =   ξ ,     (6.6)

and (dropping the primes on  ⊗ ') the commutativity of the diagram

A⁄⁄(C⁄,⁄⁄D⁄)(w , h)  ×  A⁄⁄(B⁄,⁄⁄C⁄⁄)(v , g ⁄⁄)  ×  A⁄⁄(A⁄,⁄⁄B⁄⁄)(u , f⁄⁄)

A⁄⁄(B⁄,⁄⁄D⁄)(w ⊗ ⁄⁄v , h ⊗ ⁄⁄⁄g)  ×  A⁄⁄(A⁄,⁄⁄B⁄⁄)(u , f ⁄⁄) A⁄⁄(C⁄,⁄⁄D⁄)(w , h)  ×  A ⁄⁄(A⁄,⁄⁄C⁄)(v ⊗ ⁄⁄u , g ⊗ ⁄⁄⁄f⁄⁄)

A⁄⁄(A⁄,⁄⁄D⁄)((w ⊗ ⁄⁄v) ⊗ ⁄⁄u , (h ⊗ ⁄⁄⁄g) ⊗ ⁄⁄f ) A⁄⁄(A⁄,⁄⁄D⁄)((w ⊗ ⁄⁄v) ⊗ ⁄⁄u , (h ⊗ ⁄⁄⁄g) ⊗ ⁄⁄f )≅
A⁄⁄(A⁄,⁄⁄D⁄)(a    , a ) Ð1 

µ           ×1   C
  B, D

1  ×   µ                B
  A, C

  µ     C
  A, D

  µ     B
  A, D

(6.7).

×   
µA C
B
,

  
µA D
C
,

6.3 For procategories  A and  B enriched from  V to  W,  a functor T : A aAB is
given by the same data as in Section 2.4, except that in place of (2.12) we now have a
module morphism 

TA B :  A (A⁄,⁄⁄B) aAB(TA⁄⁄,⁄⁄TB)  : V⁄(AÐ
⁄, BÐ

⁄⁄) aAW ⁄(A+
⁄, B+

⁄⁄), (6.8)
consisting of components

TA B⁄⁄(u⁄⁄,⁄⁄f⁄⁄)  :  A (A⁄,⁄⁄B)(u⁄⁄,⁄⁄f⁄⁄) aAB(TA⁄⁄,⁄⁄TB)(u⁄⁄,⁄⁄f⁄⁄) (6.9)
for which the equation

TA A  ( , )1 1A A+ −
(ηA⁄⁄)  =  ηTA (6.10)

holds and the following diagram commutes:

A⁄⁄(B⁄,⁄⁄C⁄)(v , g)  ×  A⁄⁄(A⁄,⁄⁄B⁄⁄)(u , f⁄⁄)

A⁄⁄(A⁄,⁄⁄C⁄)(v ⊗ ⁄⁄u , g ⊗ ⁄⁄f )

  µ    B
  A, C

T      (v , g)  ×  T     (u , f⁄⁄)
  B, C   A, B

B⁄⁄(TB⁄,⁄⁄TC⁄)(v , g)  ×  B⁄⁄(TA⁄,⁄⁄TB⁄⁄)(u , f⁄⁄)

B⁄⁄(TA⁄,⁄⁄TC ⁄)(v ⊗ ⁄⁄u , g ⊗ ⁄⁄f )

  µ    TB
  TA, TC

T      (v ⊗ ⁄⁄u , g ⊗ ⁄⁄f )
  A, C

(6.11).
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Functors  T : A aAB and  P : B aAC compose to give a functor  P⁄⁄T : A aAC,  where
(P⁄⁄T)A B⁄⁄(u⁄⁄,⁄⁄f⁄⁄)  =  PA B⁄⁄(u⁄⁄,⁄⁄f⁄⁄) ⋅TA B⁄⁄(u⁄⁄,⁄⁄f⁄⁄) ; (6.12)

and this associative composition has identities  1A : A aAA ⁄⁄,  where  (1A)A B : A (A⁄,⁄⁄B)
aAA (A⁄,⁄⁄B)  is itself the identity module morphism.

6.4 For functors  T, S : A aAB,  a natural transformation α : T aAS  is a function
assigning to each pair  A, B  of objects of  A a module morphism

αA B :  A (A⁄,⁄⁄B) aAB(TA⁄⁄,⁄⁄SB)  : V⁄(AÐ
⁄, BÐ

⁄⁄) aAW ⁄(A+
⁄, B+

⁄⁄) , (6.13)
with components

αA B⁄(u⁄⁄,⁄⁄f⁄⁄)  :  A (A⁄,⁄⁄B)⁄(u⁄⁄,⁄⁄f⁄⁄) aAB(TA⁄⁄,⁄⁄SB)⁄(u⁄⁄,⁄⁄f⁄⁄) , (6.14)
subject to the condition (compare (3.3)) that the following diagram commute for all  v, u,
g, f :

A ⁄⁄(B⁄,⁄⁄C ⁄)(v , g)  ×  A ⁄⁄(A⁄,⁄⁄B ⁄⁄)(u , f⁄⁄)

  µ     TB
  TA, SC

S      (v , g)  ×  α     (u , f⁄⁄)
  B, C   A, B B ⁄⁄(SB⁄,⁄⁄SC⁄)(v , g)  ×  B⁄⁄(TA ⁄,⁄⁄SB⁄⁄)(u , f⁄⁄)

B ⁄⁄(TA⁄,⁄⁄SC⁄)(v ⊗ ⁄⁄u , g ⊗ ⁄⁄f )

  µ     S⁄⁄B
  TA, SC

(6.15).B⁄⁄(TB⁄,⁄⁄SC ⁄)(v , g)  ×  B⁄⁄(TA ⁄,⁄⁄TB⁄⁄)(u , f⁄⁄)

α       (v , g)  ×  T     (u , f⁄⁄)
  B, C   A, B

As in Section 3.1, we can equally describe a natural transformation  α : T aAS  by giving
its one-sided components (or merely its components), which are the elements  

αA =  αA A  ( , )1 1A A+ −
(ηA⁄⁄)⁄⁄∈ ⁄⁄B(TA⁄⁄,⁄⁄SA)  ( , )1 1A A+ −

; (6.16)  
indeed a family  αA for  A⁄⁄∈ ⁄⁄obA so arises precisely when we have commutativity in  

    A( , )( , )A B u f   αB A BT u f× ( , )
    B B( , )( , ) ( , )( , )TB SB TA TB u fB B1 1

+ −
×

    B( , )( , )TA SB u fB B1 1
+ −
⊗ ⊗    B B( , )( , ) ( , )( , )SA SB u f TA SA A A×

+ −
1 1

    B( , )( , )TA SB u f    B( , )( , )TA SB u fA A⊗ ⊗
+ −

1 1

    B l l( , )( , )TA SB −1

,     (6.17)

  
µ TA SB

TB
,

  
µ TA SB

SA
,

    B r r( , )( , )TA SB −1

  S u fA B A( , ) × α

and then  αA B⁄(u⁄⁄,⁄⁄f⁄⁄)  is the diagonal of (6.17).
Natural transformations ⁄⁄α : T aAS ⁄⁄and ⁄⁄β : S aAR ⁄⁄have a "vertical" composite

β⁄⋅⋅⋅⋅⁄⁄α : T aAR  whose components are given by

(β⁄⋅⋅⋅⋅⁄⁄α)A =  
  
µTA RA

SA
A A A A, ( , ; , )1 1 1 1

+ − + −
(βA , αA⁄⁄), (6.18)

while natural transformations  α : T aAS : A aAB and  γ : P aAQ : B aAC have a
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"horizontal composite" ⁄⁄γ ⁄⁄α :  P⁄⁄T aAQ⁄⁄S  defined by taking the homomorphism  (γ ⁄⁄α)A⁄⁄B

:  A (A⁄,⁄⁄B) aAB(PTA⁄⁄,⁄⁄QSB)  to be the composite

    A B C( , ) ( , ) ( , ), ,
A B TA SB PTA QSBA B TA SBα β

 →  → . (6.19)

We leave the reader to verify that what we have described in Sections 6.2 Ð 6.4 is a (large)
2-category  PCaten(V⁄,⁄⁄W ⁄⁄).  

