
TMATROM:
object-oriented T-MATrix Reduced Order Model

software for efficient simulation of multi-parameter
acoustic scattering

M. Ganesh,
Department of Applied Mathematics and Statistics,
Colorado School of Mines, Golden, CO 80401, USA

mganesh@mines.edu

Stuart C. Hawkins,
Department of Mathematics,

Macquarie University, Sydney, NSW 2109, Australia
stuart.hawkins@mq.edu.au

14th September 2016

Abstract

Efficient simulation of scattering cross sections of wave scattering configurations
is an important tool for several applications. The transition matrix (T-matrix)
based approach, that is independent of certain input parameters, provides an effi-
cient framework for scattering simulations with varying parameters in the configura-
tions, including dynamic and uncertain configurations. In recent years, the authors
developed and mathematically analyzed a numerically stable T-matrix approach,
solving a several decade open problem of developing a priori T-matrix truncation
parameters that are independent of the shape of the particle. We develop and
describe details of an associated computational counterpart that will provide an
open-source software package for simulation of multi-parameter acoustic scattering
models.

In this article, we describe an object oriented software package TMATROM
which provides a class of reduced order model (ROM) tools for efficient simulation
of multi-parameter acoustic scattering by obstacles in two dimensions. Such multi-
parameter problems occur, for example, in monostatic cross section computations
(involving thousands of input incident directions), in stochastic computations, and
in multiple scattering simulations. The TMATROM package provides offline tools
for computing the T-matrix of any two dimensional obstacle using any forward

1

wave propagation solver. Example solvers based on the Nyström method are pro-
vided along with a framework to add any other solver. The TMATROM package
provides efficient and easy to use online tools for quickly solving multi-parameter
scattering problems. Detailed examples are provided within the software package
for monostatic cross section computations, and multiple scattering simulations.

1 Installation and verification

Download

Download the archive file tmatrom.tar.gz (Linux/Unix/OS X) or tmatrom.zip from

http://www.romapp.org/

Unpack

Your system may automatically unpack the archive file for you. If your system does not
automatically unpack the archive you can unpack it using (Linux/Unix/OS X)

tar -xvzf tmatrom.tar.gz

or by opening it with Winzip (Windows).

Save unpacked software in a (TMATROM) directory

We recommend you save the files unpacked from the archive in a directory. Below we
refer to this directory as the TMATROM root directory.

Add TMATROM subdirectories to Matlab path

After starting Matlab from the TMATROM root directory, type the command

setpath_tmatrom

Run example codes

Several examples are included in the TMATROM software package. Example codes (in
directories prefixed EXAMPLE and with file names starting with the string example_)
provide a quick way to test and use the package before looking into details of the objected-
oriented ROM in this article.

After installation, we recommend that users type the following two commands in Matlab to
test the installation of the TMATROM package. The first command solves and visualizes a
bistatic (single parameter) sound-soft scattering simulation. The second command solves
and visualizes the corresponding monostatic (multi-parameter) simulation with with 1000
input incident waves.

example_rom_nystrom_soundsoft_bistatic

example_rom_nystrom_soundsoft_monostatic

2

Before proceeding further, users may also like to try examples for scatterers with other
material properties by replacing soundsoft in the above commands with soundhard or
absorbing. Source codes for these and additional examples, including multiple particle
configurations, are in the TMATROM subdirectory EXAMPLE_ROM_NYSTROM_SOLVER.

We recommend users follow the quick start guide in Section 3 to learn more about how
to use the package.

Contents

1 Installation and verification 2

2 Introduction 4

3 Quick start guide 7

4 Mathematical Model 10

I The core TMATROM classes 11

5 The regularwavefunctionexpansion class 11

6 The radiatingwavefunctionexpansion class 13

7 Other wavefunctionexpansion operations 15

8 The tmatrix class 17

II Using the provided solvers 20

9 The solverNystrom sound soft scatterer solver 21

3

10 The solverNystromRobin for simulating scattering models with sound-
hard (Neumann) or absorbing (Robin) boundary conditions 23

III Incorporating a user defined solver 24

11 The solver class 24

12 Details of incorporating a user defined solver 27

13 Incident fields 32

2 Introduction

We describe the use of our object-oriented Matlab software package TMATROM. This
package provides a class of reduced order model (ROM) software tools for simulation of
multi-parameter acoustic scattering by obstacles in two dimensions. For details of various
forward and inverse scattering models and associated applications, we refer to [2] and
extensive list of references therein. The forward scattering model is governed by the
Helmholtz equation and a set of parameters that provides information of the full model,
such as the input incident wave that induces the scattered field, and how the output
quantities of interest (QoIs) are measured (with a receiver direction parameter). Typical
QoIs from the model are the scattered and far fields, and the associated acoustic cross
section (ACS) of the scattering configuration [2].

Our ROM [5, 8] provides a very efficient framework when the scattering model needs to
be simulated for multiple sets of parameters. Such multiple parameter sets occur, for
example, when the QoI is the monostatic ACS, corresponding to the situation where the
receiver direction is opposite to the incident direction (backscattering) and the receiver
direction parameter varies from zero to 360 degrees.

Our computationally stable T-matrix approach [5, 8] is an optimization-free reduced basis
framework to setup up a matrix that characterizes the scattering properties of an obstacle.
The matrix is independent of the incident and receiver directions. If the location and
orientation of the obstacle are changed, the associated new T-matrix can be quickly
computed using techniques based on the translation-addition theorem and the old T-
matrix of the obstacle for the original location and orientation. The T-matrix can be used
any number of times to simulate scattered and far-fields after setting up appropriate vector

4

representations of several input incident fields. The numerical stability of TMATROM is
comprehensively demonstrated with numerical examples in [7].

Multiple sets of parameters also arise in multiple particle scattering configurations, where
the location and orientation of each particle in the configuration should be treated as
parameters. The TMATROM framework is efficient for the multiple particle configuration
based scattering model, even without prior knowledge of the location and orientation of
each particle in the configuration, and hence it is also appropriate for moving particle
configurations.

