
MATH236 — Weeks 8&9
Integrals over surfaces

Chen notes, chapter 11

11.1 Integrals of scalar functions over parametrized surfaces
Suppose that the parametrized surface F : R Ø —3  whereby  Hu , vL# FHu , vL = HxHu , vL , yHu , vL , zHu , vLL is continuously differentiable. 

For any real-valued function f Hx , y , zL such that the composition   f Î F : R Ø —3 : Hu , vL# f HFHu , vLL = f HxHu , vL , yHu , vL , zHu , vLL  is 
continuous, we define:

‡
F

f  „S = ‡
F

f Hx , y , zL „S =
def ‡ ‡

R
f HFHu , vLL »» tu µ tv »»„ u „ v .

Remarks

Ï   Here „ S = »» tu µ tv »» „ u „ v can be considered to be the surface area differential of the parametrized surface F.

Ï  Clearly     ŸF
f  „ S = Ÿ ŸR

f HFHu , vLL »» tu µ tv »» „ u „ v = ‡ ‡
R

 f HFHu , vLL I … Hy,zLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL  …2 + … Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL  …2 + … Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL  …2M
1ÅÅÅÅ2

 „ u „ v.

Ï   Suppose that f = 1 identically.  Then the integral simply represents the surface area of F .

Ï   Note that f  has only to be defined on the image surface S = FHRL of the parametrized surface F  for our definition to make sense.  The continuity of the 
composition function f ÎF  on the elementary region R  ensures the existence of the integral.

Ï     Sometimes, F  may only be piecewise continuously differentiable;  in other words, there exists a partition of the region R into a  finite union of elementary 
regions Ri , where i = 1, … , k , such that F  is continuously differentiable in Ri  for each i = 1, … , k .  In this case, we define

‡
F

f  „ S =
def ‚

i=1

k

‡
Fi

f HFHu , vLL »» tu µ tv »» „ u „ v ,

  where Fi : Ri Ø —3 : Hu , vL# FHu , vL .  In other words, we calculate the corresponding integral for each subregion and consider the sum of the integrals.

Example 11.1.1 — parametrized cone

For the parametrized cone F : @0 , 1Dµ @0 , 2 pD Ø —3  whereby Hu , vL# Hu cos v , u sin v , uL, and the function f Hx , y , zL = x2 + y2 + z2 + y, 
we have, writing R = @0 , 1Dµ @0 , 2 pD and noting Example 10.2 .1,

‡
F

f  „ S = ‡ ‡
R

f Hu cos v , u sin v , uL »» H-u cos v , -u sin v , uL »»„ u „ v = ‡ ‡
R
Hu2 cos2 v + u2 sin2 v + u2 + u sin vL è!!!2  u „ u „ v

=
è!!!2  ‡ ‡

R
u2H2 u + sin vL „ u „ v = 2 

è!!!2  ‡ ‡
R

u3 „ u „ v +
è!!!2  ‡ ‡

R
u2  sin v „ u „ v

= 2 
è!!!2  

i
k
jjj‡

0

1
u3  „ u y

{
zzz 
i
k
jjj‡

0

2 p

1 „ vy{
zzz +

è!!!2  
i
k
jjj‡

0

1
u2  „ u y

{
zzz 
i
k
jjj‡

0

2 p

sin v „ vy{
zzz = 2 

è!!!2 µ
1
ÅÅÅÅÅ
4

µ 2 p +
è!!!2 µ

1
ÅÅÅÅÅ
3

µ 0 = p 
è!!!2 .
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Example 11.1.2 — helicoid

For the helicoid F : @0 , 1Dµ @0 , 2 pD Ø —3  whereby Hu , vL# Hu cos v , u sin v , vL, and the function f Hx , y , zL =
è!!!!!!!!!!!!!!!!!!!!!1 + x2 + y2 + z, we have, 

writing R = @0 , 1Dµ @0 , 2 pD and noting Example 10.2 .3,

‡
F

f  „ S = ‡ ‡
R

f Hu cos v , u sin v , vL »» H-sin v , -cos v , uL »»„ u „ v = ‡ ‡
R
Iè!!!!!!!!!!!!1 + u2 + vM H1 + u2L 1ÅÅÅÅ2 „ u „ v