6.5  In fact, the  PCaten(V⁄,⁄⁄W ⁄⁄)  are the hom-2-categories for a (large) bi-2-category  PCaten,
whose composition 2-functors

° =  
    
o

V U
W :  PCaten(W ⁄,⁄⁄U) × PCaten(V⁄,⁄⁄W) aaAPCaten(V⁄,⁄⁄U) (6.20)

we now define. We begin as with the definition of the functor (2.21).  For procategories
A : V aAW and  C : V aAU,  the definition of  C ⁄⁄°⁄⁄A follows (2.22) Ð (2.25) precisely
(although of course the composite mentioned in (2.25) is that of modules, not of
functors); in place of (2.26) we take  η (C⁄⁄,⁄⁄A)⁄⁄∈ ⁄⁄(C ⁄⁄°⁄⁄A )((C⁄⁄,⁄⁄A)⁄⁄,⁄⁄(C⁄⁄,⁄⁄A))  ( , )1 1C A+ −

to be (see
(6.3)) the image 

η (C⁄⁄,⁄⁄A) =  [⁄⁄ηC⁄⁄ , η ⁄A⁄⁄] (6.21)
of the pair  (⁄⁄ηC⁄⁄ , η ⁄A⁄⁄)  under the coprojection

    
C A C A( , )( , ) ( , )( , ) ( , )( , ) ( , )( , )C C A A

copr
C C u A A uC C A A C A

uA1 1 1 1 1 1
1

+ − + −

+

+ −
×  → ×∫ ;

and in place of (2.27) we take (see (6.4)) the family of functions 

    
C A C A( ©, ")( , ) ( ©, ")( , ) ( , ©)( , ) ( , ©)( , )

, ( , ),( ", ")
( ©, ©)

C C k v A A v g C C h u A A u f
v u C A C A

C A

× × ×  →∫
µ

    
C A( , ")( , ) ( , ")( , )C C k h w A A w g f

w
⊗ × ⊗∫ (6.22)

whose composite with the (v,u)-coprojection into the domain coend is the composite of

a middle-four-interchange isomorphism, the function  
  
µ µC C
C

A A
A

"
©

"
©× ,  and the v ⁄⁄⊗ ⁄⁄u-

coprojection.  Given functors  T : A aAB and  S : C aAD,  we define  S ° T : C ⁄⁄°⁄⁄A aA

D⁄⁄°⁄⁄B on objects as in (2.28), while the "effect on homs" is induced on coends by the
functions

S ⁄⁄C  C⁄'⁄⁄(h⁄⁄,⁄⁄u ⁄⁄) × TA ⁄A'⁄⁄(u⁄⁄,⁄⁄f⁄⁄) . (6.23)

It should now be clear how to modify (3.16) in order to define  
    
o

V U
W on 2-cells. 

To give a module  A (A⁄⁄,⁄⁄B ⁄) : V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄)  is equally to give a functor

W ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄)⁄op × V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aASet⁄⁄,  or again, to give a functor  Ab(A⁄⁄,⁄⁄B ⁄) : V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) ×

W ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄)⁄op aASet .  That being so, it is immediate from (6.3) Ð (6.7) that to give a
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procategory  A : VaAW is equally to give a category  Ab : V × W ⁄⁄co aAΣSet⁄⁄.  Again, by

(6.8) Ð (6.11), to give a functor  T : A aAB is equally to give a functor  Tb : Ab aABb;
while, by (6.13) and (6.15), to give a natural transformation  α : T aAS  is equally to give⁄⁄

a natural transformation  αb : Tb aASb.  Moreover, these bijections respect the various
compositions and identities which make up the 2-category  PCaten(V⁄,⁄⁄W ⁄⁄)  and the 2-

category  Caten(V × W ⁄⁄co, ΣSet⁄⁄⁄).  However, we may not properly speak of the latter 2-
category, since  ΣSet is not a "bicategory" in our present sense: it is not a bicategory
internal to  Set⁄⁄.  We may however consider a larger category  SET of sets, in which  Set
is a category object, and form the tricategory  CATEN of bicategory-objects in  SET,
related to  SET as  Caten is to  Set⁄⁄.  So what we have established is an isomorphism of 2-
categories⁄

PCaten(V⁄,⁄⁄W ⁄⁄)  ≅ CATEN⁄(V × W ⁄⁄co, ΣSet⁄⁄⁄) (6.24)

for  V, W ⁄⁄∈ ⁄⁄Caten.  Of course  CATEN has an "internal-hom"  CONV(U ⁄⁄,⁄⁄Z)  whenever
the  U(A⁄⁄,⁄⁄B)  lie in  Set and the  Z(C⁄⁄,⁄⁄D)  admit K-colimits for  K a category-object in
Set⁄⁄;  and in particular we have, for  W ⁄⁄∈ ⁄⁄Caten⁄⁄,  an analogue

P*W = CONV(W ⁄⁄co, ΣSet⁄⁄⁄) (6.25)
of  PW⁄⁄.  Now the analogue of Proposition 4.3 gives: 

Proposition 6.5 For  V, W ⁄⁄∈ ⁄⁄Caten⁄⁄, there is an isomorphism of 2-categories

PCaten(V⁄,⁄⁄W ⁄⁄)  ≅ CATEN⁄(V, P*W ⁄⁄⁄) (6.26)
sending the procategory  A : VaAW to the category  A ⁄# : VaAP*W,  given on objects
by

A ⁄#(A⁄⁄,⁄⁄B)(f⁄)(u)  = A ⁄(A⁄⁄,⁄⁄B)(u⁄⁄,⁄⁄f) ,
and similarly on morphisms.

6.6 Many important bicategories are locally small; if we were content to restrict our
attention to these, we could have established a result like Proposition 6.5 without going
outside  Caten.  We first replace  Mod by the bicategory  mod of small categories and

small modu l e s : such a module  M : A aAB being a functor  M : B ⁄op × A aAset⁄⁄.
Then, for locally-small bicategories  V and  W,  a smal l protocategory  A : V aAW is 
small module  A (A⁄⁄,⁄⁄B ⁄) : V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄).  Proceeding as in Sections 6.2 Ð 6.5,
we obtain a tricategory  pCaten of locally-small bicategories, small procategories,
functors, and natural transformations. In place of (6.24) and (6.26) we have
isomorphisms

pCaten(V⁄,⁄⁄W ⁄⁄)  ≅ Caten(V × W ⁄⁄co, ΣSet⁄⁄⁄)  ≅ Caten⁄(V, PW⁄⁄⁄) (6.27)

for locally-small  V and  W.

33



6.7 The analogue of Proposition 5.3 for the higher universe gives us, in an obvious
notation, an equivalence of 2-categories

CATEN(V, P*W⁄⁄)     ~ LLA(P*V, P*W⁄⁄) (6.28)

for  V, W ∈ Caten⁄⁄;  composing this with the isomorphism (6.26) gives an equivalence

PCaten(V⁄,⁄⁄W ⁄⁄)     ~ LLA(P*V, P*W⁄⁄) (6.29)

for  V, W ∈ Caten⁄⁄;  similarly, when  V and  W here are also locally small, we have an
equivalence 

pCaten(V⁄,⁄⁄W ⁄⁄)     ~ Lla(P*V, P*W⁄⁄) . (6.30)

Proposition 6.7 The assignment V jAP*V extends to a biequivalence between

PCaten and the subtricategory of  CATEN  consisting of the objects of the form  P*V, t h e
morphisms which are local left adjoints, and all 2-cells and 3-cells.  Similarly, t h e
assignment V jAPV extends to a biequivalence between  pCaten and t h e
subtricategory of  Caten  consisting of the objects of the form  PV, the morphisms w h i c h
are local left adjoints, and all 2-cells and 3-cells.

