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Abstract

We provide a user manual for our object-oriented Matlab package MieSolver,
which provides efficient and easy to use tools for simulating wave propagation
through a heterogeneous configuration of nonidentical circular cylinders. MieSolver
allows great flexibility in the physical properties of each cylinder and the cylinders
may have opaque or penetrable cores, and an arbitrary number of penetrable layers.
The solver is based on the Mie series solution and hence is numerically stable and
highly accurate.

1 Installation and verification

Download

Download the archive file miesolver.tar.gz (Linux/Unix/OS X) or miesolver.zip from

http://www.miesolver.org

Unpack

Your system may automatically unpack the archive file for you. If your system does not
automatically unpack the archive you can unpack it using (Linux/Unix/OS X)

tar -xvzf miesolver.tar.gz

or by opening it with Winzip (Windows).

Save unpacked software in a directory
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We recommend you save the files unpacked from the archive in a directory. Below we
refer to this directory as the MieSolver root directory.

Run example codes

Several example scripts are included in the MieSolver software package. These can be
executed using the following commands.

mie_example_soft

mie_example_hard

mie_example_robin

mie_example_coated

mie_example_dielectric

The figures produced by these examples are included in the Appendix.

We recommend users follow the quick start guide in Section 3 to learn more about how
to use the package.
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2 Introduction

We describe the use of our object-oriented Matlab software package MieSolver. This
package provides software tools for simulation of wave scattering in two dimensions by
circular obstacles. Heterogeneous configurations containing many nonidentical obstacles
with various material properties, with and without penetrable layers, can be simulated.
The two dimensional wave scattering problem arises in models for propagation of acoustic,
elastic and electromagnetic waves in domains containing parallel circular cylinders and
we refer to the accompanying paper [3] for further details and references.

The object-oriented structure of our package facilitates easy description of the scattering
problem, including the incident wave and the obstacles in a configuration, even for large
heterogeneous configurations of nonidentical obstacles. As demonstrated in Section 3, only
a few lines of simple code are required to setup and solve a wave scattering simulation with
a single scatterer. Examples in Section 8 show that simulations with multiple scatterers
and layered scatterers are similarly easy to code.

Our code is based on the well known Mie series, which has been widely described in books,
including [1, 4, 5]. For further references to the extensive literature on the Mie series for
the two dimensional scattering problem we refer to [3]. It is well known that the Mie
series yields highly accurate solutions. In [3] we demonstrate eight digit accuracy of our
code in extensive numerical experiments for a wide range of configurations with varying
numbers of obstacles and various material parameters.

This article includes the minimal mathematical details required to use the package and
understand the underlying algorithm. For complete mathematical details we ask the user
of this manual to refer to [3]. We request that any publications that make use of our
MieSolver package cite our accompanying paper [3].

A note on position vectors in MieSolver In our MieSolver code, and in this man-
ual, we represent real valued vectors (such as position vectors) (x, y)T ∈ R2 by complex
numbers x+ yi.
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3 Quick start guide

In this section we describe how to setup, simulate and visualise the scattered field and
far field induced by a plane wave interacting with a cylinder comprising a sound-soft core
and a penetrable layer.

First we set up the sound-soft scatterer core (with radius 0.5 and centre at the origin)
using

s = scatterer(0,0.5,'SOFT');

Then we add the penetrable layer (with outer radius 1 and refractive index 1.5) using

s.addCoating(1,1.5);

Next we set up the incident plane wave (with wavenumber 5 and direction d = (cos θ, sin θ)T

for θ = π/2) using

p = plane_wave(pi/2,5);

Next we setup the solver, set the tranmsission type to TE, add the scatterer, and solve
to find the scattering coefficients.

m = MieSolver(p);

m.transmissionTE();

m.addScatterer(s);

m.solve();

We visualise the total field (using the default plotting region) using

m.visualiseTotalField()

The output is shown in Figure 1. To modify the plotting region please see the detailed
instructions in Section 6.

We visualise the far field using

m.visualiseRcs()

The output is shown in Figure 1.