The TMATROM package provides an offline software framework to build a T-matrix for
any two dimensional obstacle with a user’s choice of obstacle geometry and appropriate
material property (such as sound-soft, sound-hard, absorbing, penetrable). Subsequently
the user can efficiently develop an online approach by assembling various types of multiple
particle deterministic or stochastic configurations [6] comprising the obstacles.

A major advantage of our TMATROM framework is that it utilizes standard numerical
methods for solving the scattering problem (for a fixed parameter set) but it is independent
of any specific numerical method. Consequently, the TMATROM package can be used
in conjunction with any existing forward wave propagation solver that a user is already
familiar with. Easy incorporation of a solver into our object-oriented TMATROM core
framework requires only that the solver can compute the far-fields associated with incident
circular waves [8, Equation (2.15)].

To illustrate the easy customization of our object-oriented framework, we provide exam-
ples with two distinct families of forward solvers with the TMATROM package. The first
is developed by the authors and uses the Nyström method [2]. The second is based on an
open-source forward solver using non-polynomial finite elements and the method of fun-
damental solutions [1]. The forward solver does not need to use Matlab’s object-oriented
framework, but it does need to use the Matlab environment (and may use Mex files to
incorporate procedures written using other computer languages).

The package has two components. The first component is the TMATROM kernel which
contains object-oriented classes and functions associated with the ROM. The kernel com-
ponent is described in Part I of this manual. The second component includes several
example solvers for the scattering problem that will be sufficient for most users. The
example solvers are described in Part II. We will assume that the user is familiar with the
basic features of Matlab. The class structure of TMATROM is visualized in Figures 1–3.

As described above, the TMATROM model is independent of the solver used and users
can provide their own solvers by extending templates provided. Details required for cod-
ing user defined solvers are described in Part III. In Part III we assume that the user is
familiar with object-oriented programming in Matlab. The authors will be happy to col-
laborate with any user or group to customize their forward solver within our TMATROM

5

framework.

While we restrict the TMATROM package to the 2D models, our reduced basis T-matrix
framework with a priori analytical truncation parameter estimates (without the expensive
optimization techniques, such as the greedy approach, that are required in most reduced
basis methods, see [9] and references therein) and exponential convergence analysis are
applicable for both two and three dimensional scattering models [8]. In future we plan to
develop a 3D version of the TMATROM package.

We request that any publications that make use of our TMATROM package cite our key
papers on the ROM [7, 5, 6, 8] and this article. This article includes the minimal mathe-
matical details required to understand the underlying algorithm and the package can be
used as a black-box without knowledge of these details. For complete mathematical de-
tails of our stable ROM algorithm and convergence analysis with application to stochastic
multiple particle configurations, we ask the user of this manual and TMATROM package
to refer to [8].

wavefunctionexpansion

radiatingwavefunctionexpansion

OO

radiatingwavefunctionexpansion

ll

Figure 1: Figure showing the class dependencies for the wavefunction expansion classes.

incident

wavefunction2d

OO

plane wave

kk

point source

mm

regularwavefunction2d

OO

radiatingwavefunction2d

kk

Figure 2: Figure showing the class dependencies for the incident wave classes.

A note on position vectors in TMATROM In our TMATROM code, and cor-
respondingly in this manual, we represent real valued vectors in R2 (such as position
vectors) by complex numbers with the real part and imaginary parts of the complex
number corresponding to the x- and y-coordinates of the vector respectively.

6

solver tmatrix
11oo_ _

solverNystrom

OO

solverNystromRobin

jj

mfsExampleSolver

ll

Figure 3: Figure showing the class dependencies for the solver and T-matrix classes.

3 Quick start guide

In this section we first describe how to setup, simulate and visualize the scattered and
far-field induced by a plane wave impinging on a sound-soft kite shaped scatterer using
the TMATROM package. Then, using the T-matrix of the kite scatterer, we demonstrate
how to efficiently efficiently simulate the monostatic ACS of the scatterer using hundreds
of incident plane wave directions.

First we setup the scatterer illustrated in Figure 4:

g = obstacleKite();

For a fixed wavenumber, say kwave = 1, it requires only a few lines (which are explained
in detail later) to setup the incident wave direction independent T-matrix, which expo-
nentially accurately characterizes the scattering properties of the scatterer:

kwave = 1;

solver = solverNystrom(kwave,[],g);

solver.setup(15);

nmax = suggestedorder(kwave,solver.getRadius());

tmat = tmatrix(nmax,kwave,solver,0);

The dimension of the T-matrix is suggested by the wavelength of the problem and asso-
ciated convergence analysis [8].

A few more lines are required to simulate and visualize (see Figure 5) the intensity of the

far field induced by an incident plane wave with direction d̂ = (cos θ, sin θ)T with, say,
θ = π/4 impinging on the scatterer.

p = plane_wave(pi/4,kwave);

b = tmat * regularwavefunctionexpansion(nmax,0,p);

b.visualizeFarField()

The monostatic ACS of the scatterer obtained at m = 1000 (co-located transmitter and
receiver) angles in [0, 2π] is easily and quickly simulated and visualized.

m = 1000;

farfield = zeros(m,1);

7

parfor j = 1:m

p = plane_wave(pi+2*pi*j/m,kwave);

c = tmat * regularwavefunctionexpansion(nmax,0,p);

farfield(j) = c.evaluateFarField(exp(1i*2*pi*j/m));

end

plot(2*pi*(1:m)/m,10*log10(2*pi*abs(farfield).^2),'r')

The above commands will produce the plot in Figure 6.

Figure 4: One of the TMATROM built-in example scatterers: a kite shape.

4 Mathematical Model

In this section we briefly describe the exterior scattering problem, in which an incident field
interacts with a configuration to produce a scattered field. The scattering configuration
may comprise one or more obstacles with various material properties (for example sound
hard, sound soft, penetrable). In all cases, we denote the configuration by D.

The incident wave may or not penetrate inside the obstacles inD. In the case of a dielectric
penetrable obstacle, the interior wavenumber is different from the exterior wavenumber
k; the medium inside the obstacle may also be heterogeneous.