= ‡ ‡
R
H1 + u2L „ u „ v + ‡ ‡

R
v H1 + u2L 1ÅÅÅÅ2  „ u „ v =

i
k
jjj‡

0

1H1 + u2L „ u y
{
zzz 
i
k
jjj‡

0

2 p

1 „ vy{
zzz+

i
k
jjj‡

0

1H1 + u2L 1ÅÅÅÅ2  „ u y
{
zzz 
i
k
jjj‡

0

2 p

v „ vy{
zzz

= Au +
1
ÅÅÅÅÅ
3

 u3E
0

1
µ 2 p +

1
ÅÅÅÅÅ
2

 I è!!!2 + sinh-1H1LMµ A 1
ÅÅÅÅÅ
2

 v 2E
0

2 p

=
4
ÅÅÅÅÅ
3

p + p 2I è!!!2 + log I1 +
è!!!2 MM .
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Example 11.1.3 — different parametrizations of the sphere

The three distinct parametrized surfaces:

 F : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hsin u cos v , sin u sin v , cos uL
 Y : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hsin u sin v , sin u cos v , cos uL
 X : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hcos u , sin u sin v , sin u cos vL

satisfy FH@0 , pDµ @0 , 2 pDL = YH@0 , pDµ @0 , 2 pDL = XH@0 , pDµ @0 , 2 pDL = S , which is the unit sphere in —3 .
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We have shown earlier that for the parametrized surface F, we have tu µ tv = Hsin2  u cos v , sin2  u sin v , cos u sin uL.
Similarly, it can be shown that for the parametrized surfaces Y and X,  we have respectively:

Y : tu µ tv = H-sin2  u sin v , -sin2  u cos v , -cos u sin uL,
X : tu µ tv = H-cos u sin u , -sin2  u sin v , -sin2  u cos vL.

Now consider the function f Hx , y , zL = z2 . We have, writing R = @0 , pDµ @0 , 2 pD and noting Example 10.2.2,

‡
F

f  „ S = ‡ ‡
R

f Hsin u cos v , sin u sin v , cos uL »» Hsin2  u cos v , sin2  u sin v , cos u sin uL »»„ u „ v

= ‡ ‡
R
cos2 u H » sin u »L „ u „ v = i

k
jj‡

0

p

cos2 u sin u „ u y
{
zz 
i
k
jjj‡

0

2 p

1 „ vy{
zzz =

i
k
jjj‡

-1

1
h2 „ hy{

zzzµ 2 p =
4
ÅÅÅÅÅ
3

 p ,

after using a substitution h = -cos u .   Similarly

‡
Y

f  „ S = ‡ ‡
R

f Hsin u sin v , sin u cos v , cos uL »» H-sin2  u sin v , -sin2  u cos v , -cos u sin uL »»„ u „ v

= ‡ ‡
R

cos2 u H » sin u »L „ u „ v =
4
ÅÅÅÅÅ
3

 p .

‡
X

f  „ S = ‡ ‡
R

f Hcos u , sin u sin v , sin u cos vL »» H-cos u sin u , -sin2  u sin v , -sin2  u cos vL »»„ u „ v

= ‡ ‡
R

sin2 u cos2 v H » sin u »L „ u „ v = i
k
jj‡

0

p

sin3 u „ u y
{
zz 
i
k
jjj‡

0

2 p

cos2 v „ v
y
{
zzz

= i
k
jj‡

0

p H1 - cos2  uL sin u „ u y
{
zz 
i
k
jjj‡

0

2 p 1
ÅÅÅÅÅ
2

 H1 + cos 2 vL „ vy{
zzz =

i
k
jjj‡

-1

1H1 - h2L „ hy{
zzzµ I 1

ÅÅÅÅÅ
2

µ 2 pM = I2 -
2
ÅÅÅÅÅ
3
M p =

4
ÅÅÅÅÅ
3

 p .

Note that the three integrals have the same value. We shall discuss this in greater detail in Section 11.3.
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with transparency

11.2 Surface integrals, of vector fields
Suppose that the parametrized surface F : R Ø —3  whereby  Hu , vL# FHu , vL = HxHu , vL , yHu , vL , zHu , vLL is continuously differentiable. 