Proof The principle being the same in both statements, it suffices to prove only the
second.  It is a matter of showing that the equivalences (6.30) are compatible with the
compositions in  pCaten and  Caten.  For this, suppose the procategories  A : V aAW

and  C : W aAU are taken to the locally left adjoint categories  B : PVaAPW and  D :
PW aAPU ;  this means  B ⁄⁄°⁄⁄YV ≅ A ⁄# and  D⁄⁄°⁄⁄YW ≅ C ⁄#.  We need to see that  C ⁄⁄°⁄⁄A is
taken to  D⁄⁄°⁄⁄B ;  so we must see that  D⁄⁄°⁄⁄B ⁄⁄°⁄⁄YV ≅ (C ⁄⁄°⁄⁄A )⁄#,  or in other words, that
D⁄⁄°⁄⁄A ⁄# ≅ (C ⁄⁄°⁄⁄A )⁄#.  On objects this is clear since the spans for  A and  A ⁄# are equal, as are
those for  C and  D,  and those for  C ⁄⁄°⁄⁄A and  (C ⁄⁄°⁄⁄A )⁄#.  On homs it follows from the fact
that  mod is biequivalent to the sub-2-category of  Cat consisting of the set-valued
presheaf categories and the left adjoint functors; more explicitly, 

(C ⁄⁄°⁄⁄A )⁄#((C⁄⁄,⁄⁄A)⁄⁄,⁄⁄(D⁄⁄,⁄⁄B))(f⁄)(h)  =  (C ⁄⁄°⁄⁄A )((C⁄⁄,⁄⁄A)⁄⁄,⁄⁄(D⁄⁄,⁄⁄B))(h ⁄⁄,⁄⁄f⁄)

=  
    

C A( , )( , ) ( , )( , )C D h u A B u f
u

∫ × =  
    

C A# #( , )( )( ) ( , )( )( )C D u h A B f u
u

∫ ×

≅
    

D W A( , )( ( , )( , ))( ) ( , )( )( )#C D C D u h A B f u
u

− − − ×∫ ,  (6.31) 

this last since  D⁄⁄°⁄⁄YW ≅ C ⁄#.  However, the left-adjoint  D(C⁄⁄,⁄⁄D)  is the left Kan extension

of its restriction to the representables, so that, for any  F : W ⁄⁄(CÐ ⁄⁄,⁄⁄DÐ ⁄⁄)⁄op aASet⁄⁄,  we have
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D(C⁄⁄,⁄⁄D) F  ≅
    

D W( , )( ( , )( , )) ;C D C D h u Fu
u

− −∫ ×

so that (6.31) is isomorphic to  D(C⁄⁄,⁄⁄D)(⁄⁄A ⁄#(A⁄⁄,⁄⁄B)(f⁄)⁄⁄)⁄⁄(h),  which is  (D⁄⁄°⁄⁄A ⁄#)(f⁄)(h)⁄⁄,  as
desired.

The remaining details are left to the reader. Q . E . D .

6.8  Remark Let  M denote a monoidal bicategory as defined in [GPS; Definition 2.6]

and studied in [DS].  It is possible to construct a tricategory  M-Caten.  In the case where

M = Cat (with the cartesian monoidal structure), this reduces to Caten.  In the case

where  M = Mod (with the cartesian product as the tensor product),  M-Caten contains

PCaten as a full subtricategory: the objects of  M-Caten are probicategories (see [D2; p. 63]

and [D3]), not merely bicategories.  In general, the objects of  M-Caten are M-

bicategories: the definition mimics that of bicategories except that the homs are objects of

M rather than categories.

6.9 There is an inclusion  
CatenaaAPCaten (6.32)

which is the identity on objects and uses the inclusion  Cat aAMod to interpret every
category  A : VaAW as a procategory.   

Proposition 6.9 Suppose that idempotents split in all the hom-categories of t h e

bicategory W (that is, that  W is locally "cauchy complete"). A procategory  A : V aAW
has a right adjoint in PCaten if and only if it is isomorphic to a pseudofunctor.

Proof By an argument similar to the proof of Proposition 2.7 we see that  A : V aAW

has a right adjoint in  PCaten if and only if the span  obA has a right adjoint, the
composition  µ and identity  η are invertible as module morphisms, and each hom-
module  A (A⁄⁄,⁄⁄B ⁄)  has a right adjoint in  Mod.  This last means, since idempotents split
in  W(A+

⁄⁄,⁄⁄B+),  that  A (A⁄⁄,⁄⁄B ⁄)  is isomorphic to a functor.  So  A is essentially in  Caten.
Q . E . D .

6.10  Examples
(a)  Among the objects of  PCaten is  Σset⁄⁄,  and Proposition 6.5 gives

PCaten(1,⁄Σset)  ≅  CATEN(1,⁄P *(Σset))  ≅ P *(Σset)-CAT ;
moreover (6.25) and (4.23) give
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P *(Σset)  =  CONV((Σset)⁄co, ΣSet)  ≅ Σ ⁄[set⁄op, Set] .
Thus

PCaten(1⁄⁄,⁄⁄⁄ΣSet)  ≅  [set⁄op,⁄⁄Set]-CAT ,

where the monoidal structure on  [set⁄op,⁄⁄Set]  is the cartesian one. ⁄

(b)  A set  X  can be seen as a discrete category, or again as a discrete bicategory : in each
case the set of objects is  X⁄⁄,  while all morphisms and 2-cells are identities.  For sets  X
and  Y  seen as bicategories, to give a procategory  A : X aAY  is by (6.24) to give a
category  X × Y aAΣSet⁄⁄;  and this is easily seen to amount to the giving of a (classical)
category    A x ⁄⁄,⁄⁄y for each  (x⁄⁄,⁄⁄y)⁄⁄∈ ⁄⁄X × Y⁄⁄,  or again to give a span  ( XSa   A

aAY )  i n
Cat⁄⁄.  In fact the two tricategories obtained by restricting the objects of both  PCaten and
Span(Cat)  to sets are biequivalent.

(c)  For each bicategory  V there is a functor  I : obV aAV which is the identity on
objects;  as in Example 2.3 (b),  this  I⁄ can be regarded as a category enriched from  obV to
V.  Yet there is also a procategory  J : VaAobV.  Here again  obJ is the identity span of
obV.  We need to define the module  J ⁄⁄(V,W) : V⁄⁄(V,W) aAobV⁄⁄(V,W)  for each  V, W ;
however  obV⁄⁄(V,W)  is empty unless  V = W,  and  obV⁄⁄(V,V)  is a singleton;  so a
module  V⁄⁄(V,V) aAobV⁄⁄(V,V)  amounts to a functor  V⁄⁄(V,V) aASet;  we take  J ⁄⁄(V,V)
to be the functor  V⁄⁄(V,V)(1V ⁄⁄,⁄⁄Ð)  : V⁄⁄(V,V) aASet represented by the identity of  V:

J ⁄⁄(V,V)(e)  =  V⁄⁄(V,V)(1V ⁄⁄,⁄⁄e).
Now  ηV∈ J ⁄⁄(V,V)(1V ⁄)  is the identity 2-cell of  1V ⁄⁄,  and the natural transformation  

  
µV V
V (e',⁄⁄e) : J ⁄⁄(V,V)(e') × J ⁄⁄(V,V)(e) aAJ ⁄⁄(V,V)(e'⁄⁄⊗ ⁄⁄e)

takes  (σ' : 1V ⇒ e' , σ : 1V ⇒ e )  to the composite    1 1 1V V V e e≅
 → ⊗

⊗
 → ⊗

σ σ©
© .  

In fact, as the reader will easily verify,  J is just the right adjoint of  I⁄⁄,  whose
existence is guarenteed by Proposition 6.9. 

(d)  Examples (b) and (c) have the consequence that each procategory (and hence every
category)  A : V aAW has a "family of underlying categories"  AV ⁄⁄⁄W⁄⁄.  For we have the
composite

    ob obV I V
A

W
J

W →  →  →

in  PCaten and hence a span      J A Io o : obVaAobW in  Cat.  The objects of the category

    J A Io o are easily seen to be the objects of  A ⁄,  while there is an arrow  f : A aAB  i n

    J A Io o only when  AÐ = BÐ and  A+ = B+⁄⁄,  in which case  f  is an element of the set
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A (A⁄⁄,⁄⁄B)(  1A+
,⁄⁄  1A−

).  We write  AV ⁄⁄⁄W for the full subcategory of      J A Io o consisting of
those objects  A  with  AÐ = V  and  A+ = W,  so that  AV ⁄⁄⁄W(A⁄⁄,⁄⁄B) = A (A⁄⁄,⁄⁄B)(1W,⁄⁄1V)⁄⁄.    

In fact we have a trifunctor  ob : PCaten aASpan(Cat)  whose effect on homs is the
pseudofunctor

PCaten(I⁄⁄,⁄⁄J ⁄) : PCaten(V⁄⁄,⁄⁄W ⁄) aAPCaten(obV⁄⁄,⁄⁄obW ⁄) aASpan(Cat)(obV⁄⁄,⁄⁄obW ⁄).
Thus each functor  T : A aAB : V aAW gives an ordinary functor  TV ⁄⁄W : AV ⁄⁄⁄W
aABV ⁄⁄⁄W and each natural transformation ⁄⁄α : T aAS : A aAB : V aAW ⁄⁄gives a
natural transformation ⁄⁄αV ⁄⁄W : TV ⁄⁄W 

aASV ⁄⁄W
⁄⁄. 