The scattered field exterior to D satisfies the constant coefficient Helmholtz equation [2]

4u(x) + k2u(x) = 0, x ∈ R2 \D, (1)

and the Sommerfeld radiation condition [2, Equation (3.85)]

lim
|x|→∞

√
|x|
(
∂u

∂x
(x)− iku(x)

)
= 0, (2)

8

Figure 5: Absolute value of the far field induced by a plane wave impinging on the kite.

Figure 6: Monostatic ACS (dB) of the kite shaped sound-soft scatterer simulated using
1000 plane waves with 1000 incident direction angles in [0, 2π].

9

uniformly as |x| → ∞. Here k is the wavenumber of the incident field, which satisfies
k = 2π/λ, where λ is the wavelength.

For each impenetrable scatterer in D the above system needs to be augmented with a
Dirichlet, Neumann, or Robin boundary condition, depending respectively on whether the
obstacle is sound-soft or sound-hard or absorbing [2, 8]. For each penetrable scatterer in
D the above system needs to augmented with the interior (variable or constant coefficient)
Helmholtz equation in the interior of the obstacle and an associated interface boundary
condition on the obstacle surface.

The incident wave may be a plane wave

uinc(x) = eikx·d̂, (3)

with direction specified by the unit vector d̂, or a point source field

uinc(x) = H
(1)
0 (k|x− y0|), (4)

where y0 is the point source location.

In many problems the quantities of interest (QoI) are the far field and associated acous-
tic cross section (ACS), in decibels (dB), as functions of the unit vectors x̂ = x/|x|
(representing the observation or receiver directions), defined respectively as [2, 8]:

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|u(x), σACS(x̂) = 10 log10(2π |u∞(x̂)|2). (5)

Part I

The core TMATROM classes

Our T-matrix ROM [8] is based on expanding the regular incident field and the radiating
scattered field using two distinct classes of basis functions. The TMATROM package
kernel provides associated object-oriented classes. The kernel is independent of the solver
used to simulate the mathematical model described in the previous section.

5 The regularwavefunctionexpansion class

The regular circular wavefunction with wavenumber k

ẽ`(z) = J|`|(k|z|)ei`θ(z), (6)

10

satisfies the Helmholtz equation (1) for all z ∈ R2. Here Jl denotes the Bessel function of
order l and (r, θ) = (|z|, θ(z)) are polar coordinates for the point z. For fixed n ∈ N and
coefficients a−n, . . . , an, the regular wavefunction series expansion with origin x0,

u(x) =
n∑

j=−n

aj ẽj(x− x0) (7)

is a regular solution of the Helmholtz equation (1).

Instantiation using coefficients

The regularwavefunctionexpansion class represents regular wavefunction expansions
of the form (7). Given a vector of coefficients cof of length 2n + 1, an instance of the
regularwavefunctionexpansion class is created using

u = regularwavefunctionexpansion(n,x0,k,cof);

where k is the wavenumber and x0 is the expansion origin. Here cof(j) contains the
coefficient aj−n−1 for j = 1, . . . , 2n + 1.

Instantiation from a plane wave

If a function u is regular in a neighbourhood of x0 ∈ R2 then u can be approximated by a
regular wavefunction expansion of the form (7). If u is a plane wave (3) then there is an an-
alytical expression for the coefficients [8]. An instance of the regularwavefunctionexpansion
class approximating a plane_wave object p is created using

u = regularwavefunctionexpansion(n,x0,p);

where n is the order of the expansion and x0 is the expansion origin.

Instantiation from a point source

Similarly, if u is the field induced by a point source (4) there is an analytical expres-
sion for the coefficients [8]. An instance of the regularwavefunctionexpansion class
approximating a point_source object q is created using

u = regularwavefunctionexpansion(n,x0,q);

where n is the order of the expansion and x0 is the expansion origin. This expansion is
valid only in neighbourhoods about x0 that do not contain the point source origin y0.

Evaluation

A regularwavefunctionexpansion object u is evaluated at points z using

val = u.evaluate(z);

Here z may be a scalar, vector or matrix. The evaluate method may be used to visualize
the wavefunction expansion. For example, to visualize u in [−10, 10] × [−10, 10] with
500× 500 mesh points

11

t = linspace(-10,10,500);

[x,y] = meshgrid(t);

z = x + 1i*y;

surf(x,y,real(u.evaluate(z)))

Visualization

The regularwavefunctionexpansion class also provides a convenient method for quickly
visualizing the field. For example

u.visualize([-10 10 -10 10])

produces a similar figure to the example above.

Addition and subtraction

Two regularwavefunctionexpansions u and v that are compatible are added using

w = u + v;

and subtracted using

w = u - v;

The regularwavefunctionexpansions are compatible if they have the same origins,
wavenumbers and orders.

6 The radiatingwavefunctionexpansion class

The radiating wavefunction
el(z) = H

(1)
|l| (k|z|)eilθ(z), (8)

satisfies the Helmholtz equation (1) for all z ∈ R2 \ {0} and the radiation condition (2).

Here H
(1)
l denotes the Hankel function of order l and (r, θ) = (|z|, θ(z)) are polar coordi-

nates for the point z.

For fixed n ∈ N and coefficients b−n, . . . , bn, the radiating wavefunction series expansion
with origin x0,

u(x) =
n∑

m=−n

bmem(x− x0) (9)

is a radiating solution of the scattering problem (1)–(2).

Instantiation using coefficients

The radiatingwavefunctionexpansion class represents radiating wavefunction expan-
sions of the form (9). Given a vector of coefficients cof of length 2n + 1, an instance of
the radiatingwavefunctionexpansion class is created using

12

u = radiatingwavefunctionexpansion(n,x0,k,cof);

where k is the wavenumber and x0 is the expansion origin. Here cof(j) contains the
coefficient bj−n−1 for j = 1, . . . , 2n + 1.

Typically radiatingwavefunctionexpansion objects are created by applying a transfor-
mation to a regularwavefunctionexpansion object. This is described in detail in the
next section.