4 Mathematical Model

Overview

The MieSolver package solves the two dimensional Helmholtz equation, which models
propagation of three dimensional waves through a domain containing vertical cylinders.
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Figure 1: Visualisations of the total field (left) and cross section (right) of a cylinder with
a sound-soft core and a penetrable layer produced using the code in the Quick Start Guide
(Section 3).

In the two dimensional Helmholtz model the cylinders are represented by their two di-
mensional cross sections. Henceforth we use the term “scatterer” to describe the two
dimensional cross sections of the cylinders.

Scatterer description

We begin by briefly describing the scattering problem for the case of a single circular
scatterer centred at the origin. We assume that the scatterer comprises a homogeneous
core with radius r1 surrounded by N − 1 homogeneous annular layers with outer radii
r2, . . . , rN satisfying

r1 < r2 < · · · < rN .

(The case in which the core is not surrounded by any layers satisfies this description with
N = 1.) The core is then

D1 = B(0, r1)

where B(x, r) denotes the ball or radius r centred at x. The annular layers are

Dj = B(0, rj) \B(0, rj−1), for 2 ≤ j ≤ N.

It is convenient to denote the outer domain

DN+1 = R2 \B(0, rN).

PDEs and boundary conditions

The scatterer D = D1∪· · ·∪DN is illuminated by an incident wave uinc with wavenumber
k, which induces a field uj in each of the domains Dj for j = 1, . . . , N + 1. (If the core
is opaque then it is convenient to set the field in the core, u1 = 0.) The induced fields
satisfy the two dimensional Helmholtz equation

4u(x) + (νjk)2u(x) = 0, x ∈ Dj, (1)
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where νj denotes the refractive index in Dj for j = 1, . . . , N and, without loss of generality,
we may fix the refractive index in the exterior domain DN+1 to be νN+1 = 1.

The induced field uN+1 in the exterior domain DN+1 is also known as the scattered field,
and is required to satisfy the Sommerfeld radiation condition [2, Equation (3.85)]

lim
|x|→∞

√
|x|
(
∂uN+1

∂x
(x)− iku(x)

)
= 0 (2)

uniformly as |x| → ∞.

On the interface between the penetrable domains Dj and Dj+1 for j = 1, . . . , N we apply
transmission boundary conditions

uj(x) = uj+1(x), for x ∈ Sj,

αj
∂uj
∂n

(x) = αj+1
∂uj+1

∂n
(x), for x ∈ Sj,

(3)

where Sj = S(0, rj) is the interface between Dj and Dj+1, and S(x, r) denotes the sphere
centred at x and with radius r. The parameters αj and αj+1 are transmission parameters
that we describe below.

If the core is penetrable with refractive index ν1 then the incident wave induces a field u1
in D1, which also satisfies (1). In this case we apply transmission boundary conditions

u1(x) = u2(x), for x ∈ S1,

α1
∂u1
∂n

(x) = α2
∂u2
∂n

(x), for x ∈ S1,
(4)

where S1 = S(0, r1). Here α1 and α2 are transmission parameters that we describe below.

If the core is opaque then a Neumann, Dirichlet or Robin boundary condition is applied
on S1 depending on the material properties of the core. For example, if the core is sound
soft then we apply the boundary condition

u2(x) = 0, for x ∈ S1. (5)

If the core is sound hard then we apply the boundary condition

∂u2
∂n

(x) = 0, for x ∈ S1. (6)

Alternatively we may apply the Robin boundary condition

∂u2
∂n

+ iµu2(x) = 0, for x ∈ S1, (7)

where µ ∈ C is a fixed parameter.
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In many applications the quantity of interest is the far field

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|uN+1(x), (8)

or the associated cross section (in decibels)

σdB(x̂) = 10 log10 2π|u∞(x̂)|2. (9)

Here x̂ is a unit vector that corresponds to the direction of observation.

Transmission parameters

The transmission parameters in (3) and (4) can be specified by the user as functions of
the refractive index or individually for each core. Alternatively, default parameters can
be chosen for acoustic scattering or electromagnetic scattering (TE and TM polarisation)
problems. The procedures for setting the transmission parameters are given in Section 5.