6.11 The monoidal structure on  Caten extends to  PCaten⁄⁄,  where every object gains a
dual.  For it is clear that we can form the cartesian product  A × B : V × U aAW × X of
procategories  A : V aAW and  B : U aAX by taking the product of the spans on
objects and the product of the modules on homs; this easily extends also to functors and
natural transformations.  As before the associativity and unit constraints are obvious.

Proposition 6.11 For any bicategories  U, V, W,  there is a pseudonatural i somorph i sm
of 2-categories

PCaten(U × V⁄⁄,⁄⁄W ⁄⁄)  ≅  PCaten(U ⁄⁄,⁄⁄V⁄co⁄⁄×⁄⁄W ⁄⁄).  

Proof The isomorphism is immediate from (6.24); we leave the reader to verify its
pseudonatural character. Q . E . D .

6.12 Proposition 6.11 should be compared with Proposition 4.3, whose proof depended
on the autonomy of the monoidal bicategory  Span:

Span⁄(⁄X⁄⁄×⁄⁄Y⁄⁄,⁄⁄Z)  ≅ Span⁄(⁄X⁄⁄,⁄⁄Y⁄⁄×⁄⁄Z), (6.33)
and the closedness of the monoidal bicategory  Cat:

Cat⁄⁄(A ⁄⁄×⁄⁄B ⁄⁄,⁄⁄C ⁄⁄)  ≅ Cat⁄⁄(A ⁄⁄,⁄⁄[B ⁄⁄,⁄⁄C ⁄⁄]⁄). (6.34)
Extending Remark 6.8, we point out that the analogue of Proposition 4.3 can be proved

with any closed monoidal  M in place of  Cat.  In particular, this works for  M = Mod;
indeed the situation is better because  Mod is autonomous: so that applying (6.33) at the
object level of a category  A : U × VaAW,  and (6.2) at the level of homs, we are led to

the bicategory  V⁄⁄⁄co⁄⁄×⁄⁄W as internal hom in  PCaten without any requirement of local

cocompleteness on  W.  

6.13 Expanding on Example 6.10 (b), we shall show how to regard procategories as special
spans between bicategories.  Let us begin with a procategory  A : VaAW and construct a
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bicategory  E and functors  (= strict morphisms of bicategories)

    V E W
( ) ( )− +←   → . (6.35)    

The objects of  E are the objects of  A .  The hom-category  E(A⁄⁄,⁄⁄B)  is the two-sided
category of elements (in the sense of [St1]) of the module (= profunctor)  A (A⁄⁄,⁄⁄B ⁄) :
V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄) aAW ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄);  so a morphism  (u ⁄,⁄⁄a⁄⁄,⁄⁄f⁄) : A aAB  in  E consists of
u ⁄⁄∈ W ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄),  f⁄⁄∈ V⁄⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄)  and  a⁄⁄∈ A (A⁄⁄,⁄⁄B ⁄)(u⁄⁄,⁄⁄f⁄),  and a 2-cell  (ξ ⁄⁄, ⁄σ) : (u ⁄,⁄⁄a⁄⁄,⁄⁄f⁄) ⇒

(u' ⁄,⁄⁄a '⁄⁄,⁄⁄f⁄' ⁄)  consists of 2-cells  ξ ⁄ : u ⁄⇒ u'  in  W and  σ ⁄ : f ⁄⇒ f⁄⁄'  in  V for which  
A (A⁄⁄,⁄⁄B ⁄)(ξ ⁄⁄,⁄⁄1)(a')  =  A (A⁄⁄,⁄⁄B ⁄)(1⁄⁄,⁄⁄σ)(a) .          

Horizontal composition  ⊗ : E(B⁄⁄, C⁄) × E(A⁄⁄,⁄⁄B ⁄) aAE(A⁄⁄,⁄C⁄)  is given by

(v ⁄,⁄⁄b⁄⁄,⁄⁄g⁄) ⊗ (u ⁄,⁄⁄a⁄⁄,⁄⁄f⁄)  =  (v ⊗ u , 
  
µA C
B (v⁄⁄,⁄⁄u ⁄⁄;⁄⁄g⁄⁄,⁄⁄f⁄⁄)(b⁄⁄,⁄⁄a) , g ⊗ f )  ,   

(6.36)
(ζ ⁄⁄, ⁄τ ) ⊗ (ξ ⁄⁄, ⁄σ)  =  (ζ ⁄ ⊗ ξ ⁄⁄, ⁄τ ⊗ σ ).

The identity morphism of  A  is    ( , , )1 1A A A+ −
η .  The ssociativity and unit constraints are

uniquely determined by the condition that we have functors as displayed in (6.35), where 
(ξ ⁄⁄, ⁄σ) :  (u ⁄,⁄⁄a⁄⁄,⁄⁄f⁄) ⇒ (u' ⁄,⁄⁄a '⁄⁄,⁄⁄f⁄' ⁄) : A aAB  

in ⁄⁄E ⁄⁄goes to  σ :  f ⇒ f⁄⁄' ⁄: AÐ
aA⁄BÐ i n ⁄⁄V ⁄⁄under  (  )Ð ,  and goes to ξ :  u ⇒ u ' ⁄: A+

aAB+

in  W under  (  )+ .  
Conversely,  any span (6.35) of functors between bicategories, for which each span

    W E V( , )
( )

( , )
( )

( , )A B A B A B+ +
+

− −←  − → (6.37) 

of functors between categories is a 2-sided discrete fibration from ⁄⁄W ⁄⁄(A+⁄⁄,⁄⁄B+⁄⁄) ⁄⁄to
V⁄(AÐ ⁄⁄,⁄⁄BÐ ⁄⁄)  (in the sense of [St1]), is isomorphic to one constructed as above from a
procategory.  

7. ÊModules

We would expect there to be a good notion of module  M : A aAB : V aAW
between two-sided enriched categories.  For categories enriched in a bicategory on one
side, the definition and properties can be found in [St3] and [BCSW].  Indeed, equipped
with the convolution construction of Proposition 4.3, we have a mechanism for turning
the one-sided theory into the two-sided.  However the two-sided definition is itself quite
natural, and leads to new phenomena such as the behaviour of modules under the
composition of two-sided enriched categories.  We also need to keep in mind that our
enriched categories here are generalized lax functors, so that modules give generalized
transformations between lax functors; observe the increase in generality from the
enriched functors of Example 2.5(b) between such categories, to the enriched modules of
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Example 7.4(a) below.

7.1 Suppose  A , B are categories enriched from  V to  W.  A m o d u l e M : A arAB
consists of the following data:

(i) for objects  A  of  A and  B  of  B,  a functor
M(B⁄⁄,⁄⁄A)  :  V⁄⁄(BÐ

⁄,⁄AÐ⁄) aAW ⁄(B+
⁄⁄,⁄⁄A+) ;

(ii) for objects  A, A'  of  A and  B  of  B,  2-cells

B+

A'+

A+

A⁄(A' , A)(g⁄⁄)M⁄⁄(B ⁄⁄, A'⁄⁄)(f⁄)

M⁄⁄(B , A ⁄⁄)(g ⊗  f )

⇓ λ       (g , f ⁄)A'
B A

(7.1)
in  W natural in  f⁄⁄∈ V⁄⁄(BÐ

⁄,⁄A 'Ð⁄⁄)  and  g⁄⁄∈ V⁄⁄(A'Ð⁄,⁄AÐ⁄⁄) ;
(iii) for objects  A  of  A and  B, B'  of  B,  2-cells

B+

B'+

A+

B⁄(B , B' )(f⁄⁄) M⁄⁄(B' , A⁄⁄)(g ⁄)

M⁄⁄(B , A ⁄⁄)(g ⊗  f )

⇓ ρ       (g , f ⁄)B'
B A

(7.2)
in  W natural in  f⁄⁄∈ V⁄⁄(BÐ

⁄,⁄B 'Ð⁄⁄)  and  g⁄⁄∈ V⁄⁄(B'Ð⁄,⁄AÐ⁄⁄) ;
which are to be such that the five diagrams (7.3) Ð (7.7) commute.

