MATH236 — Weeks 8&9
Integrals over surfaces

Chen notes, chapter 11

I 11.1 Integrals of scalar functions over parametrized surfaces

Suppose that the parametrized surface ®: R — R whereby (u, v) = ®(u, v) = (x(u, v), y(u, v), z(u , v)) is continuously differentiable.

For any real-valued function f(x, y, z) such that the composition fo®:R—R3:(u, v) > f(®u, v)) = f(x@u, v), yu,v), z(u, v)) is
continuous, we define:

fd)fd5=f¢f(x,y,Z)dS < ffkf(d)(u,V)) It xt, lldudv.

Remarks

& | Here dS = ||#,xt, ||dudv can be considered to be the surface area differential of the parametrized surface ®.

1
ay, a(z, a(x, 7
o| Clealy [, fdS=[[ f@u.v) It xt,IIdudv = f f @, (| g [+ 1 5y P+ | ey )7 dudv.
R

& | Suppose that f = 1 identically. Then the integral simply represents the surface area of @ .

& | Note that f has only to be defined on the image surface S = ®(R) of the parametrized surface ® for our definition to make sense. The continuity of the
composition function fo® on the elementary region R ensures the existence of the integral.

* Sometimes, ® may only be piecewise continuously differentiable; in other words, there exists a partition of the region R into a finite union of elementary
regions R;, where i =1, ..., k, such that ® is continuously differentiable in R; for each i =1, ..., k. In this case, we define

k
def
[ras <y, [ f@w. vl xs lauar.
® i=1 Y
where ®; : R; - R3: (u, v) = ®(u, v). In other words, we calculate the corresponding integral for each subregion and consider the sum of the integrals.

Example 11.1.1 — parametrized cone

For the parametrized cone ®:[0, 1]x[0, 27] - R3 whereby (u, v) = (ucosv, usinv, u), and the function f(x,y,2) = x> +y> + 22 +y,
we have, writing R = [0, 1] X [0, 2 7] and noting Example 10.2 .1,

fde:fff(ucosv,usinv,u) ||(—ucosv,—usinv,u)lldua?v:ff(uzcoszv+uzsin2v +u2+usinv)\/§u dudv
() R R

=\/§ffu2(2u+sinv)dudv =2\/§ffu3dudv+\/§ffuzsinva?udv

R R R
1 2 1 21

=2\/§(fu3du)(f ldv)+ﬁ[fuzdu)(f sinvdv)=2\/5><%><27r+\/5><%><0=7r\/5.
0 0 0 0 :
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Example 11.1.2 — helicoid

For the helicoid ®:[0, 11X [0, 2] - R* whereby (i, v) = (ucosv, usinv, v), and the function f(x, y, z) = V1 +x2 +y? +z, we have,
writing R = [0, 1]x [0, 2 x] and noting Example 10.2 .3,

1
ffa?S:fff(ucosv,usinv,v) ||(—sinv,—Cosv,u)lldudv:ff(‘/1+uz +v)(1+u)” dudvy
] R R

:ffR(1+u2)dudv+fj1;v(l+u2)% clua?v=(£1(1+u2)duJ(£2”1dv)+(£l(l+u2)% du](ﬁznvd\/]

= [u+ %u3];><271+%(\/§+sinh_l(l))><[%v2]z”: %n’ + 71'2(\/5+10g(1 +\/§))

visualisation
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Example 11.1.3 — different parametrizations of the sphere

The three distinct parametrized surfaces:
®:[0, 71]x[0, 2] » R? whereby (u, v) - (sinu cosv, sinu sinv, cos u)
¥:[0, 7] %[0, 27] » R? whereby (u, v) = (sinu sinv, sinu cosv, cos u)

[0, 7] %[0, 2 7] -» R3 whereby (u, v) - (cosu, sinu sinv, sinu cosv)

[

satisfy ®([0, 7] x [0, 27]) =¥([0, 7] x [0, 27]) = E([0, 7] x [0, 27]) = S, which is the unit sphere in R3.

We have shown earlier that for the parametrized surface ®, we have ¢, x¢, = (sin® u cos v, sin u sinv, cos u sin u).