Solution representation

A detailed description of the method of solution is given in [3]. The induced field in the
core is represented as

u1(x) =
∞∑

n=−∞

a(1)n J|n|(ν1kr)e
inθ (10)

for expansion coefficients (a
(1)
n )n∈Z. Here we use polar coordinates x = (r cos θ, r sin θ)T ,

and Jn denotes the Bessel function of order n. Similarly, we represent the induced field
in each annular layer as

uj(x) =
∞∑

n=−∞

a(j)n J|n|(νjkr)e
inθ +

∞∑
n=−∞

b(j)n H
(1)
|n| (νjkr)e

inθ, (11)

for 2 ≤ j ≤ N , with expansion coefficients (a
(j)
n )n∈Z and (b

(j)
n )n∈Z. Here H

(1)
n denotes the

Hankel function of the first kind of order n. We represent the induced field in the exterior
as

uN+1(x) =
∞∑

n=−∞

b(N+1)
n H

(1)
|n| (kr)e

inθ (12)

for expansion coefficients (b
(N+1)
n )n∈Z. This expansion automatically satisfies the radiation

condition (2).

For several important types of incident field, such as plane waves and point sources, the
incident field in the exterior has the expansion

uinc(x) =
∞∑

n=−∞

a(N+1)
n J|n|(kr)e

inθ (13)

with known coefficients (a
(N+1)
n )n∈Z. For plane waves and point sources an analytical

expression is available for the coefficients [3, Equation (8)].
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Numerical determination of coefficients

In practice the infinite series in (10)–(13) must be truncated. In our algorithm we replace
summation for n = −∞, . . . ,∞ by summation for n = −nmax, . . . , nmax where

nmax = ceil(n∗), n∗ =


x+ 1 + 4x1/3, for x ≤ 8,
x+ 2 + 4.05x1/3 for 8 < x < 4200,
x+ 2 + 4x1/3 otherwise.

(14)

Here x = πs = krN where s is the diameter of the scatterer in wavelengths,

s =
2rN
λ

=
krN
π
. (15)

Here λ = 2π/k denotes the wavelength. This choice for nmax is based on a formula for the
analogous truncation parameter for Mie scattering by spheres chosen by Wiscombe [6] to
give about eight digits accuracy.

Substituting the trucated series (10)–(12) into the boundary conditions (3) and (4)–(7)
yields a linear system for the unknown coefficients. The matrix in the linear system has
a block structure with roughly two blocks for each layer (the exact number depends on
the material properties of the core). Each block is a (2nmax + 1) × (2nmax + 1) diagonal
matrix. Therefore it is efficient to assemble the system matrix using Matlab’s sparse

function and solve the linear system using Matlab’s sparse direct solver backslash. We
refer to [3] for full details.

Multiple scatterers

In the case of scattering by a configuration containingM scatterers with centres x1, . . . ,xM
we describe each scatterer as above, with appropriate modification of the centres from 0
to xj for j = 1, . . . ,M .

Each scatterer contributes its own component of the form (12) to the scattered field in
the exterior, so that the scattered field in the exterior is given by

u(x) =
M∑
j=1

∞∑
n=−∞

b(j,Nj+1)
n H

(1)
|n| (krj)e

inθj (16)

where we use polar coordinates x − xj = (rj cos θj, rj sin θj)
T i.e. polar coordinates for

x with local origin xj. Here b
(j,Nj+1)
n are the expansion coefficients from (12) on the jth

scatterer (and we assume the jth scatterer has Nj domains). The interior fields inside each
scatterer are precisely as described above for the single scatterer case, after appropriate
modification of the origin for the local polar coordinates.
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Part I

The MieSolver classes

5 The scatterer class

A MieSolver scatterer comprises a homogeneous core and may contain further homoge-
neous layers. A scatterer is built up from the core by adding layers.

Instantiation

The scatterer class represents a scatterer with a core. An instance of the scatterer

class with a sound-soft core (i.e. a homogeneous Dirichlet boundary condition) is created
using

S = scatterer(x,r,'SOFT');

where x is the the centre of the scatterer and r the radius of the core.

Instances of the scatterer class with sound-hard (i.e. a homogeneous Neumann bound-
ary condition), Robin or penetrable cores are created similarly, using

S = scatterer(x,r,'HARD');

S = scatterer(x,r,'ROBIN');

S = scatterer(x,r,'DIELECTRIC');

where x is the the centre of the scatterer and r the radius of the core.