( A ⁄(A', A )(g) ⊗ A ⁄(A" , A' )(g'⁄⁄) ) ⊗ M⁄⁄(B ⁄, A"⁄)(f⁄)   

 a ≅

1 ⊗  λ       (g' , f )A"
B A'

M ⁄⁄(B, A⁄)(g ⊗ (g'⁄⁄ ⊗ f⁄⁄) )

 A ⁄(A" , A )(g ⊗ g'⁄⁄⁄⁄) ⊗ M⁄⁄(B, A"⁄⁄)(f⁄) 
µ      (g , g'⁄) ⊗  1A⁄'

A" A

M ⁄⁄(B, A⁄⁄)( (g ⊗ g'⁄⁄⁄) ⊗ f⁄⁄)

M⁄⁄(B, A)(a⁄⁄)≅

λ      (g ⊗ g' , f⁄)A"
B A

λ      (g , g' ⊗ f⁄⁄)A'
B A

(7.3)

A ⁄(A' , A )(g) ⊗ ( A ⁄(A" , A' )(g'⁄⁄) ⊗ M⁄⁄(B ⁄, A"⁄⁄)(f⁄) )   

A⁄(A' , A )(g) ⊗ M⁄⁄(B ⁄, A'⁄⁄)(g'⁄⁄ ⊗ f⁄)   

 1   ⊗ M ⁄⁄(B⁄, A⁄⁄)(f⁄⁄)
A+

A⁄(A , A)(1   ⁄) ⊗ M⁄⁄(B⁄, A ⁄⁄)(f⁄) AÐ

η   ⊗  1
A

λ     (1   , f ⁄)A
B A AÐ M⁄⁄(B ⁄, A⁄⁄)(1⁄⁄  ⊗ f )

AÐ

M⁄⁄(B ⁄, A⁄⁄)(f⁄⁄)
 l 
≅

M⁄⁄(B ⁄, A⁄⁄)(l )

(7.4)
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( M⁄⁄(B", A⁄⁄)(g ⁄) ⊗ B⁄(B' , B" ⁄⁄)(f⁄⁄'⁄⁄) ) ⊗ B ⁄(B , B' )(f⁄⁄) 

M⁄⁄(B"⁄, A⁄⁄)(g ⁄) ⊗ ( B⁄(B' , B" )(f ⁄⁄'⁄⁄) ⊗ B ⁄(B , B' )(f⁄⁄) ) 

 a ≅

M⁄⁄(B"⁄, A⁄⁄)(g ⁄) ⊗ B⁄(B , B" )(f⁄⁄' ⊗ f⁄⁄) 

1 ⊗  µ       (f⁄⁄' , f⁄⁄)B'
B B"

M⁄⁄(B⁄, A⁄⁄)(g ⊗ (f⁄⁄' ⊗ f⁄⁄) )

M⁄⁄(B', A⁄⁄)(g ⁄⊗ f⁄⁄'⁄) ⊗ B ⁄(B , B' )(f⁄⁄) 
ρ     (g , f⁄⁄' ⁄) ⊗  1B"

B' A

M⁄⁄(B⁄, A⁄⁄)( (g ⊗ f⁄⁄' ⁄⁄) ⊗ f⁄⁄)

M ⁄⁄(B⁄, A⁄⁄)(a⁄⁄)≅

ρ     (g ⊗ f⁄⁄'⁄, f⁄)B'
B A

ρ     (g , f⁄⁄' ⊗ f⁄⁄)B"
B A

(7.5)

M⁄⁄(B ⁄, A⁄⁄)(f⁄⁄) ⊗ 1B+

M⁄⁄(B ⁄, A⁄⁄)(f⁄) ⊗ B ⁄(B , B)(1   ⁄) BÐ

1 ⊗  η B

ρ     (f , 1    ⁄)B
B A BÐ M⁄⁄(B ⁄, B⁄⁄)(f⁄⁄ ⊗ 1    )B Ð

M⁄⁄(B ⁄, A⁄⁄)(f⁄⁄) r 
≅

M⁄⁄(B ⁄, A⁄⁄)(r⁄⁄)

(7.6)

( A⁄(A', A)(h⁄) ⊗ M ⁄⁄(B'⁄, A'⁄⁄)(g ⁄) ) ⊗ B⁄(B⁄⁄, B' )(f)   

 a ≅

1 ⊗  ρ       (g , f )B'
B A'

M⁄⁄(B, A)(h ⊗ (g ⊗ f⁄⁄) )

 M⁄(B' , A )(h ⊗ g⁄⁄) ⊗ B⁄(B⁄⁄, B' )(f)
λ      (h , g⁄) ⊗  1A'

B' A

M⁄⁄(B, A ⁄)( (h ⊗ g⁄⁄) ⊗ f⁄⁄)

M⁄⁄(B, A ⁄)(a⁄⁄)≅

ρ      (h ⊗ g , f⁄)B'
B A

λ      (h , g ⊗ f⁄⁄)A'
B A

(7.7)A⁄(A' , A )(h⁄⁄) ⊗ M ⁄⁄(B⁄, A'⁄)(g ⊗ f⁄)   

A⁄(A' , A )(h⁄) ⊗ ( M ⁄⁄(B'⁄, A'⁄⁄)(g ⁄) ⊗ B⁄(B⁄⁄, B' )(f) )   

7.2 Suppose  M,  N : A arAB are modules, for categories  A , B : VaAW.  A m o d u l e
m o r p h i s m α : M aAN  is a family of natural transformations

αB A :  M(B⁄⁄,⁄⁄A) ⇒ N(B⁄⁄,⁄⁄A)  :  V⁄⁄(BÐ
⁄,⁄AÐ⁄) aAW ⁄(B+

⁄⁄,⁄⁄A+)
for  A⁄⁄∈ ⁄⁄obA and  B⁄⁄∈ ⁄⁄obB ⁄⁄,  for which the two diagrams (7.8) Ð (7.9) commute.

M⁄⁄(B, A)(g ⊗ f⁄⁄)
λ      (g , f⁄⁄)A'

B A

(7.8)

A⁄(A' , A )(g⁄⁄) ⊗ M⁄⁄(B ⁄, A'⁄)(f⁄)   

N⁄⁄(B, A)(g ⊗ f⁄⁄)
λ      (g , f⁄⁄)A'

B AA⁄(A' , A )(g⁄⁄) ⊗ N⁄⁄(B⁄, A'⁄)(f⁄)   

α      (g ⊗ f⁄⁄)
B A

1 ⊗ α      (f⁄⁄)
B A'
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M⁄⁄(B, A)(g ⊗ f⁄⁄)
ρ      (g , f⁄⁄)B'

B A

(7.9)

M⁄⁄(B'⁄, A)(g⁄) ⊗ B ⁄(B , B' )(f⁄)    

N⁄⁄(B, A)(g ⊗ f⁄⁄)
ρ      (g , f⁄⁄)B'

B A

α      (g ⊗ f⁄⁄)
B A

α      (g⁄⁄) ⊗ 1
B' A

N⁄⁄(B'⁄, A)(g⁄) ⊗ B⁄(B , B' )(f⁄)    

There is an obvious composition of module morphisms and we obtain a category
Mod(A ⁄⁄,⁄⁄B)  whose objects are modules  M : A arAB. 

7.3 Suppose  M : A arAB,  N : B arAC,  L : A arAC are modules, for categories
A ⁄⁄,⁄⁄B ⁄⁄,⁄⁄C : VaAW.  A f o r m

σ :  (N⁄⁄,⁄⁄M) ⇒ L : A arAC : VaAW
is a family of 2-cells 

  
σC A
B (g⁄⁄,⁄⁄f⁄)  :  M(B⁄⁄,⁄⁄A)(g) ⊗ N(C⁄⁄,⁄⁄B)(f⁄) ⇒ L(C⁄⁄,⁄⁄A)(g ⊗ f⁄⁄)  :  C+

aAA+ ,

natural in  f ∈ V⁄⁄(CÐ , BÐ⁄⁄)  and  g ∈ V⁄⁄(BÐ , AÐ⁄⁄),  such that the three diagrams (7.10) Ð (7.12)
commute.