For any vector field FHx , y , zL such that the composition function FÎ F : R Ø —3 : Hu , vL# FHFHu , vLL = FHxHu , vL , yHu , vL , zHu , vLL  is 
continuous, we define:

‡
F

F ÿ „S = ‡
F

FHx , y , zL ‚S =
def ‡ ‡

R
FHFHu , vLL ÿ Htu µ tvL „ u „ v .

Remarks

Ï   Here „ S = Htu µ tvL „ u „ v is the parametrized surface analogue of the velocity differential „ s = f£HtL „ t  of a path f.

Ï  Clearly ŸF
F ÿ „ S = Ÿ ŸR FHFHu , vLL ÿ Htu µ tvL „ u „ v = ‡ ‡

R
FHFHu , vLL ÿ I Hy,zLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v.

Ï   Note that F  has only to be defined on the image surface S = FHRL of the parametrized surface F  for our definition to make sense. The continuity of the 
composition function FÎF  on the elementary region R ensures the existence of the integral.

Ï   Sometimes, F may only be piecewise continuously differentiable. As in the last section, we can calculate the corresponding integral for each subregion in a 
partition of the region R and consider the sum of the integrals.

Ï   Note that if tu µ tv  0 for every Hu , vL œ R, then 

‡
F

F ÿ „ S = ‡ ‡
R

FHFHu , vLL ÿ Htu µ tvL „ u „ v = ‡ ‡
R

FHFHu , vLL ÿ
tu µ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tu µ tv »» »» tu µ tv »»„ u „ v = ‡ ‡

R
f HFHu , vLL »» tu µ tv »»„ u „ v

where f HFHu , vLL =
def FHFHu , vLL ÿ

tu µ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tu µ tv »» .

    Here n =
tuµ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tuµ tv»»  is the unit vector normal to the parametrized surface F .  Then  ŸF

F ÿ „ S = ŸF
F ÿ n „ S ,   so that the integral over the parame-

trized surface now becomes one of the type discussed in the last section.

Example 11.2.1 — on the cone

For the parametrized cone F : @0 , 1Dµ @0 , 2 pD Ø —3  whereby Hu , vL# Hu cos v , u sin v , uL, and the vector field FHx , y , zL = H-x , y , zL, 
we have, writing R = @0 , 1Dµ @0 , 2 pD and noting Example 10.2 .1,

‡
F

F ÿ „S = ‡ ‡
R
FHu cos v , u sin v , uL ÿH-u cos v , -u sin v , uL „ u „ v = ‡ ‡

R
H-u cos v , u sin v , uL ÿ H-u cos v , -u sin v , uL „ u „ v

= ‡ ‡
R

u2Hcos2 v - sin2 v + 1L „ u „ v = ‡ ‡
R

2 u2  cos2 v „ u „ v = 2 
i
k
jjj‡

0

1
u2  „ u y

{
zzz 
i
k
jjj‡

0

2 p 1
ÅÅÅÅÅ
2

 H1 + cos 2 vL „ vy{
zzz = 2 µ

1
ÅÅÅÅÅ
3

µ I 1
ÅÅÅÅÅ
2

µ 2 pM =
2
ÅÅÅÅÅ
3

 p .
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Example 11.2.2 — on the helicoid

For the helicoid F : @0 , 1Dµ @0 , 2 pD Ø —3  whereby Hu , vL# Hu cos v , u sin v , vL, and the vector field FHx , y , zL = Hx , y , zL, we have, writ-
ing R = @0 , 1Dµ @0 , 2 pD and noting Example 10.2 .3,

‡
F

F ÿ „S = ‡ ‡
R
FHu cos v , u sin v , vL ÿ Hsin v , -cos v , uL „ u „ v = ‡ ‡

R
Hu cos v , u sin v , vL ÿ Hsin v , -cos v , uL „ u „ v

= ‡ ‡
R

u v „ u „ v =
i
k
jjj‡

0

1
u „ u y

{
zzz 
i
k
jjj‡

0

2 p

v „ vy{
zzz =

1
ÅÅÅÅÅ
2

µ
1
ÅÅÅÅÅ
2

µ H2 pL2 = p 2 .
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Example 11.2.3 — different parametrizations of the sphere

The three distinct parametrized surfaces:

 F : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hsin u cos v , sin u sin v , cos uL
 Y : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hsin u sin v , sin u cos v , cos uL
 X : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hcos u , sin u sin v , sin u cos vL

satisfy   FH@0 , pDµ @0 , 2 pDL = YH@0 , pDµ @0 , 2 pDL = XH@0 , pDµ @0 , 2 pDL = S, which is the unit sphere in —3 .
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We have respectively

tu µ tv = Hsin2  u cos v , sin2  u sin v , cos u sin uL  on F ;

tu µ tv = H-sin2  u sin v , -sin2  u cos v , -cos u sin uL  on Y ;  and

tu µ tv = H-cos u sin u , -sin2  u sin v , -sin2  u cos vL  on X .

Now consider the vector field FHx, y, zL = Hx z , y z , zL. We have, writing R = @0 , pDµ @0 , 2 pD,
‡

F
F ÿ „S = ‡ ‡

R
FHsin u cos v , sin u sin v , cos uL ÿ Hsin2  u cos v , sin2  u sin v , cos u sin uL „ u „ v

= ‡ ‡
R
Hsin u cos u cos v , sin u cos u sin v , cos uL ÿ Hsin2  u cos v , sin2  u sin v , cos u sin uL „ u „ v

= ‡ ‡
R
Hsin3  u cos u + cos2  u sin uL „ u „ v = i

k
jj‡

0

pHsin3  u cos u + cos2  u sin uL „ u y
{
zz 
i
k
jjj‡

0

2 p

1 „ vy{
zzz

=
i
k
jjjjj2 ‡

0

1ÅÅÅÅ2  p

cos2  u sin u „ u
y
{
zzzzzµ 2 p = 4

ÅÅÅÅÅ
3

 p ,

‡
Y

F ÿ „ S = ‡ ‡
R

FHsin u sin v , sin u cos v , cos uL ÿ H-sin2  u sin v , -sin2  u cos v , -cos u sin uL „ u „ v

= ‡ ‡
R
Hsin u sin v , sin u cos v , cos uL ÿ H-sin2  u sin v , -sin2  u cos v , -cos u sin uL „ u „ v

= ‡ ‡
R
H-sin3  u cos u - cos2  u sin uL „ u „ v = i

k
jj-‡

0

pHsin3  u cos u + cos2  u sin uL „ u y
{
zz 
i
k
jjj‡

0

2 p

1 „ vy{
zzz

= -
i
k
jjjjj2 ‡

0

1ÅÅÅÅ2  p

cos2  u sin u „ u
y
{
zzzzzµ 2 p = - 4

ÅÅÅÅÅ
3

 p ,

‡
X

F ÿ „S = ‡ ‡
R

FHcos u , sin u sin v , sin u cos vL ÿ H-cos u sin u , -sin2  u sin v , -sin2  u cos vL „ u „ v

= ‡ ‡
R
Hcos u sin u cos v , sin2 u cos v sin v , sin u cos vL ÿ H-cos u sin u , -sin2  u sin v , -sin2  u cos vL „ u „ v

= ‡ ‡
R

-Hcos2  u sin2 u cos v + sin4  u sin2  v cos v + sin3  u cos2  vL „ u „ v

= -i
k
jj‡

0

p

cos2  u sin2 u „ u y
{
zz 
i
k
jjj‡

0

2 p

cos v „ vy{
zzz - i

k
jj‡

0

p

sin4  u „ u y
{
zz 
i
k
jjj‡

0

2 p

sin2  v cos v „ vy{
zzz - i

k
jj‡

0

p

sin3  u „ u y
{
zz 
i
k
jjj‡

0

2 p

cos2 v „ vy{
zzz

= H? µ 0L - H? µ 0L - i
k
jj‡

0

pH1 - cos2  u L sin u „ uy{
zz 
i
k
jjj‡

0

2 p

cos2 v „ vy{
zzz = -

i
k
jjj‡

-1

1H1 - h2L „ hy{
zzz 
i
k
jjj‡

0

2 p
1
ÅÅÅÅÅ
2

 H1 + cos 2 vL „ vy{
zzz = - 4

ÅÅÅÅÅ
3

 p .