Evaluation

A radiatingwavefunctionexpansion object u is evaluated at points z using

val = u.evaluate(z);

Here z may be a scalar, vector or matrix. The evaluate method may be used to visualize
the wavefunction expansion. For example to visualize u in [−10, 10] × [−10, 10] with
500× 500 mesh points,

t = linspace(-10,10,500);

[x,y] = meshgrid(t);

z = x + 1i*y;

surf(x,y,real(u.evaluate(z)))

Visualization

The radiatingwavefunctionexpansion class also provides a convenient method for
quickly visualizing the field. For example

u.visualize([-10 10 -10 10])

produces a similar figure to the example above.

A radiating wave function expansion may blow up near its origin. The expansion may be
visualized only outside a neighborhood of its origin by applying a mask. For example, to
visualize u exterior to a disk of radius, say rad,

mask = abs(z) > 1.1 * rad;

surf(x,y,real(u.evaluate(z,mask)))

Evaluating the far field

The far field of a radiatingwavefunctionexpansion object u is evaluated at receiver
direction points z (on the unit circle) using

val = u.evaluateFarField(z);

Here z may be a scalar, vector or matrix. The evaluate method may be used to visualize
the far field of a wavefunction expansion. For example

t = linspace(0,2*pi);

z = exp(1i*t);

plot(t,abs(u.evaluateFarField(z)))

13

Figure 7: Visualization of the total field induced by a plane wave impinging on the kite.

Visualizing the far field

The radiatingwavefunctionexpansion class also provides a convenient method for
quickly visualising the far field. For example

u.visualizeFarField()

produces a similar figure to the example above.

Addition and subtraction

Two radiatingwavefunctionexpansions u and v that are compatible are added using

w = u + v;

and subtracted using

w = u - v;

The radiatingwavefunctionexpansions are compatible if they have the same origins,
wavenumbers and orders.

Example

The visualization in Figure 7 is readily plotted by combining details in this and the previ-
ous section with the quick start guide in Section 3. For details, see the part of the code la-
belelled visualize the total field in example_rom_nystrom_soundhard_bistatic.m.

14

7 Other wavefunctionexpansion operations

The additional features of the TMATROM kernel classes described in this section are use-
ful for efficient online simulation of multiple particle configurations with dynamic locations
and orientations of obstacles.

Copying

A regularwavefunctionexpansion object u is copied using

v = regularwavefunctionexpansion(u);

Similarly, a radiatingwavefunctionexpansion object u is copied using

v = radiatingwavefunctionexpansion(u);

Changing the expansion origin (regular to regular)

A regular wave function expansion (7) may be expanded about a new origin using the
translation-addition theorem [3]. The origin of a regularwavefunctionexpansion object
u is changed to a new origin x1 using

u.changeorigin(x1)

An alternative is to create a new regularwavefunctionexpansion object v with origin
x1 using

v = regularwavefunctionexpansion(u,x1);

A new regularwavefunctionexpansion object v with order n1 and origin x1 is created
using

v = regularwavefunctionexpansion(u,x1,n1);

In all three cases the expansion coefficients with respect to the new origin are computed
using the translation addition theorem [3].

Changing the expansion origin (radiating to radiating)

A radiating wave function expansion (9) may be expanded about a new origin using the
translation-addition theorem. The origin of a radiatingwavefunctionexpansion object
u is changed to a new origin x1 using

u.changeorigin(x1)

An alternative is to create a new radiatingwavefunctionexpansion object v with origin
x1 using

v = radiatingwavefunctionexpansion(u,x1);

A new radiatingwavefunctionexpansion object v with order n1 and origin x1 is created
using

15

v = radiatingwavefunctionexpansion(u,x1,n1);

In all three cases the expansion coefficients with respect to the new origin are computed
using the translation addition theorem [3].

Changing the expansion origin (radiating to regular)

If a radiating wave function expansion (9) is regular in a neighborhood of the new origin
x1 then it may also be approximated using a regular wavefunction expansion about the
new origin

v = regularwavefunctionexpansion(u,x1);

A new regularwavefunctionexpansion object v with order n1 and origin x1 is created
using

v = regularwavefunctionexpansion(u,x1,n1);

In both cases the coefficients with respect to the new origin are computed using the
translation addition theorem [3].

Rotating the coordinate system

A regular wave function expansion (7) or radiating wave function expansion (9) may be ex-
panded in a new coordinate system obtained by rotating the old axes (with origin at the ex-
pansion origin). A regularwavefunctionexpansion or radiatingwavefunctionexpansion
object u is transformed to a coordinate system rotated by angle theta in the positive di-
rection using

u.rotatecoordinates(theta)

Example

In this example we use a radiatingwavefunctionexpansion object v with origin 0 rep-
resenting the field scattered by a kite shaped object. The field is visualized in Figure 8
(left).

Using the command

v.rotatecoordinates(pi/6)

we rotate the coordinate system by angle π/6 in the positive direction. Subsequent calls
to the evaluate method will be with respect to the new coordinate system. The field is
visualised with respect to the new coordinate system in Figure 8 (center).

Now

u = regularwavefunctionexpansion(v,4-2i);

constructs a regularwavefunctionexpansion object u that represents the field in a
neighbourhood of (4,−2)T (with respect to the rotated coordinate system). This reg-
ular wavefunction expansion is visualised in Figure 8 (right) in a ball around (4,−2)T .

16

Figure 8: Visualizations of a field scattered by a kite shaped object in the original coor-
dinate system (left); in a rotated coordinate system (center); and with a new expansion
center (4,−2)T . The expansion centers are marked with ×.

8 The tmatrix class

Linearity of the Helmholtz equation (1) implies that when an incident wave (7) is scattered
by a configuration, the radiating wave expansion coefficients (9) satisfy

b = Ta, (10)

where T is a matrix, called the T-matrix. Here we assume that the series are not truncated
(so n =∞) and a = (am)m∈N, b = (bm)m∈N. This relation holds approximately when the
series expansions are truncated to a finite order n, and the corresponding T-matrix is a
(2n+ 1)× (2n+ 1) matrix, denoted below as Tn.

