1. Find the equation of the straight line that best fits the data

\[
\begin{array}{c|cccc}
 x & 1 & 2 & 4 & 5 \\
 y & 6 & -3 & 11 & 14 \\
\end{array}
\]

2. Find the quadratic

\[y = ax^2 + bx + c \]

that best fits the data

\[
\begin{array}{c|cccc}
 x & 1 & 2 & 3 & 4 \\
 y & 1 & 6 & 3 & 12 \\
\end{array}
\]

3. The CPU times required to compute the LU factorisation of various \(n \times n \) matrices on my laptop were

<table>
<thead>
<tr>
<th>(n)</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.1</td>
</tr>
<tr>
<td>707</td>
<td>0.2</td>
</tr>
<tr>
<td>1000</td>
<td>0.6</td>
</tr>
<tr>
<td>1414</td>
<td>1.6</td>
</tr>
<tr>
<td>2000</td>
<td>4.6</td>
</tr>
<tr>
<td>2828</td>
<td>12.6</td>
</tr>
<tr>
<td>4000</td>
<td>35.1</td>
</tr>
</tbody>
</table>

We expect

\[\text{CPU time} = cn^\alpha. \]

Find \(c \) and \(\alpha \) using least squares techniques and the QR factorisation. (Hint: use logarithms to turn this into a linear equation.) Use your \(c \) and \(\alpha \) to estimate the CPU time required for \(n = 8000 \).

4. Consider the approximation

\[y = ax + b \]

for the data

\[(x_i, y_i) \quad i = 1, \ldots, n. \]
(a) We define the least squares error

\[\phi(a, b) = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2. \]

Use calculus techniques to show that \(\phi(a, b) \) is minimised when \(a \) and \(b \) satisfy

\[a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i, \quad a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i. \]

(b) Show that these equations are equivalent to the normal equations.