Note that the three integrals differ only in sign. We shall discuss this in greater detail in Section 11.3.
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11.3 Equivalent parametrized surfaces
Just as most curves have two endpoints, many surfaces have two sides. For our discussion here, we shall ignore surfaces like the Möbius 
strip, and consider only those surfaces in —3  which have two sides.

Remark — Möbius strip

Ï   The Möbius strip has only one side.  To construct it, take a long rectangular strip of paper as shown below.

 

    Hold the edge a b
èèèè

 stationary and give the edge c d
èèèè

 a 180 ° twist.  Now join the edges a b
èèèè

 and c d
èèèè

 so that a  coincides with d , and b  coincides with c; 
then admire your artwork.

image from Wikipedia:   http://en.wikipedia.org/wiki/Image:Möbius_strip.jpg
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Let us return to Examples 11.1.3 and 11.2.3. Here the unit sphere S is the range of the parametrized surfaces. The surface of the unit sphere 
clearly has two sides, the inside and the outside.

For the parametrized surface F, we have  tu µ tv = Hsin2  u cos v , sin2  u sin v , cos u sin uL = Hsin uL FHu , vL.  Note that sin u ¥ 0  for 
0 § u § p, and so the vector tu µ tv  at FHu , vL points away from the origin in this parametrization of S . (see left image)

For the parametrized surface Y, we have tu µ tv = H-sin2  u sin v , -sin2  u cos v , -cos u sin uL = H-sin uL YHu , vL.  Hence the vector tu µ tv  at 
YHu , vL points towards the origin. (see middle image)

Definition: equivalent surfaces

Suppose that F : R1 Ø —3  and Y : R1 Ø —3  are continuously differentiable parametrized surfaces.  Then we say that F and Y are equiva-
lent if there exists a piecewise continuously differentiable function h : R1 Ø R2  satisfying the following conditions:

(ES1)  h : R1 Ø R2  is essentially one-to-one and onto;

(ES2)  F = Y Î h ;

(ES3)  writing Hs , tL = hHu , vL, we have either
Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL ¥ 0  for every Hu , vL œ R1 ,  (*)

or
Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL § 0  for every Hu , vL œ R1 . (**)

In this case, we say that h defines a change of parameters. Furthermore, we say that the change of parameters is: orientation preserving if 
(*) holds, and orientation reversing if (**) holds.

Remark

Ï    The condition (ES1) is essential*  for integration of double integrals by change of variables .  The need for condition (ES3) will become clear from the 
sketched proofs of Theorems 11A and 11B later in this section.

* For more details, students are referred to Chapter 6 (studied in MATH235).

Example 11.3.1 — sides of a sphere

The parametrized surfaces 

F : @0 , pDµ @0 , 2 pD Ø —3 : Hu , vL# Hsin u cos v , sin u sin v , cos uL, 
Y : @0 , pDµ @0 , 2 pD Ø —3 : Hs , tL # Hsin s sin t , sin s cos t , cos sL

are equivalent. (These are the first two parametrizations in Example 11.2.3.) 
To see this, consider the function h : @0 , pDµ @0 , 2 pD Ø @0 , pDµ @0 , 2 pD  where Hu , vL# Hs , tL with s = u  and t = 9

1ÅÅÅÅ2  p - v for v § 1ÅÅÅÅ2  p
5ÅÅÅÅ2  p - v for v > 1ÅÅÅÅ2  p .

= 

Clearly h is essentially one-to-one and onto.  Furthermore, 
Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL = det

i
k
jjjjjj

 sÅÅÅÅÅÅÅ u
 sÅÅÅÅÅÅÅ v

 tÅÅÅÅÅÅÅ u
 tÅÅÅÅÅÅÅ v

y
{
zzzzzz = det ikjj

1 0
0 -1

y
{zz = -1, so that the change of parameters 

is orientation reversing.

Theorem 11A:

Suppose that F : R1 Ø —3  and Y : R2 Ø —3  are two equivalent smooth continuously differentiable parametrized surfaces. Then for any real-
valued function f Hx , y , zL such that the composition functions f ÎF : R1 Ø — and  f ÎY : R2 Ø — are continuous, we have 

ŸF
f  „ S = ŸY

f  „ S.