Instantiation

The T-matrix depends on the scatterer, and on the center chosen for the wavefunction
expansions of the incident and scattered waves, but is independent of their expansion
coefficients (and hence the incident field). The tmatrix class represents the T-matrix of
a scatterer. An instance of the tmatrix class for expansions of order n is created using

tmat = tmatrix(n,k,s,x0);

where x0 is the expansion origin and k is the wavenumber. The solver s is described
below.

Solver

The parameter s represents a solver (based, for example, on various types of boundary
and finite element methods) for the two dimensional wave scattering problem described
in Section 4 for a fixed set of parameters determining the problem. The shape (and
properties of the scatterer) enter the T-matrix through the solver. Example solvers are
provided with the TMATROM package but users can also setup a solver class based on
their own solver for the two dimensional wave scattering problem. The solver is explained
in more detail in the next section.

17

Error measure to quantify the accuracy of the truncated T-matrix

The infinite T-matrix T satisfies the symmetry relation [5, Theorem 1]

T + T ∗ + 2TT ∗ = 0

in the case of sound-soft, sound-hard or transmission boundary conditions applied on the
scatterer surface. The symmetry condition also holds in the Robin boundary condition
case under certain conditions on the impedance. In the case of a truncated T-matrix Tn,
the quantity

max
`,m=−n,...,n

|(Tn + T ∗n + 2TnT
∗
n)`,m|

gives a useful measure of the error. This error measure is computed for a tmatrix object
T using

T.error()

The error measure above depends on the solver s and also on the order n chosen for
the wavefunction expansions. A suitable expression for the order in the case of spherical
scatterers is given in [10] and our experience [4, 8] suggests that this choice is usually
suitable for two dimensional circular scatterers and scatterers of other shapes. This order
can be calculated using

n = suggestedorder(k,r);

where r is the radius of the scatterer. We refer to [8] for convergence results for the
T-matrix.

Scattered field computation

The radiating scattered field induced by scattering of an incident field is given by

b = T * a;

Here a is a regularwavefunctionexpansion representing the incident field, T is a tmatrix
and b is a radiatingwavefunctionexpansion representing the scattered field. The ob-
jects a and T are required to have the same wavenumber, origin and order.

Single particle configuration examples with multiple parameters

Our source codes

example_rom_nystrom_soundsoft_bistatic.m

example_rom_nystrom_soundsoft_monostatic.m

example_rom_nystrom_soundhard_bistatic.m

example_rom_nystrom_soundhard_monostatic.m

example_rom_nystrom_absorbing_bistatic.m

example_rom_nystrom_absorbing_monostatic.m

in the TMATROM subdirectory EXAMPLE_ROM_NYSTROM_SOLVER illustrate the usage of the
tmatrix class for multi-parameter scattering by configurations containing single obstacles
with various material properties.

18

Multiple particle configuration simulations using the T-matrix

Having assembled the T-matrix ROM for each particle in the configuration we can effi-
ciently simulate scattering by many configurations (with the same particles but varying
locations and orientations of the particles) using the additional object oriented features
described in Section 7.

To briefly describe the method, we consider scattering of an incident field p by a configu-
ration containing three individual particles with centers x{1}, x{2} and x{3} respectively.
We assume that the T-matrices tmat{1}, tmat{2} and tmat{3} of the three particles have
already been computed with origin 0. Using a logical origin at 0 corresponds to using
local coordinates about the center of each particle.

We let a{1}, a{2} and a{3} be the radiating wavefunction expansions of the field scattered
by the three particles. Then the scattered field is a{1} + a{2} + a{3} and the total field
is p + a{1} + a{2} + a{3}.

Let us consider what happens on the first scatterer, which has center x{1}. The incident
field on the first particle consists of the incident wave p and the field a{2} + a{3} scat-
tered by the other particles. We can combine these into a single regular wavefunction
expansion with center x{1}

regularwavefunctionexpansion(n,x{1},p) ...

+ regularwavefunctionexpansion(a{2},x{1}) ...

+ regularwavefunctionexpansion(a{3},x{1})

where n is the order of the wavefunction expansions.

The scattered field can then be computed from the incident field using the T-matrix. To
facilitate this we first set the logical origin of the T-matrix to be the center of the first
particle

tmat{1}.setOrigin(x{1});

Then the scattered field is computed from the incident field in the usual way

a{1} = tmat{1} * (regularwavefunctionexpansion(n,x{1},p) ...

+ regularwavefunctionexpansion(a{2},x{1}) ...

+ regularwavefunctionexpansion(a{3},x{1}));

In practice the radiating wavefunction expansions a{1}, a{2} and a{3} are unknown.
However, the expression above, and similar expressions derived for the other scatterers,
give a linear system for the radiating wavefunction expansion coefficients that can be
solved iteratively. In the example

example_rom_nystrom_multiple_config.m

the linear system is solved using GMRES.

19

For the full algorithm and the corresponding mathematical description, including full
details of the linear system and its solution, we refer to [6, Section 2.2]. Details in the
source code

example_rom_nystrom_multiple_config.m

in the TMATROM subdirectory EXAMPLE_ROM_NYSTROM_SOLVER illustrate the ROM sim-
ulation and reproduce the visualisations of the scattered and total field in Figure 9 for
the multiple particle configuration model. The preliminary off line step is to build the
T-matrix ROM for each distinctly shaped template particle in the configuration. This
approach is easily adapted for simulating dynamic multiple particle configurations.

Figure 9: Multiple-parameter acoustic computer model using ROM scattering character-
ization (independent of the location, orientation, input incident wave, and output obser-
vation direction) of each distinctly shaped particle. Real part of scattered field (left) and
total field (right) of a multiple particle configuration.

20

Part II

Using the provided solvers

9 The solverNystrom sound soft scatterer solver

The solverNystrom class solves the scattering problem (1)–(2) for a single particle D
subject to the sound soft boundary condition

u(x) + ui(x) = 0, x ∈ ∂D,

where ∂D denotes the boundary of the particle. The boundary integral equation refor-
mulation of the scattering problem and its solution using the high order Nyström method
is described in [2, Section 3.5].