=

Similarly, it can be shown that for the parametrized surfaces ¥ and 2, we have respectively:

W t,xt, = (—sin’ u sinv, —sin® u cos v, —cos u sin u),

2 2

: t,Xt,=(—cosu sinu, —sin“ u sinv, —sin” u cosv).

m

Now consider the function f(x, y, z) = z2. We have, writing R = [0, 7] X [0, 2 ] and noting Example 10.2.2,

fde:fff(sinu cosv, sinu sinv, cosu) || (sin® u cosv, sin® u sinv, cosu sinu)||dudv
() R

b 2n 1
=ffcoszu |sinu|a?udv=(f cos? u sinu a?u)(f 1dv)=(f hzdh)xznzgn,
R 0 0 -1

after using a substitution & = —cosu . Similarly

ffaYS :fff(sinu sinv, sinu cosv, cosu) || (—sin® u sinv, —sin® u cosv, —cosu sinu)||dudv
¥ R

:ffcoszu |sinu| dudv = 4.
A 3
fde:fff(cosu,sinu sinv, sinu cosv) ||(—cosu sinu, —sin® u sinv, —sin® u cosv)||du dv
=4 R
n 2n
=ffsin2ucoszv | sin u | ducﬂv:(f sin3udu)(f coszvdv)
R 0 0
4 2y ! 1 2 4
=(f (l—coszu)sinudu)(f E(1+c032v)dv]=(f(l—hz)afh]><(3><27r)=(2—§)ﬂ=gzr.
0 0 -1

Note that the three integrals have the same value. We shall discuss this in greater detail in Section 11.3.

visualisation
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I 11.2 Surface integrals, of vector fields

Suppose that the parametrized surface ®: R — R whereby (u, v) = ®(u, v) = (x(u, v), y(u, v), z(u , v)) is continuously differentiable.

For any vector field F(x, y, z) such that the composition function Fo ®:R - R?: (u, v) > F(®u, v)) = F(x(u, v), yu, v), z(u, v)) is
continuous, we define:

fF«dS=fF(x,y,z)-de & ffF(CD(u,v))~(tl,><tv)a7udv.
[ [0} R

Remarks

& | Here dS = (t, xt,)dudv is the parametrized surface analogue of the velocity differential d's = ¢’ () d't of a path ¢.

a(y, a(z, o(x,
of Clwty [ F-dS=[[F@u.v)-(xt)dudv = [ [ F@u.v)-(505 K. o) dudv.

& | Note that F has only to be defined on the image surface S = ®(R) of the parametrized surface ® for our definition to make sense. The continuity of the
composition function Fo® on the elementary region R ensures the existence of the integral.

& | Sometimes, ¢ may only be piecewise continuously differentiable. As in the last section, we can calculate the corresponding integral for each subregion in a
partition of the region R and consider the sum of the integrals.

& Note that if £, Xt, # 0 for every (#, v) € R, then

t, Xt
RIS F(®(u, AU dudv = F(®(u, el X, dudv= D(u, 1, Xt, dud
LF ffk (D(u, v)-(t, xt,) dudvy ffR (D(u, v)) 12, ¢, ||dudy ffkf( (u, ) ||t %t ||dudv

Il £, %8, I
t, Xt
where  f(®(u, v)) & F@®u, v))- ——— .
12 <2, 1]
t,xXt, . . . ;
Here n = ||t—><t||- is the unit vector normal to the parametrized surface ® . Then fq) F-dS = fq) F-n dS, so that the integral over the parame-
U v

trized surface now becomes one of the type discussed in the last section.