( A ⁄(A', A)(h⁄) ⊗ M⁄⁄(B⁄, A'⁄⁄)(g ⁄) ) ⊗  N(C⁄⁄, B⁄)(f)   

 a ≅

1 ⊗  ρ      (g , f )B
C A'

L⁄⁄(C, A)(h ⊗ (g ⊗ f⁄⁄) )

 M⁄(B , A )(h ⊗ g⁄⁄) ⊗ N(C ⁄⁄, B⁄)(f)
λ      (h , g⁄) ⊗  1A'

B A

L⁄⁄(C, A⁄)((h ⊗ g⁄⁄) ⊗ f⁄⁄)
L ⁄⁄(C, A⁄)(a⁄⁄)≅

ρ     (h ⊗ g , f⁄)B
C A

λ      (h , g ⊗ f⁄⁄)A'
C A

(7.10)A ⁄(A' , A )(h⁄⁄) ⊗ L⁄⁄(C⁄, A'⁄)(g ⊗ f⁄)   

A ⁄(A' , A )(h⁄) ⊗ ( M⁄⁄(B⁄, A'⁄⁄)(g ⁄) ⊗ N(C⁄⁄, B⁄)(f) )   

( M⁄⁄(B'⁄, A⁄)(h⁄) ⊗ B⁄(B, B'⁄)(g ⁄) ) ⊗  N(C ⁄⁄, B⁄)(f)   

 a ≅

1 ⊗  λ      (g , f )B
C B'

L⁄⁄(C, A)(h ⊗ (g ⊗ f⁄⁄) )

 M⁄(B , A )(h ⊗ g⁄⁄) ⊗ N(C ⁄⁄, B⁄)(f)
ρ     (h , g⁄) ⊗  1B'

B A

L⁄⁄(C, A⁄)( (h ⊗ g⁄⁄) ⊗ f⁄⁄)
L⁄⁄(C, A⁄)(a⁄⁄)≅

σ     (h ⊗ g , f⁄)B
C A

σ     (h , g ⊗ f⁄⁄)B'
C A

(7.11)M⁄⁄(B'⁄, A⁄)(h⁄) ⊗ N⁄⁄(C⁄, B'⁄)(g ⊗ f⁄)   

M⁄⁄(B'⁄, A⁄)(h⁄) ⊗  ( B⁄(B, B'⁄)(g ⁄) ) ⊗  N(C ⁄⁄, B⁄)(f) )   
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( M⁄⁄(B⁄, A ⁄)(h⁄) ⊗  N(C ⁄⁄'⁄⁄, B⁄)(g ⁄) ) ⊗  C⁄(C, C⁄⁄'⁄)(f)   

 a ≅

1 ⊗  ρ      (g , f )C ⁄⁄'
C  B

L ⁄⁄(C, A)(h ⊗ (g ⊗ f⁄⁄) )

 L ⁄(C⁄⁄' , A )(h ⊗ g⁄⁄) ⊗ C⁄(C, C⁄⁄' ⁄)(f)
σ     (h , g ⁄) ⊗  1B

C⁄⁄' A

L ⁄⁄(C⁄⁄, A⁄)( (h ⊗ g ⁄⁄) ⊗ f⁄⁄)

L⁄⁄(C, A ⁄)(a⁄⁄)≅

ρ     (h ⊗ g , f⁄)C⁄⁄'
C A

σ     (h , g ⊗ f⁄⁄)B
C⁄⁄' A

(7.12)M⁄⁄(B⁄, A⁄)(h⁄) ⊗ N⁄⁄(C ⁄⁄' ⁄, B⁄)(g ⊗ f⁄)   

M⁄⁄(B⁄, A ⁄)(h⁄) ⊗  ( N(C ⁄⁄'⁄⁄, B⁄)(g ⁄) ) ⊗  C⁄(C, C⁄⁄'⁄)(f) )  

We write  For(N⁄⁄,⁄⁄M ; L⁄)  for the set of forms  σ : (N⁄⁄,⁄⁄M) ⇒ L⁄⁄.  In the obvious way, this
defines a functor

For :  Mod(B ⁄⁄,⁄⁄C)⁄op × Mod(A ⁄⁄,⁄⁄B)⁄op × Mod(A ⁄⁄,⁄⁄C ⁄⁄) aaASet . (7.13)
The functoriality of  For(N⁄⁄,⁄⁄M ; L⁄)  in the variables  M  and  N  is given by substitution;
module morphisms  α : M ⁄' aAM  and  β : N ⁄' aAN  can be substituted into a form  σ :
(N⁄⁄,⁄⁄M) ⇒ L  to yield a form ⁄⁄σ ⁄(β⁄⁄,⁄⁄α) : (N⁄' ⁄⁄,⁄⁄M ⁄' ⁄) ⇒ L .  This is part of a general calculus of
substitution of forms in forms.   

A representing object for the functor
For(N⁄⁄,⁄⁄M ; Ð⁄) :  Mod(A ⁄⁄,⁄⁄C) aaASet

is called a tensor product o f N  and M  o v e r B and is denoted by  N ⊗ B ⁄⁄M  (or simply

N ⁄⁄⊗ ⁄M ⁄⁄);  then there is an isomorphism

Mod(A ⁄⁄,⁄⁄C ⁄⁄)⁄⁄(N ⊗ B⁄⁄M , L)  ≅ For⁄(N⁄⁄,⁄⁄M ; L⁄)  (7.14)

which is natural in  N  and is induced by composition with a universal form:
υ :  (N⁄⁄,⁄⁄M) ⇒ N ⊗ B⁄⁄M .

When tensor products over  B exist, there is a unique way of extending the assignment
(N⁄⁄,⁄⁄M) jAN ⊗ B ⁄⁄M  to morphisms which turns   ⊗ B⁄⁄ into a functor 

⊗ B⁄⁄ :  Mod(B ⁄⁄,⁄⁄C ⁄)⁄ × Mod(A ⁄⁄,⁄⁄B) aAMod(A ⁄⁄,⁄⁄C ⁄) (7.15)

and makes the isomorphisms (7.14) natural in both  N  and  M.
For each  B : VaAW there is an identity m o d u l e IB : B arAB ⁄⁄,  given by  IB(B⁄⁄,⁄⁄A)

= B(B⁄⁄,⁄⁄A)⁄⁄,  with the left and right actions given by the  µ for  B ⁄⁄.  The tensor products
IB
⁄⁄⊗ ⁄⁄M  and  N ⁄⁄⊗ ⁄⁄IB always exist, being given by  M  and  N  respectively, to within

coherent isomorphisms.   
Module morphisms can be considered to be forms in one variable  M ⁄⁄,  while the

forms above involve the two variables  M  and  N.  It is also possible to define forms  
τ :  (K, N, M) ⇒ L

in three variables  M : A arAB,  N : B arAC and  K : C arAD⁄⁄,  where  L : A
arAD.  In the case where  For(K, N, M; Ð)  is representable, we are led to a ternary
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tensor product  K⁄⁄⊗ ⁄⁄N ⁄⁄⊗ ⁄⁄M ⁄.  Substitution of universal forms leads to forms  
(K, N, M) ⇒ (K ⊗ N) ⊗ M    and    (K, N, M) ⇒ K ⊗ (N ⊗ M)

and hence to a canonical span
(K ⊗ N) ⊗ MSaa K ⊗ N ⊗ M aaAK ⊗ (N ⊗ M) . (7.16) 

Proposition 7.3  Suppose V is locally small an d W is locally cocomplete.  If obB is

small then every pair of modules  M : A arAB,  N : B arAC has a tensor product
N ⁄⁄⊗ ⁄⁄M.  If further obC is small and  K : C arAD⁄⁄, then the ternary tensor product
K⁄⁄⊗ ⁄⁄N ⁄⁄⊗ ⁄⁄M  exists and both of the arrows in the span (7.16) are invertible.  There is a
bicategory  Moden(V⁄⁄,⁄⁄W ⁄⁄)  whose objects are categories A : V aAW with obA small,
whose hom categories are the  Mod(A ⁄⁄,⁄⁄B ⁄), and whose horizontal composition is tensor
product of modules. 

Proof It follows from each of [St3], [BCSW], [DS] that this Proposition is true for the one-

sided W-enriched case; that is, where  V = 1.  By Proposition 4.3 we have the locally-
cocomplete bicategory  Conv(V⁄⁄,⁄⁄W ⁄⁄)  with horizontal composition  P ⊗ Q  given by (4.19).
We can therefore apply the one-sided case with  W replaced by  Conv(V⁄⁄,⁄⁄W ⁄⁄).   In the
notation of Section 4.3, it is easy to see that modules  M : A arAB : V aAW translate
precisely to modules   M ⁄⁄:⁄⁄  AarA  B between Conv(V⁄⁄,⁄⁄W ⁄⁄)-categories;  furthermore, this
translation extends to forms.  So the Proposition really follows from the one-sided case
and we have

Moden(V⁄⁄,⁄⁄W ⁄⁄)  ≅ Conv(V⁄⁄,⁄⁄W ⁄⁄)-Mod . (7.17)  
However, for the sake of completeness, we shall describe the tensor product  N ⁄⁄⊗ ⁄⁄M.  For
A ⁄⁄∈ ⁄⁄obA and  C⁄⁄∈ ⁄⁄obC we form the coequalizer  (N⁄⁄⊗ ⁄⁄M)(C⁄⁄,⁄⁄A)  of the pair of arrows

    
M B A B B N C B M B A N C B

B B B
( ©, ) ( , ©) ( , ) ( , ) ( , )

, ©
⊗ ⊗  →

 → ⊗
⊗

⊗
∑ ∑B

ρ

λ

1

1
. (7.18)

The left action for  N ⁄⁄⊗ ⁄⁄M  is induced by the left action for  M  while the right action for
N ⁄⁄⊗ ⁄⁄M  is induced by the right action for  N.  The isomorphism (7.14) is easily deduced.
The construction of  K⁄⁄⊗ ⁄⁄N ⁄⁄⊗ ⁄⁄M  should now be clear.  Q . E . D .