In the Robin case, the parameter µ in (7) will subsequently need to be set using the
setRobinParameter method before the scattered field can be computed. Alternatively
the Robin parameter can be set at the time of instantiation using

S = scatterer(x,r,'ROBIN',mu);

where mu is the value of the Robin parameter.

In the case of a penetrable core, the refractive index ν of the core will subsequently need to
be set using the setRefractiveIndex method before the scattered field can be computed.
Alternatively the refractive index can be set at the time of instantiation using

S = scatterer(x,r,'DIELECTRIC',nu);

where nu is the value of the refractive index in the core.
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For acoustic scattering problems, the density ρ of the core will subsequently need to be set
using the setDensity method before the scattered field can be computed. Alternatively
the density can be set at the time of instantiation using

S = scatterer(x,r,'DIELECTRIC',nu,rho);

where nu is the value of the refractive index in the core and rho is the density of the core.

Adding a layer

A penetrable layer is added to the outside of the scatterer using

S.addCoating(r,nu);

where r is the outer radius of the layer and nu is the refractive index of the layer.

For acoustic scattering problems a penetrable layer is added to the outside of the scatterer
using

S.addCoating(r,nu,rho);

where r is the outer radius of the layer, nu is the refractive index of the layer and rho is
the density of the layer.

Setting the refractive index

The refractive index in each domain Dj can be modified. For example,

S.setRefractiveIndex(j,nu)

sets the refractive index of domain j to nu.

If the scatterer has no coatings then

S.setRefractiveIndex(nu)

sets the refractive index of the core to nu.

Setting the density

The density in each domain Dj can be modified. For example,

S.setDensity(j,rho)

sets the density of domain j to rho.

If the scatterer has no coatings then

S.setDensity(rho)

sets the density of the core to rho.

Setting the Robin parameter
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If the core has a Robin boundary condition then the Robin parameter µ in (7) is set using

S.setRobinParameter(mu);

where mu is the value of the Robin parameter.

Getting the Robin boundary condition parameter

The Robin boundary condition parameter µ in (7) of the core is obtained using

mu = S.getRobinParameter()

If the core does not have a Robin boundary condition then this method returns mu = Inf.

Getting the refractive index

The refractive indices of the domains comprising S are obtained using

nu = S.getRefractiveIndex()

Here nu is a vector and nu(j) contains the refractive index of the jth domain. The entry
nu(end) contains the refractive index of the exterior domain. If the core is opaque then
nu(1) is Inf.

The refractive index of the jth domain is obtained using

nu = S.getRefractiveIndex(j)

If the scatterer has no coatings then

nu = S.getRefractiveIndex()

returns the refractive index of the core. If the core is opaque then the result is nu = Inf.

Getting the density

The densities of the domains comprising S are obtained using

rho = S.getDensity()

Here rho is a vector and rho(j) contains the density of the jth domain. The entry
rho(end) contains the density of the exterior domain. If the core is opaque then rho(1)

is Inf.

The density of the jth domain is obtained using

rho = S.getDensity(j)

If the scatterer has no coatings then

rho = S.getDensity()

returns the density of the core. If the core is opaque then the result is rho = Inf.
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Getting the radius of the scatterer

The radius r of the scatterer S is obtained using

r = S.getRadius()

Getting the centre of the scatterer

The centre x of the scatterer S is obtained using

x = S.getCentre()

Getting the acoustic size of the scatterer

The acoustic size s in (15) is obtained using

s = S.getSize(wavenumber)

where wavenumber is the wavenumber.

Visualising the scatterer

The scatterer is visualised in a 2D figure using

S.show()

The linetype for the visualisation can be specified using e.g.

S.show('k-')

The default visualisation includes labels showing the refractive index of each domain.
These labels can be omitted using e.g.

S.show('k-',0)

or

S.show([],0)

6 The MieSolver class

The scattering problem described in Section 4 is setup and solved using the MieSolver

class.

Instantiation

A MieSolver is constructed using an incident field of class incident and and one or more
scatterers described using objects of class scatterer. An instance of the MieSolver class
is created using

P = MieSolver(inc);
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where inc is an object of class incident. The object P has no scatterers associated with
it and scatterers must be subsequently added using the addScatterer method before the
induced field can be computed.