Sketch of proof

Since F and Y are equivalent, there exists h : @A1 , B1D Ø @A2 , B2D such that F = YÎh. Now 

ŸF
f  „ S = Ÿ ŸR1

f HFHu , vLL »» I HF2,F3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , HF3,F1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , HF1,F2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M »» „ u „ v .

By the Chain rule and writing Hs , tL = hHu , vL, we have HFi ,F jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL =
HYi ,Y jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL  Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL ,  for each 1 § i  j § 3.

It follows that ŸF
f  „ S = Ÿ ŸR1

f HYHs , tLL »» I HY2,Y3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY3,Y1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY1,Y2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL M »» … Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL … „ u „ v

= Ÿ ŸR2
f HYHs , tLL »» I HY2,Y3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY3,Y1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY1,Y2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL M »» „ s „ t = ŸY

f  „ S .

This completes the proof.
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Theorem 11B:

Suppose that F : R1 Ø —3  and Y : R2 Ø —3  are two equivalent smooth continuously differentiable parametrized surfaces.  Then for any 
vector field FHx , y , zL such that the composition functions FÎF : R1 Ø —3  and   FÎY : R2 Ø —3  are continuous, we have 

ŸF
F ÿ „ S = ŸY

F ÿ „ S,

where the equality holds: (i)  with the +sign if the change of parameters is orientation preserving; and  (ii)  with the -sign if the change of 
parameters is orientation reversing.

Sketch of proof

Since F and Y are equivalent, there exists h : @A1 , B1D Ø @A2 , B2D such that F = YÎh. Now 

ŸF
F ÿ „ S = Ÿ ŸR1

 FHFHu , vLL ÿ I HF2,F3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , HF3,F1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , HF1,F2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v

= Ÿ ŸR1
 FHYHs , tLL ÿ I HY2,Y3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY3,Y1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY1,Y2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL M I Hs,tLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v

= Ÿ ŸR2
 FHYHs , tLL ÿ I HY2,Y3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY3,Y1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL , HY1,Y2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHs,tL M „ s „ t = ŸY

F ÿ „ S .

This completes the proof.

Remark

Ï   Theorems 11A and 11B have natural extensions to the case when the paths are piecewise continuously differentiable. 

  In this case, one can clearly break the paths into continuously differentiable pieces and apply Theorems 11A and 11B to each piece.

11.4 Parametrization of surfaces
As discussed at the beginning of the last section, we shall restrict our attention to surfaces in —3  which have two sides and are smooth, 
except possibly at a finite number of points. Our first task is to define an orientation for such surfaces.

Suppose that x is a point on a smooth surface S. Then if n is a unit vector normal to the surface S  at x, then -n is also a unit vector normal to 
the surface S  at x, but in the opposite direction.

We now need to make a choice as to which side of the surface we consider to be the positive side and which side we consider to be the nega-
tive side. Having made such a choice, we now take unit normal vectors n to be those that point from the negative side of the surface towards 
the positive side. In this case, we say that S  is an oriented surface.

Example 11.4.1 — sphere

Suppose that S  is the unit sphere in —3 , and we choose the outside surface to be the positive side. Then unit normal vectors point away from 
the origin. (see left image)

Example 11.4.2 — plane

Suppose that S  is the x y-plane in —3 , and we choose the bottom surface to be the positive side. Then unit normal vectors are of the form 
H0 , 0 , -1L.

Recall now that for any smooth parametrized surface F : R Ø —3 , the unit vector 
tuµ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tuµ tv»»  is normal to the surface at the point FHu , vL.

Definition: parametrization of a surface

Suppose that S is an oriented surface in —3 . Then a piecewise continuously differentiable function F : R Ø —3  such that FHRL = S is called 
a parametrization of S. We say that the parametrization F is:

 (i)   orientation preserving if 
tuµ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tuµ tv»» = n at every point FHu , vL which is smooth; and

 (ii)  orientation reversing if 
tuµ tvÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» tuµ tv»» = -n at every point FHu , vL which is smooth.
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Definition: surface integral

Suppose that S is an oriented surface in —3 . For any real valued function f Hx, y, zL continuous on S , we can define

  Ÿ S f  „ S = ŸF
f  „ S,   

where F is any parametrization of S.  For any vector field FHx , y , zL continuous on S , we can define   

Ÿ S F ÿ „ S = ŸF
F ÿ „ S, 

where F is any orientation-preserving parametrization of S .