Example boundaries

The boundary ∂D is represented by an object of class obstacle. Some example obstacle
classes are provided in the TMATRIX package, including the circle with radius r,

b = obstacleCircle(r);

the kite shaped obstacle [2, Page 79],

b = obstacleKite();

the pinched ball [2, Page 94]

b = obstaclePinchedBall();

the cylinder with height h and width w capped with semi-circles

b = obstacleCappedCylinder(h,w);

and the trefoil [1]

b = obstacleTrefoil();

Polar coordinate boundaries

Obstacles described by polar coordinates can easily be represented using

b = obstaclePolar(r,dr,ddr);

where the anonymous functions r, dr and ddr represent the radius function and its first
and second derivatives with respect to t. For example, the pinched ball is given by

r = @(t) sqrt(1.44 - 0.5*cos(-4*t));

dr = @(t) -sin(-4*t)./sqrt(1.44 - 0.5*cos(-4*t));

21

ddr = @(t) -sin(-4*t).^2./(1.44 - 0.5*cos(-4*t)).^1.5 ...

+ 4*cos(-4*t)./sqrt(1.44 - 0.5*cos(-4*t));

b = obstaclePolar(r,dr,ddr);

Instantiation

A solverNystrom object is created using

S = solverNystrom(k,[],b);

where k is the wavenumber and b is an obstacle. The incident field(s) are then set using

S.setIncidentField(inc)

where inc is a cell array of incident objects. For example

inc{1} = plane_wave(0,k);

inc{2} = point_source(3+2i,k);

S.setIncidentField(inc);

sets two incident fields, the first induced by a plane wave and the second induced by a
point source.

Solving

The integral operators are discretized using the Nyström scheme with 2q quadrature
points using

S.setup(q)

and the corresponding linear systems are solved using

S.solve();

Far field computation

The far field is then obtained at points with angle specified in the vector theta using

F = S.getFarField(theta,[1 2]);

Here F(:,1) is the far field corresponding to inc{1} and F(:,2) is the far field corre-
sponding to inc{2}.

Example

A full example to simulate scattering of a plane wave and spherical wave induced by
a point source impinging on a sound soft pinched ball shaped scatterer is below. The
resulting simulated intensity of far fields are visualized in Figure 10.

b = obstaclePinchedBall();

k = 1;

q = 15;

S = solverNystrom(k,[],b);

inc{1} = plane_wave(0,k);

22

Figure 10: Visualization of the ACS of a pinched ball with incident plane wave and point
source circular wave.

inc{2} = point_source(3+2i,k);

S.setIncidentField(inc);

S.setup(q)

S.solve();

theta = linspace(0,2*pi);

F = S.getFarField(theta,[1 2]);

plot(theta,10*log10(2*pi*abs(F(:,1)).^2),'r*')
hold on

plot(theta,10*log10(2*pi*abs(F(:,2)).^2),'mo')
legend('input:planewave', 'input:pointsource')
axis([0 2*pi -2 14])

10 The solverNystromRobin for simulating scattering

models with sound-hard (Neumann) or absorbing

(Robin) boundary conditions

The solverNystromRobin class solves the scattering problem (1)–(2) for a single particle
D subject to the Robin boundary condition

∂

∂n
(u+ ui)(x) + iµ(u+ ui)(x) = 0, x ∈ ∂D,

23

where ∂D denotes the boundary of the particle. Here µ is the Robin boundary condition
parameter. The case µ = 0 is equivalent to the sound-hard boundary condition.

Instantiation

A solverNystromRobin object is created using

S = solverNystromRobin(k,[],b,mu);

where k is the wavenumber, b is an obstacle and mu is the Robin boundary condition
parameter.

Other methods

Usage of the solverNystromRobin object after it is created is identical to the usage of
the solverNystrom object described in the previous section.

Part III

Incorporating a user defined solver

11 The solver class

Abstract methods

The tmatrix class is instantiated with an object of class solver. In practice this object
must be an instance of a class derived from solver and the derived class must provide
methods with interfaces

setup(self)

solve(self)

val = getFarField(self,points,index)

We have provided the solver class and we recommend that user defined solvers are
derived from the solver class using

classdef my_solver < solver

syntax. The methods above are declared as abstract methods in the solver class and
hence they must be overwritten in the child class. We have found that provision of setup
and solve methods facilitates easy extension of solver classes. Before expanding on the
setup and solve methods we discuss some other methods of the solver class.

Constructor

24

The constructor for the solver class has interface

obj = solver(kwave,incidentField)

Here kwave is the wavenumber. It is expected that the solver be able to solve several
scattering problems arising from several incident fields. The incident fields are given as
a cell array incidentField and each item in the cell array should be of type incident.
Incident fields are discussed in the next section.

The command

obj = solver(kwave,[])

defers setting the incident field. The incident field can be set subsequently using

obj.setIncidentField(incidentField)

The incident fields are again given as a cell array incidentField and each item in the
cell array should be of type incident. Incident fields are discussed in the next section.

Visualization

The solver class also provides methods for plotting the far field and cross section. We
refer to help solver for full details.

setup method

The solver is setup using

obj.setup();

This method would typically perform tasks that are performed once only, such as com-
puting a discretization matrix.

solve method

The solver is applied using

obj.solve();

This method would typically perform tasks that depend on the incident wave. For exam-
ple, this method might solve a linear system (with the discretization matrix) for each of
several right hand sides that are derived from several given incident fields.

getFarField method

The far field corresponding to the incident fields is computed from a solver object obj

using

val = obj.getFarField(points,index)

Here points is a vector of angles in [0, 2π] and val is matrix with val(:,k) being the
values of the far field induced by the incident field incidentField{index(k)} at the

25

observation angles specified in points.

Example

The user is free to define the setup, solve and getFarField methods any way that they
like as long as the above functionality is provided.