7.4  Examples
(a)  Suppose  A , B : VaAW are lax functors (see Example 2.3 (b)).  Recall [B3] that a (lax
natural) transformation  τ : B aAA is given by data as displayed below. 
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A⁄⁄(B)

 f 

A⁄⁄(A⁄⁄)

B⁄⁄(B)

B⁄⁄(A⁄⁄)

⇓B⁄⁄(f⁄⁄) A⁄⁄(f⁄⁄) τ

 B  τ

 A  τ
(7.19).

Given such a transformation  τ ⁄⁄,  we can define a module  M : A arAB by letting the
functor

M(B⁄⁄,⁄⁄A)  :  V⁄⁄(B⁄,⁄A) aAW ⁄(B(B)⁄⁄,⁄⁄A (A))
take  f : B aAA  to the lower leg  τ ⁄⁄A ⊗ B ⁄(f⁄⁄)   of the above square, and letting the actions 

  
λB A
A g f©( , ) :  A (g⁄⁄) ⊗ M(B⁄⁄,⁄⁄A')(f⁄) aAM(B⁄⁄,⁄⁄A)(g ⊗ f⁄) , 

  
ρB A
B g f©( , ) :  M(B',⁄⁄A)(g⁄) ⊗ B(f⁄⁄) aAM(B⁄⁄,⁄⁄A)(g ⊗ f⁄)⁄⁄ ,  ⁄

be the composites

    A B B B B( ) ( ) ( ) ( )
( , )

( )©

©

g f g f
g f

g fA
g

A
BA
A

A⊗ ⊗
⊗

 → ⊗ ⊗
⊗

 → ⊗ ⊗τ
τ

τ
µ

τ
1 1

,

    τ
µ

τA
BA
B

Ag f
g f

g f⊗ ⊗
⊗

 → ⊗ ⊗B B B( ) ( )
( , )

( )
©1

,

where we have omitted the obvious associativity constraints. The verification that  M  is
indeed a module is routine.

(b)  Suppose  S : A aAX ,  T : B aAX are functors between categories enriched from  V⁄⁄

to  W.  There is a module  X(T⁄⁄,⁄⁄S) : A arAB defined by taking
X(T⁄⁄,⁄⁄S)(B⁄⁄,⁄⁄A) = X(TB⁄⁄,⁄⁄SA) :  V⁄⁄(BÐ

⁄,⁄AÐ⁄) aAW ⁄(B+
⁄⁄,⁄⁄A+) ;

with left and right actions 

    A X X X X( ©, )( ) ( , ©)( ) ( ©, )( ) ( , ©)( ) ( , )( ),©, ,
©

( )
A A g TB SA f SA SA g TB SA f TB SA g f

S gA A TB SA
SA

⊗  → ⊗  → ⊗
⊗ 1 µ

  X B X X X( ©, )( ) ( , ©)( ) ( ©, )( ) ( , ©)( ) ( , )( )., © ,
©( )

TB SA g B B f TB SA g TB TB f TB SA g f
T fB B TB SA

TB

⊗  → ⊗  → ⊗
⊗1 µ

More generally,  for functors  S : A aAX ,  T : B aAY and a module  M : X arAY,
there is a module ⁄⁄M(T⁄⁄,⁄⁄S) : A arAB ⁄⁄given by ⁄⁄M(T⁄⁄,⁄⁄S)(B⁄⁄,⁄⁄A) = M(TB⁄⁄,⁄⁄SA) ⁄⁄and by using⁄

the actions of  M  for the actions on  M(T⁄⁄,⁄⁄S).  As particular cases, we put  

S∗ = X ⁄⁄(1X ⁄⁄⁄,⁄⁄S) : A arAX and   S⁄∗ = X ⁄⁄(S⁄⁄,⁄⁄1X ⁄⁄) : X arAA ⁄⁄, (7.20)
and note that we always have the ternary tensor product

T ⁄∗ ⊗ M ⊗ S∗ = M(T⁄⁄,⁄⁄S)   (7.21)
independently of any size or cocompleteness conditions.  Taking  S  and  T  to be identity
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functors, we see from (7.20) that the modules  X(1X ⁄⁄,⁄⁄1X ⁄⁄)  are the identity modules  IX of
Section 7.3;  we henceforth write simply  1X ⁄⁄ rather than  (1X)∗ or  IX .  For any functor  S :
A aAX ,  we have a module morphism

ηS :  1A ⇒ S ⁄∗ ⊗ S∗ (7.22)
consisting of the natural transformations  SA⁄⁄B : A (A⁄⁄,⁄⁄B) ⇒ X(SA⁄⁄,⁄⁄SB).  We also have a
form

εS :  (S∗ , S⁄∗ ⁄) ⇒ 1X (7.23)
consisting of the family of 2-cells  

  
µX Y
SA g f( , ) :  X ⁄⁄(SA⁄⁄,⁄⁄Y⁄)(g) ⊗ X ⁄⁄(X⁄⁄,⁄⁄SA)(f⁄⁄) ⇒ X ⁄⁄(X⁄⁄,⁄⁄Y⁄)⁄(g ⊗ f⁄⁄).

Similarly there are forms

εS ⊗ S∗ :  (S∗ , S⁄∗ ⊗ S∗
⁄) ⇒ S∗ and     S⁄∗ ⁄⁄⁄⊗ ε S :  (S⁄∗ ⊗ S∗ , S⁄∗ ⁄) ⇒ S ⁄∗ (7.24)

consisting of the obvious families of 2-cells  µ ⁄.  The module adjointness  S∗
J⁄⁄S ⁄∗ is

expressed in our present multilinear context by the identities:
(εS ⊗ S∗ )(  1S∗

, ηS ⁄⁄)  =   1S∗
,       (S⁄∗ ⁄⁄⁄⊗ ε S ⁄⁄)(ηS ,  1S∗ )  =   1S∗ . (7.25)   

7.5 We now extend the definition of the composition (2.21) of enriched categories to
modules between these.  Take modules  

M : A arAB : VaAW and    N : C arAD : W aAU.  
There is a module  N ⁄⁄°⁄⁄M : C ⁄⁄°⁄⁄A arAD⁄⁄°⁄⁄B : V aAU defined by taking the functor
(N⁄⁄°⁄⁄M)((D⁄⁄,⁄⁄B)⁄⁄,⁄⁄(C⁄⁄,⁄⁄A))  to be the composite

V(BÐ ⁄⁄,⁄⁄AÐ ⁄⁄)   
M B A( , )

 → W(B+⁄⁄,⁄⁄A+⁄⁄) = W(DÐ ⁄⁄,⁄⁄CÐ ⁄⁄)   
N D C( , )

 → U(D+⁄⁄,⁄⁄C+⁄⁄), (7.26) 

with the left action  
λ : (C ⁄⁄°⁄⁄A )(⁄(C',⁄⁄A'),⁄(C⁄⁄,⁄⁄A))(g) ⊗ (N⁄⁄°⁄⁄M)((D⁄⁄,⁄⁄B)⁄⁄,⁄⁄(C',⁄⁄A'))(f) aA(N⁄⁄°⁄⁄M)((D⁄⁄,⁄⁄B)⁄⁄,⁄(C⁄⁄,⁄⁄A))(g⁄⁄⊗ ⁄⁄f)

given by the composite 

C ⁄⁄(C',⁄⁄C⁄)(A ⁄(⁄A '⁄,⁄⁄A)(g⁄)) ⊗ N(D⁄⁄,⁄⁄C')(M(B⁄⁄,⁄⁄A')(f⁄⁄)) 
λ

 → N(D⁄⁄,⁄⁄C)(A ⁄(⁄A '⁄,⁄⁄A)(g) ⊗ M(B⁄⁄,⁄⁄A')(f⁄⁄))  

  
N D C( , )( )λ

 → N(D⁄⁄,⁄⁄C)(M(B⁄⁄,⁄⁄A)(g ⊗ f⁄⁄))

and with the right action
ρ :  (N⁄⁄°⁄⁄M)((D'⁄⁄,⁄B')⁄⁄,⁄⁄(C,⁄⁄A))(g) ⊗ (D⁄⁄°⁄⁄B)(⁄(D,⁄⁄B),⁄(D',⁄⁄B'))(f) aA(N⁄⁄°⁄⁄M)((D⁄⁄,⁄⁄B)⁄⁄,⁄(C⁄⁄,⁄⁄A))(g⁄⁄⊗ ⁄⁄f)
given by the composite

N(D',⁄⁄C)(M(B'⁄,⁄⁄A)(g)) ⊗ D⁄(D,⁄⁄D')(B ⁄(B⁄,⁄⁄B')(f)) 
ρ

 → N(D,⁄⁄C)(M(B'⁄,⁄⁄A)(g) ⊗ B ⁄(B⁄,⁄⁄B')(f⁄⁄))

  
N D C( , )( )ρ

 → N(D,⁄⁄C)(M(B⁄,⁄⁄A)(g ⊗ f⁄⁄)).