Alternatively, one or more scatterers can be added at the time of instantiation using

P = MieSolver(inc,S);

or, for many scatterers,

P = MieSolver(inc,S1,S2,...);

where S, S1, S2 are objects of class scatterer. The scatterers can also be specified in a
cell array, for example,

P = MieSolver(inc,{S1,S2});

Setting explicit transmission boundary condition parameters

To use acoustic scattering type transmission parameters, specified using the density in
each domain, use the command

P.transmissionAcoustic()

In particular the parameter αj in the transmission conditions (3) and (4) is then given by

αj =
1

ρj

where ρj is the density in the jth domain.

Note: this option allows each transmission parameter to be specified explicitly (in terms
of its reciprocal).

Setting transverse electric (TE) transmission boundary condition parameters

To use TE type transmission parameters use the command

P.transmissionTE()

In particular the parameter αj in the transmission conditions (3) and (4) is then given by

αj = 1.

Setting transverse magnetic (TM) transmission boundary condition parameters

To use TM type transmission parameters use the command

P.transmissionTM()

In particular the parameter αj in the transmission conditions (3) and (4) is then given by

αj =
1

ν2j
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where νj is the refractive index in the jth domain.

Setting custom transmission boundary condition parameters

To use custom transmission parameters specified as a function of refractive index, use the
command

P.transmissionCustom(f)

where f is a function of one variable. In particular the parameter αj in the transmission
conditions (3) and (4) is then given by

αj = f(νj).

For example, transverse electric (TE) type transmission conditions are specified using

f = @(nu) 1/nu^2;

Adding a scatterer

A scatterer is added using

P.addScatterer(S)

where S is an object of class scatterer.

Getting a scatterer

The jth scatterer is obtained using

S = P.getScatterer(j)

Adjusting the truncation parameter

The truncation parameter nmax in Section 4 is chosen automatically for each scatterer
to give about eight digits accuracy in the computed solution using (14). This trunca-
tion parameter may be adjusted to increase the accuracy. The truncation parameter is
incremented by m using

P.incrementNmax(m)

This method must be used before the solve method. If the incrementNmax method is
used more than once then its effects will be compounded.

Getting the truncation parameter

The truncation parameter nmax in Section 4 is obtained using

n = P.getNmax()

Here n is a vector and n(j) containes the truncation parameter of the jth scatterer.

The truncation parameter for the jth scatterer is obtained using

n = P.getNmax(j)
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Computing the induced field coefficients

The coefficients of the induced fields described in Section 4 are computed using

P.solve()

This method must be called before the induced field can be computed or visualised.

Getting the induced field

The induced field described in Section 4 is obtained at points x using

u = P.getInducedField(x);

where x is an array of complex numbers representing position vectors. If x(j) lies inside
the core of any scatterer then u(j) = 0.

Getting the total field

The total field described in Section 4 is obtained at points x using

u = P.getTotalField(x);

where x is an array of complex numbers representing position vectors. If x(j) lies inside
the core of any scatterer then u(j) = 0.

Getting the far field

The far field (8) is obtained at points xh using

u = P.getFarField(x);

where x is an array of complex numbers representing position vectors and xh = x./abs(x).
The points in xh lie on the unit circle and represent observation directions.

Getting the Cross Section in decibels

The cross section (9) is obtained at points xh using

u = P.getRcs(x);

where x is an array of complex numbers representing position vectors and xh = x./abs(x).
The points in xh lie on the unit circle and represent observation directions.

Visualising the total field

The total field is visualised using

P.visualiseTotalField()

The figure shows the real part of the total field over a default rectangular plotting region.

To plot the total field over a custom plotting region [a, c]× [b, d] use

P.visualiseTotalField([a+bi,c+di])
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The visualisation uses about 10 points per wavelength. If the grid size exceeds 400× 400
then the visualisation will be cancelled unless the -f override described below is used.

Additional options can be specified using a string opts

P.visualiseTotalField([a+bi,c+di],opts)

Supported options are:

-f overrides the 400× 400 grid size restriction.

abs plots the absolute value of the total field.