A typical structure is seen in the class solverNystrom which is provided as an example.
The setup method creates a matrix representing the operators in an integral equation.
The solve method solves the linear system associated with the integral equation for each
incident field and stores the coefficients. The getFarField method computes the far field
for each incident field using the stored coefficients.

Extension

Finally, we note that the user is free to specify further useful methods in their solver
class. For example, in the solverNystrom class we have specified further methods for
visualizing the scattering obstacle and determining its radius.

Online documentation

Full documentation of solverNystrom is obtained using

help solverNystrom

Template

A template for a user defined solver is given in solver_template.m.

12 Details of incorporating a user defined solver

In this section we work through an example of constructing a user defined solver class.
All that is required of the solver is that it can compute the far field corresponding to a
given incident field.

In this example we show how to construct a solver class using the MPSPACK [1] solver.
Before describing our solver class, we give a simple example of using MPSPACK to solve
a single scattering problem for a sound soft scatterer described using polar coordinates.
For brevity, we will use this code with minimal explanation, and we refer to the MPSPACK
manual [1] for full details of how to use MPSPACK. Understanding how to solve a single
scattering problem using MPSPACK will make it easy to see how the associated solver
class works.

We will mainly focus on the details related to incorporating the solver MPSPACK into the
object oriented framework of TMATROM. Below we assume that the user has downloaded
the MPSPACK solver in a directory and added the directory to the Matlab path. To verify

26

that MPSPACK is installed correctly we recommend that the user types the following two
commands

example_rom_mpspack_soundsoft_bistatic

example_rom_mpspack_soundhard_bistatic

First we setup the MPSPACK solver. The main tasks are to describe the boundary of the
scatterer by specifying function handles f and df that give the radius and its derivative
as a function of angle. These functions can be defined as anonymous functions. Then an
instance of the MPSPACK scattering class is created and stored as scatteringObject
and the wavenumber is set.

kwave = 1;

tau = 0.1;

n = 100;

m = 2*n;

opts= struct('eta',kwave,'fast',2,'multiplier',2.1,'tau',tau);
boundary = segment.radialfunc(m, {f,df});

boundary.setbc(1,'D', []);

d = domain([], [], boundary, -1);

d.addmfsbasis(boundary,n,opts);

scatteringObject = scattering(d, []);

scatteringObject.setoverallwavenumber(kwave);

The next part depends on the incident wave. Here we consider an incident wave stored
as inc which is of type incident. For example

inc = plane_wave(pi/4,kwave);

We define anonymous functions ui, uix and uiy that evaluate the incident field, and the
x- and y-coordinates of its gradient respectively. These are required by MPSPACK for
simulating scattering of the incident wave.

Using these we call the setincidentwave method of scattering. Finally we call the
solvecoeffs method of scattering, which solves a linear system to obtain a vector of
coefficients. This vector of coefficients depends on the incident wave. We need to know
that this vector is stored as scatteringObject.co, but it is internal to MPSPACK and
we do not need to understand its true meaning.

ui = @(x) inc.evaluate(x);

uix = @(x) inc.evaluateGradient(x);

f = @(x) inc.evaluateGradient(x);

uiy = @(x) getSecondOutput(f,x);

scatteringObject.setincidentwave(ui,uix,uiy);

scatteringObject.solvecoeffs;

Finally we compute the far field at points specified in the vector points. For example

points = linspace(0,2*pi,100);

27

This computation uses the MPSACK internal vector scatteringObject.co.

farfield = scatteringObject.gridfarfield(opts,points);

It is clear that the computation of the far field breaks down into three distinct stages.
The first is a setup stage that is independent of the incident field. The second is a solve
stage that computes some internal quantity that depends on the incident field. The third
stage is the far field computation. These three stages form the basis of the setup, solve
and getFarField methods in our solver class. These are the methods that are declared
as abstract in the solver base class.

class definition

We begin by creating a file mfsExampleSolver.m that contains the class declaration for
our mfsExampleSolver class.

First we declare our new class mfsExampleSolver as a child of the solver class.

classdef mfsExampleSolver < solver

% subsequent code will be inserted here

end

This means that the child mfsExampleSolver inherits several methods and properties that
are defined in the parent solver class. In addition to these, the mfsExampleSolver solver
class needs several properties of its own, which are mainly parameters for the MPSPACK
solver.

classdef mfsExampleSolver < solver

properties

f

df

scatteringObject

tau

m

n

coeffs

end

% subsequent code will be inserted here

end

The mfsExampleSolver class also needs several methods. For now we give a template
code. We will expand the function definitions below.

classdef mfsExampleSolver < solver

28

properties

...

end

methods

function self = mfsExampleSolver(kwave,incidentField,f,df,n,tau,m)

...

end

function setup(self)

...

end

function solve(self)

...

end

function val = getFarField(self,points,index)

...

end

end

end

mfsExampleSolver constructor

First we declare the class constructor function, which must have the same name as the
class. In this example we take the MPSPACK parameters as parameters of the constructor
function.

function self = mfsExampleSolver(kwave,incidentField,f,df,n,tau,m)

Our first task in the constructor is to create the object self by calling the parent class
constructor function. The object self is then instantiated as mfsExampleSolver class.

self = self@solver(kwave,incidentField);

Our next task is to copy the given parameters into the class properties.

self.f = f;

self.df = df;

self.m = m;

self.n = n;

self.tau = tau;

Finally, we set to empty the scatteringObject and coeffs properties of self. These

29

properties will be set later by other methods.

self.scatteringObject = [];

self.coeffs = [];

setup method

We assume that all of the parameters for the mfsExampleSolver are set in the constructor,
so that the setup method has no parameters.

function setup(self)

Now the function body contains essentially the same code we used to setup our MPSPACK
example. Note that we now use our class properties for the parameters.

opts= struct('eta',self.kwave,'fast',2,'multiplier',2.1,'tau',self.tau);
boundary = segment.radialfunc(self.m, {self.f,self.df});

boundary.setbc(1,'D', []);

d = domain([], [], boundary, -1);

d.addmfsbasis(boundary,self.n,opts);

Finally, the MPSPACK scattering object is stored in the scatteringObject property
of self so that it can be accessed from other methods.