Example 11.4.3 — sphere

Suppose that S  denotes the unit sphere x2 + y2 + z2 = 1.  Let f Hx , y , zL = x + y + z , and consider the integral  Ÿ S F ÿ „ S.

Now F : @0 , pDµ @0 , 2 pD Ø —3  whereby Hu , vL# Hsin u cos v , sin u sin v , cos uL is a parametrization of S.

We have, writing R = @0 , pDµ @0 , 2 pD ,
Ÿ S f  „ S = ŸF

f  „ S = Ÿ Ÿ R f Hsin u cos v , sin u sin v , cos uL „ u „ v

= Ÿ Ÿ R
Hsin u cos v + sin u sin v + cos uL »» Hsin u cos v , sin u sin v , cos uL »» „ u „ v

= Ÿ Ÿ R Hsin u cos v + sin u sin v + cos uL » sin u » „ u „ v

= IŸ 0
psin2 u „ u M IŸ 0

2 pHsin v + cos vL „ vM + IŸ 0
pcos u sin u „ u M IŸ 0

2 p1 „ vM
= ? µ 0  +  0 µ 2p  =  0 .

visualisation

fHx,y,zL = x+y+z

-1
0

1x -1
0

1

y

-1

0

1

z

-1
0

1x

f = -2

f = -1 f = 0

f = 1

f = 2

with transparency
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Example 11.4.4 — portion of a cylinder

Let S  denote the part of the cylinder x2 + y2 = 16 in the first octant between z = 0  and z = 5 , with normal vector away from the z-axis. 

Note that S  can be parametrized by F : R Ø —3 : Hu , vL# H4 sin u , 4 cos u , vL where R = @0 , 1ÅÅÅÅ2  pDµ @0 , 5D.
Let FHx , y , zL = Hz , x , -3 y2  zL, and consider the integral Ÿ S F ÿ „ S.  Note that 

tu µ tv = I  xÅÅÅÅÅÅÅ u ,  yÅÅÅÅÅÅÅ u ,  zÅÅÅÅÅÅÅ u Mµ I  xÅÅÅÅÅÅÅ v ,  yÅÅÅÅÅÅÅ v ,  zÅÅÅÅÅÅÅ v M = H4 cos u , -4 sin u , 0Lµ H0 , 0 , 1L = -4 Hsin u , cos u , 0L. 
so F is an orientation-reversing parametrization of S.

We have that   Ÿ S
F ÿ „ S = -ŸF

F ÿ „ S = - Ÿ ŸR
FH4 sin u , 4 cos u , vL ÿ H-4 sin u , -4 cos u , 0L „ u „ v

= -Ÿ Ÿ R Hv , 4 sin u , -48 v cos2 uL ÿ H-4 sin u , -4 cos u , 0L „ u „ v = 4 Ÿ Ÿ R Hv sin u + 4 sin u cos uL „ u „ v

= 4 JŸ 0

1ÅÅÅÅ2  psin u „ uN IŸ 0
5v „ vM + 8 JŸ 0

1ÅÅÅÅ2  psin 2 u „ uN IŸ 0
51 „ vM = H4 µ 1ÅÅÅÅ2 µ 25L + H8 µ 1 µ 5L = 90 .

visualisation
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The vector-lengths have been log-scaled in the image at above-right.
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with transparency

Example 11.4.5 — triangular region

Let S  denote the part of the plane 2 x + 3 y + 6 z = 12 in the first octant, with normal vector away from the origin.

 

Note that S  is a triangle with vertices H6 , 0 , 0L, H0 , 4 , 0L and H0 , 0 , 2L, and can be parametrized by F : R Ø —3  whereby 
Hu , vL# Hu , v , 1ÅÅÅÅ6  H12 - 2 u - 3 vLL, where R is the triangular region  R = 8Hu , vL œ R2 : u , v ¥ 0 and 2 u + 3 v § 12<,  so F is an orientation-
preserving parametrization of S .