Example 11.2.1 — on the cone

For the parametrized cone ®: [0, 1]1x[0, 2 7] —» R3 whereby (u, v) = (ucosv, usinv, u), and the vector field F(x,y,z) = (-x, y, 2),
we have, writing R = [0, 1] X [0, 2 7] and noting Example 10.2 .1,
fF-dS :ffF(ucosv, usinv, u)-(—ucosv, —usinv, u) dudv :ff(—ucosv, usinv, u)-(—ucosv, —usinv, u) dudv
() R R

1 2r
:ffuz(coszv—sin2v+l)dud’v:fquzcoszvdudv:z[f uzdu)(f i(1+cos2v)d’v) :2><l><(i><27r) =2
A " b ) 37\ 3
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For the helicoid ®:[0, 1]x[0, 2 7] - R> whereby (1, v) = (ucosv, usinv, v), and the vector field F(x, y, z) = (x, y, z), we have, writ-
ing R =1[0, 1]x[0, 2 ] and noting Example 10.2 .3,

fF-dS=ffF(ucosv,usinv,v)-(sinv,—cosv,u) dudv:ff(ucosv,usinv,v)-(sinv,—cosv,u)dudv
D R R

1 27
=ffuvdudv=(fudu)(f vdv):lxlx(mr)2 =x2.
R 0 0 2 2

visualisation
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Example 11.2.3 — different parametrizations of the sphere

The three distinct parametrized surfaces:
®: [0, 7]x[0,27] > R® whereby (u, v) = (sinu cos v, sinu sinv, cos u)
¥:[0, n]x[0,27] » R? whereby (u, v) = (sinu sinv, sinu cos v, cos u)

[0, 7] %[0, 2 7] » R3 whereby (u, v) - (cosu, sinu sinv, sinu cosv)

m

satisfy ([0, 7] x [0, 2x]) = ¥([0, 7] X [0, 2 x]) = E([0, 7] X [0, 2 ]) = S, which is the unit sphere in R3.

We have respectively

2

t,Xt, = (sin® u cosv, sin®u sinv, cosu sinu) on®;

t,xt, = (—sin’u sinv, —sin® u cos v, —cos u sinu) on¥; and

2 2

t,xXt,=(—cosu sinu,—sin“u sinv, —sin“ u cosv) on Z .

Now consider the vector field F(x, y, z) = (xz, yz, z). We have, writing R = [0, n] X [0, 2 7],

fF-aYS:ffF(sinu cosv, sinu sinv, cosu)-(sin® u cos v, sin’ u sinv, cos u sinu) dudv
() R

:ff(sinu COS U COSV, SInu COS U sinv,cosu)~(sin2u cos v, sin® u sinv, cosu sinu)dudv
R
3 2 T3 2 o
:ff(sm U Cosu +cos” u s1nu)dua?v:(f (sin” u cosu + cos” u sin u) a?u)(f lva
R 0 0
T 2 4
= Zf cos“u sinudu|x2n = ST,
0
fF~dS:ffF(sinu sinv, sinu cosv, cosu)-(=sin®u sinv, —sin® u cosv, —cos u sinu) du dv
¥ R

:ff(sinu sinv, sinu cosv,cosu)~(—sin2u sinv, —sin® u cosv, —cos u sinu)dudv
R
3 2 T3 2 2
:ff(—sm U COSU —COS”™ U smu)dudv:(—f (sin” u cosu + cos” u sin u) du)(f ldv]
R 0 0
x 2 4
=- 2[ cos“u sinudul|x2n = -37,
0
fF~dS:ffF(cosu,sinu sinv, sinu cosv) - (—cos u sinu, —sin’ u sinv, —sin’ u cosv)dudv
2 R
. ) . . . .2 . )
:ff(cosu sinu cosv, sin“ u cosv sinv, sinu cosv) -(—cosu sinu, —sin“ u sinv, —sin“ u cosv)du dv
R

:ff—(coszusinzucosv+sin4usin2vcosv+sin3ucoszv)du07v
R

b 2n bd 2n ks 2
:—(f coszusinzudu)(f cosvdv)—(f sin* u du)(f sin2vcosvdv)—(f sinsuafu)(f coszvdv)
0 0 0 0 0 0

n 2n 1 2n
:(?xO)—(?xO)—(f (1—cos2u)sinudu)(f cos2vdv):—(f (l—hz)dh)(f %(1+cos2v)dv):—%n.
0 0 -1 0

Note that the three integrals differ only in sign. We shall discuss this in greater detail in Section 11.3.
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I 11.3 Equivalent parametrized surfaces

Just as most curves have two endpoints, many surfaces have two sides. For our discussion here, we shall ignore surfaces like the M&bius
strip, and consider only those surfaces in R? which have two sides.