Visualising the total field

The cross section (9) is visualised using

P.visualiseRcs()

The linestyle may additionally be specified e.g.

P.visualiseRcs('r-')

to plot with a solid red line.

7 The incident class

Incident fields are represented by the incident class. The incident class is an abstract
class and two child classes plane_wave and point_source are provided.

Evaluating an incident field

An incident field p is evaluated at points z using

u = p.evaluate(z);

Here z is an array of complex numbers representing position vectors.

Evaluating the gradient of an incident field

The gradient of an incident field p is evaluated at points z using

[dx,dy] = p.evaluateGradient(z);

Here z is an array of complex numbers representing position vectors. The outputs dx and
dy are the first and second components of the gradient of the incident field.

Obtaining wavefunction expansion coefficients
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The wavefunction expansion coefficients of the incident wave in (13) are given by

cof = p.get_coefficients(x,nmax);

where x is the expansion centre and nmax is the truncation parameter.

Addition and scalar multiplication

Two objects p and q of class incident can be added using

s = p + q;

and substracted using

s = p - q;

An object p of class incident can be multiplied by a scalar using e.g.

s = 3 * p;

Incident plane waves

An incident plane wave

uinc(x) = eikx·d̂ (17)

with direction specified by the unit vector d̂ = (cos θ, sin θ)T and wavenumber k is repre-
sented by the plane_wave class. An instance of the plane_wave class is created using

p = plane_wave(theta,wavenumber);

where theta is the angle specifying the incident direction and wavenumber is the wavenum-
ber.

Incident point sources

An incident point source

uinc(x) =
i

4
H

(1)
0 (k|x− x0|) (18)

with source location x0 and wavenumber k is represented by the point_source class. An
instance of the point_source class is created using

p = point_source(x0,wavenumber);

where x0 is a complex number representing the source location and and wavenumber is
the wavenumber.

8 Examples

The solution procedure in the Quick Start Guide (Section 3) is independent of the partic-
ular configuration of cylinders. Here we give some examples of how to set up particular
configurations.
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Single sound-soft cylinder (homogeneous Dirichlet BC)

To setup an instance of the MieSolver class for a single sound-soft cylinder with centre
x and radius r

s = scatterer(x,r,'SOFT');
m = MieSolver(inc,s);

where inc is of class incident.

Single sound-hard cylinder (homogeneous Neumann BC)

To setup an instance of the MieSolver class for a single sound-hard cylinder with centre
x and radius r

s = scatterer(x,r,'HARD');
m = MieSolver(inc,s);

where inc is of class incident.

Single absorbing cylinder (homogeneous Robin BC)

To setup an instance of the MieSolver class for a single absorbing cylinder with centre
x, radius r and impedance parameter mu

s = scatterer(x,r,'ROBIN',mu);
m = MieSolver(inc,s);

where inc is of class incident.

Single penetrable cylinder

To setup an instance of the MieSolver class for a single penetrable cylinder with centre
x, radius r and refractive index nu

s = scatterer(x,r,DIELECTRIC',nu);
m = MieSolver(inc,s);

where inc is of class incident.

Single layered cylinder

To setup an instance of the MieSolver class for a single layered cylinder with centre x,
sound-soft core with radius r0 and a layer with radius r1 and refractive index nu

s = scatterer(x,r0,'SOFT');
s.addCoating(r1,nu)

m = MieSolver(inc,s);

where inc is of class incident.

Two sound-soft cylinders (homogeneous Dirichlet BC)
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To setup an instance of the MieSolver class for two sound-soft cylinders with centres x1
and x2 and radii r1 and r2 respectively

s1 = scatterer(x1,r1,'SOFT');
s2 = scatterer(x2,r2,'SOFT');
m = MieSolver(inc,s1,s2);

where inc is of class incident.
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A Output from examples

Several example scripts are included in the MieSolver software package. These can be
executed using the following commands.

mie_example_soft

mie_example_hard

mie_example_robin

mie_example_coated

mie_example_dielectric

In this appendix we present the figures produced by these examples, so that they can be
used for validating the installation.
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Figures from mie example soft

Figures from mie example hard
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Figures from mie example robin

Figures from mie example coated
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Figures from mie example dielectric
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