Let FHx , y , zL = H18 z , -12 , 3 yL, and consider the integral Ÿ S F ÿ „ S. Note that

tu µ tv = I xÅÅÅÅÅÅÅu , yÅÅÅÅÅÅÅu , zÅÅÅÅÅÅÅu Mµ I xÅÅÅÅÅÅv , yÅÅÅÅÅÅv , zÅÅÅÅÅÅv M = H1 , 0 , - 1ÅÅÅÅ3 Lµ H0 , 1 , - 1ÅÅÅÅ2 L = H 1ÅÅÅÅ3 , 1ÅÅÅÅ2 , 1L .

We have that Ÿ S
F ÿ „ S = Ÿ F

F ÿ „ S = Ÿ Ÿ R
FHu , v , 1ÅÅÅÅ6  H12 - 2 u - 3 vLL ÿ H 1ÅÅÅÅ3 , 1ÅÅÅÅ2 , 1L „ u „ v

= Ÿ Ÿ R H3 H12 - 2 u - 3 vL , -12 , 3 vL ÿ H 1ÅÅÅÅ3 , 1ÅÅÅÅ2 , 1L „ u „ v = Ÿ Ÿ R HH12 - 2 u - 3 vL + 6 - 3 vL „ u „ v

= Ÿ Ÿ R H6 - 2 uL „ u „ v = ‡
0

4
JŸ 0

6- 3ÅÅÅÅ2  vH6 - 2 uL „ uN „ v = Ÿ 0
4 @6 u - u2D0

6- 3ÅÅÅÅ2  v „ v = Ÿ 0
4 H9 v - 9ÅÅÅÅ4  v2L „ v

= 3@ 3ÅÅÅÅ2  v2 - 1ÅÅÅÅ4  v3D0
4

= 3 H24 - 16L = 24 .
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F Hx,y,zL = H18z,-12,3yL
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Viewed from above, it's hard to see how much flux is through the surface. The view from underheath shows this better.

with transparency

Example 11.4.6 — surface of a cube

Let S denote the surface of the cube with vertices H1, 1, 1L, with outward normal vector. Let FHx , y , zL = Hx , y , zL, and consider the 
integral  Ÿ S

F ÿ „ S.

To evaluate this integral, consider first of all the face S1 with vertices H1, 1, 1L. The function F1 : @-1 , 1Dµ @-1 , 1D Ø —3   whereby 
Hu , vL# Hu , v , 1L   is a parametrization of S1 . Note that tu µ tv = H1 , 0 , 0Lµ H0 , 1 , 0L = H0 , 0 , 1L ,  so F is an orientation-preserving parame-
trization of S1 .

We have, writing R = @-1 , 1Dµ @-1 , 1D, that 

Ÿ S1
F ÿ „ S = ŸF1

F ÿ „ S = Ÿ Ÿ R FHu , v , 1L ÿ H0 , 0 , 1L „ u „ v = Ÿ Ÿ R Hu , v , 1L ÿ H0 , 0 , 1L „ u „ v = Ÿ Ÿ R 1 „ u „ v

= IŸ-1
1 1 „ uM IŸ -1

1 1 „ vM = 2 µ 2 = 4 .

Consider next the face S2 with vertices H1, 1, -1L. The function Y1 : @-1 , 1Dµ @-1 , 1D Ø —3 : Hu , vL# Hu , v , -1L is a parametrization of 
S2 . Note that tu µ tv = H1 , 0 , 0Lµ H0 , 1 , 0L = H0 , 0 , 1L ,  so Y1  is an orientation-reversing parametrization of S2 .We have, writing 
R = @-1 , 1Dµ @-1 , 1D, that 

Ÿ S2
F ÿ „ S = -ŸY1

F ÿ „ S = -Ÿ Ÿ R FHu , v , 1L ÿ H0 , 0 , 1L „ u „ v = -Ÿ Ÿ R Hu , v , -1L ÿ H0 , 0 , 1L „ u „ v = -Ÿ Ÿ R H-1L „ u „ v

= +IŸ-1
1 1 „ uM IŸ-1

1 1 „ vM = 2 µ 2 = 4 .

Thus Ÿ S1
F ÿ „ S + Ÿ S2

F ÿ „ S = 8 .

It follows from symmetry arguments, concerning the other two pairs of opposite faces, that the full surface integral gives

Ÿ S F ÿ „ S = 3 µ 8 = 24 .
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