self.scatteringObject = scattering(d, []);

self.scatteringObject.setoverallwavenumber(self.kwave);

solve method

Again we assume that all of the parameters for the mfsExampleSolver are set in the
constructor, so that the setup method has no parameters.

function solve(self)

As before, we closely follow the code we used in the MPSPACK example above. The main
difference is that we need to solve for each of several incident fields given in the cell array
self.incidentField. This necessitates a loop through the cell array.

for k=1:length(self.incidentField)

Now we essentially repeat the code from the MPSPACK example above.

ui = @(x) self.incidentField{k}.evaluate(x);

uix = @(x) self.incidentField{k}.evaluateGradient(x);

f = @(x) self.incidentField{k}.evaluateGradient(x);

uiy = @(x) getSecondOutput(f,x);

self.scatteringObject.setincidentwave(ui,uix,uiy);

In the MPSPACK example above we solved for only a single incident field and we could
assume that MPSPACK internal variables were in the correct state. In this code we must
reset the MPSPACK internal variable rhs ourselves.

self.scatteringObject.rhs = [];

30

Now we can solve the MPSPACK linear system using the MPSPACK solvecoeffs

method.

self.scatteringObject.solvecoeffs;

Finally we store the MPSPACK internal coefficients in our coeffs array so that we can
access it later in other methods.

self.coeffs{k} = self.scatteringObject.co;

getFarField method

The getFarField method is called by the tmatrix class and so its interface cannot be
changed. The interface is

function val = getFarField(self,points,index)

where points is a vector of angles in [0, 2π] and index is an array of integers between 1 and
length(self.incidentField). The return variable val is an array of size length(points)
by length(index) and on return, the kth column of val must contain the far field cor-
responding to self.incidentField(index(k)) at the observation angles specified in
points.

We begin looping through the vector index

for k=1:length(index)

Our first task is to extract the coefficients corresponding to the index(k)th incident wave
from the coeffs property and set the MPSPACK internal variable co appropriately.

self.scatteringObject.co = self.coeffs{index(k)};

Then we follow the MPSPACK example above to compute the far field values.

opts = [];

val(:,k) = self.scatteringObject.gridfarfield(opts,points);

Example codes

The full code for this example is given in mfsExampleSolver.m and an example of its use
is given in example_user_solver.m in the subdirectory EXAMPLE_ROM_MPSPACK_SOLVER.
In the full code we include a small amount of additional code (to allow default parameter
values and some checking of parameters in methods) that we omitted above.

Finally, we remark that reuse of code can be facilitated by using more complicated nesting
of child and parent classes than in the example above. In the classes mfsPolarSoftSolver.m,
mfsPolarHardSolver.m, mfsPolarSolver.m, and mfsSolver.m we provide an alterna-
tive implementation of MPSPACK solvers that facilitates code reuse for sound soft and
sound hard scattering problems and also for geometries with more general description
than polar coordinate parametrization. Using the above involved structure, we provide
two examples in the subdirectory: example_rom_mpspack_soundsoft_bistatic.m and
example_rom_mpspack_soundhard_bistatic.m.

31

13 Incident fields

We assume that the solver can compute the far field of a given incident field provided it
can compute the value of the incident field and its gradient at appropriate points specified
by the solver.

The classes plane_wave, point_source and regularwavefunction2d represent common
incident fields.

Plane wave

A plane_wave object with wavenumber k and direction exp(1i*theta) is created using

p = plane_wave(theta,k);

Point source

A point_source object with wavenumber k and point source location x is created using

p = point_source(x,k);

Regular wave function (incident field)

A regularwavefunction2d object with wavenumber k, order n and expansion origin x0

is created using

p = regularwavefunction2d(n,k,x0);

Evaluating

An incident field p is evaluated at points z using

val = p.evaluate(z);

Here z may be a scalar, vector or matrix.

Evaluating the gradient

The gradient of an incident field p is evaluated at points z using

[dx,dy] = p.evaluateGradient(z);

Here dx and dy are the first and second components of the gradient, that is, the partial
derivatives of the incident field with respect to x and y respectively.

We remark here the gradient of the incident field is a complex valued vector and hence
the convention that we use elsewhere, of using complex values to represent real valued
vectors, cannot be used. This is why we split the components of the gradient into dx and
dy.

32

Acknowledgments

Support of the National Science Foundation (NSF) and Colorado Golden Energy Com-
puting Organization (GECO) are gratefully acknowledged.

References

[1] A. Barnett and T. Betcke. MPSpack user manual, 2013. http://code.google.com/
p/mpspack/.

[2] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory.
Springer, 2012.

[3] T. J. Dufva, J. Sarvas, and J. C.-E. Sten. Unified derivation of the translation
addition theorems for the spherical and vector wave functions. Progress in Electro-
magnetics Research B, 4:79–99, 2008.

[4] M. Ganesh and S. C. Hawkins. A far-field based T-matrix method for three dimen-
sional acoustic scattering. ANZIAM J., 50:C121–C136, 2008.

[5] M. Ganesh and S. C. Hawkins. A far-field based T-matrix method for two dimensional
acoustic scattering. ANZIAM J., 51:C215–C230, 2010.

[6] M. Ganesh and S. C. Hawkins. A stochastic pseudospectral and T-matrix algorithm
for acoustic scattering by a class of multiple particle configurations. J. Quant. Spect.
Radiative Transfer, 123:41–52, 2013.

[7] M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM—a T-matrix reduced
order model software. ACM Trans. Math. Software, 44(1), 2017.

[8] M. Ganesh, S. C. Hawkins, and R. Hiptmair. Convergence analysis with parameter
estimates for a reduced basis acoustic scattering T-matrix method. IMA J. Numer.
Anal., 32:1348–1374, 2012.

[9] M. Ganesh, J. Hesthaven, and B. Stamm. A reduced basis method for multiple
electromagnetic scattering in three dimensions. J. Comput. Phys., 231:7756–7779,
2012.

[10] W. J. Wiscombe. Improved Mie scattering algorithms. Applied Optics, 1980.

33