Given two module morphisms  α : M aAM'  and  β : N aAN',  we obtain a
module morphism  β ° α : N ⁄⁄°⁄⁄M aAN '⁄°⁄⁄M'  by defining  (β ° α)(D⁄⁄,⁄⁄B)⁄⁄(C⁄⁄,⁄⁄A) to be the
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horizontal composite of  α ⁄⁄B ⁄A and  β⁄⁄D⁄⁄ C .   Indeed, we obtain a functor
Ð ⁄⁄°⁄⁄Ð  :   Mod(C ⁄⁄,⁄⁄D) × Mod(A ⁄⁄,⁄⁄B) aAMod(C ⁄⁄°⁄⁄A ⁄⁄,⁄⁄D⁄⁄°⁄⁄B). (7.27)

Now consider the diagram (7.28) of modules, along with further modules  P : A
arAE and  L : C arAF.

 V  W  U

 A

 B

 C

 D

 E  F

M

H

N

K
(7.28)

There is a function
Ð ⁄⁄°⁄⁄Ð  :  For(K⁄⁄,⁄⁄N ; P⁄) × For(H⁄⁄,⁄⁄M ; L⁄) aaAFor(K⁄⁄°⁄⁄H⁄⁄,⁄⁄N ⁄⁄°⁄⁄M ; P⁄⁄°⁄⁄L⁄) (7.29)

taking forms  τ :  (K⁄⁄,⁄⁄N) aAP  and  σ :  (H⁄⁄,⁄⁄M) aAL  to the form  τ ⁄⁄°⁄⁄σ : (K⁄⁄°⁄⁄H⁄⁄,⁄⁄N ⁄⁄°⁄⁄M)
aAP⁄⁄°⁄⁄L  defined by taking  

    
( )( , ),( , )

( , )
τ σo F E C A

D B : 

(N⁄⁄°⁄⁄M)((D,B),(C,A))(g) ⊗ (K⁄⁄°⁄⁄H)((F,E),(D,B))(f) aA(P⁄⁄°⁄⁄L)((F,E),(C,A))(g⁄⁄⊗ ⁄⁄f)
to be the composite

  

N D C M B A g K F D H E B f
M B A g H E B f

P F C M B A g H E B f
P F C g f

P

F C
D

E A
B

( , )( ( , )( )) ( , )( ( , )( ))
( ( , )( ), ( , )( ))

( , ) ( , )( ) ( , )( )
( , )( ( , ))

,

,

⊗  →

⊗( )  →

τ

σ
(( , ) ( , )( ) .F C L E A g f⊗( )

(7.30)

Indeed, the functions (7.28) are natural in all six variables.  Consequently, if the tensor
products  H⁄⁄⊗ ⁄⁄M  and  K⁄⁄⊗ ⁄⁄N  exist, we can take  P = H⁄⁄⊗ ⁄⁄M  and  L = K⁄⁄⊗ ⁄⁄N  in (7.28) and
evaluate at the universal forms to obtain a form 

  
ϖHK
MN :  ( K⁄⁄°⁄⁄H , N⁄⁄°⁄⁄M ) aaA(K⁄⁄⊗ ⁄⁄N)⁄⁄°⁄⁄(H⁄⁄⊗ ⁄⁄M)⁄⁄, (7.31)

called the middle-four-interchange constraint. There are various naturality and
coherence conditions satisfied by the family of forms (7.31); however, we shall content
ourselves with the special, yet important, case where  N  and  K  are identities.  W e
obtain the following process of change of base for modules.  

Proposition 7.5 Consider a locally small bicategory V and locally cocomplete

bicategories W and U ⁄. Each category C : W aAU determines a lax functor
F  =  C ° Ð  :  Moden(V⁄⁄,⁄⁄W ⁄⁄) aAModen(V⁄⁄,⁄⁄U ⁄⁄) (7.32)

given on objects by  FA =⁄⁄ C ° A ⁄,  and on hom-categories by fixing the first variable o f
(7.27) at the identity module o f⁄⁄ C; ⁄⁄furthermore, the arrows ⁄⁄F0;⁄⁄A

⁄⁄are invertible (so that  F
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is what we call normal) and the arrows⁄⁄ F2; M H :  (C ⁄⁄°⁄⁄H)⁄⁄⊗ ⁄⁄(C ⁄⁄°⁄⁄M) aAC ⁄⁄°⁄⁄(H ⊗ M)  are
induced by instances of (7.31).  For a functor S : A aAB : VaAW,  there are canonical
module isomorphisms

(C ° S)∗ ≅ C ° S∗ and (C ° S)⁄∗ ≅ C ° S∗ .

7.6 In lectures in the early 1970s, B�nabou pointed out that the construction by

Grothendieck of a fibration E aAC from a pseudofunctor  F : C ⁄⁄op aACat can be

generalized to the construction of an arbitrary functor  E aAC from a normal lax

functor  F : C ⁄⁄op aAMod ;  both processes are invertible up to isomorphism. More
generally, suppose we have bicategories  V and  W with  W locally cocomplete.

Consider a normal lax functor  F :  V⁄⁄op aAW-Mod⁄⁄.  Recall from [St2] (although a
duality is introduced here because of our conventions on order of composition) that

there is a canonical pseudofunctor  I :  W ⁄⁄op aAW-Mod taking  W ⁄⁄∈ ⁄⁄W to the W-
category  I⁄(W)  whose only object is  W  and whose hom  I⁄(W)(W,W)  is the identity
arrow of  W ;  on hom-categories  I is the obvious isomorphism  

W( W⁄', W)  ≅ (W-Mod⁄⁄)(I⁄(W) , I⁄( W¡⁄'));

so actually  I is a local equivalence.  By Proposition 2.7,  I :  W ⁄⁄op aAW-Mod has a right

adjoint  J : W-ModaAW ⁄⁄op in  CATEN.  Thus we obtain a category  J ° F : V⁄⁄op aAW ⁄⁄op

which, using the duality principle of Section 2.9, gives a category  A : VaAW.  
This process can be inverted up to isomorphism as follows.  Take any category  A : V⁄

aAW.  By Proposition 7.5 we obtain a normal lax functor  A ° Ð  :  V-Mod aAW-Mod

which composes with the pseudofunctor  I :  V⁄⁄op aAV-Mod to give a normal lax

functor  F :  V⁄⁄op aAW-Mod⁄⁄.  (In this presentation of the inverse construction, the
apparent need for  V to be locally cocomplete, in order to speak of  V-Mod⁄⁄,  is not real.)

If under this correspondence the categories  A : V aAW and  C : W aAU

correspond to the normal lax functors  F :  V⁄⁄op aAW-Mod⁄⁄ and  G :  W ⁄⁄op aAU-Mod⁄⁄,

then the composite  C ° A : VaAU corresponds to the composite of  F  and  G  after we

make the identifications  (W-Mod⁄⁄)⁄op = W ⁄op-Mod and  (W-Mod)-Mod = W-Mod (see
[St2]).     

Now suppose that  W is a small bicategory and  V is any bicategory.  Each lax

normal functor  F :  V⁄⁄op aAP*W-Mod corresponds to a category  A ⁄# : V aAP*W and

hence, using Proposition 6.5, to a procategory  A : V aAW.  Taking the viewpoint of
Section 6.12 on procategories, we obtain a span (6.35) of bicategories.  The B�nabou case is
obtained by taking  W to be  1 and  V to be locally discrete. ⁄
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