Remark — Mobius strip

The Mobius strip has only one side. To construct it, take a long rectangular strip of paper as shown below.

Hold the edge a b stationary and give the edge c¢d a 180 ° twist. Now join the edges @b and cd so that a coincides with d, and b coincides with ¢;
then admire your artwork.

image from Wikipedia: http://en.wikipedia.org/wiki/Image:Mdbius_strip.jpg
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Let us return to Examples 11.1.3 and 11.2.3. Here the unit sphere S is the range of the parametrized surfaces. The surface of the unit sphere
clearly has two sides, the inside and the outside.

For the parametrized surface ®, we have ¢, xt, = (sin® u cos v, sin® u sinv, cos u sinu) = (sin u) ®(u, v). Note that sinu = 0 for
0 < u < &, and so the vector ¢, Xt, at ®(u, v) points away from the origin in this parametrization of S. (see left image)

For the parametrized surface ¥, we have ¢, xt, = (=sin® u sinv, —sin u cos v, —cos u sinu) = (—sinu) ¥(u, v). Hence the vector ¢, X ¢, at
¥(u , v) points towards the origin. (see middle image)

Definition: equivalent surfaces

Suppose that ®: R; - R? and ¥: R; —» R? are continuously differentiable parametrized surfaces. Then we say that ® and ¥ are equiva-
lent if there exists a piecewise continuously differentiable function /: R, — R, satisfying the following conditions:

(ES1) h:R; - R, is essentially one-to-one and onto;

(BS2) ®=¥oh;

a(s,t

(ES3) writing (s, £) = h(u, v), we have either 6((5 v)) >0 forevery (u,v) € Ry, (%)
a(s.t)

or m <0 forevery (u,v) € R;. (%)

In this case, we say that & defines a change of parameters. Furthermore, we say that the change of parameters is: orientation preserving if
(%) holds, and orientation reversing if (=) holds.

Remark

* The condition (ES1) is essential* for integration of double integrals by change of variables. The need for condition (ES3) will become clear from the
sketched proofs of Theorems 11A and 11B later in this section.

*For more details, students are referred to Chapter 6 (studied in MATH235).

Example 11.3.1 — sides of a sphere

The parametrized surfaces
®:[0,7]%x[0,27] >R> :(u, v) - (sinu cosv, sinu sinv, cos u),
¥:[0,7]x[0,27] >R3 :(s, )~ (sins sinz, sins cost, cos s)

are equivalent. (These are the first two parametrizations in Example 11.2.3.)

) ) ) ) %ﬂ—v for v < %n
To see this, consider the function 4: [0, 7] X [0, 27] - [0, 7] X [0, 2] where (1, v) > (s, t) with s=u andz:{ p |
sa-v for v> .

ds ds
A(s,t > Ty 1 0
Clearly h is essentially one-to-one and onto. Furthermore, (5. =det| 9% 9V |=det = —1, so that the change of parameters
o(u,v) o ot 0 -1
ou dv

is orientation reversing.

Theorem 11A:

Suppose that ®: R; - R? and ¥: R, » R? are two equivalent smooth continuously differentiable parametrized surfaces. Then for any real-
valued function f(x, y, z) such that the composition functions fo®: Ry - R and fo¥:R, - R are continuous, we have

[, fds = [,fds.

Sketch of proof

Since ® and V¥ are equivalent, there exists h:[A;, B1] - [Az, B,] such that & = Woh. Now
(D, ,P: (D5, (D, P,
Jo £dS = [ [, @G, vl (St 2l S| dudy,

Au,v) A(u,v) Au,v)
By the Chain rule and writing (s, t) = h(u, v), we have 0(;;5))! ) _ ﬂgl(l's;l;’ ) g((;zv)) , foreach 1 =i+ j=<3.
It follows that [, fdS = [ [ fe¥(s, o[l (2552, 2utud | 2Cutad yy | L0 | gy gy
= [f, fore, op || (et | Haad | Ik )| g5t = [, fds.

This completes the proof.
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Theorem 11B:

Suppose that ®: R; - R? and ¥: R, » R? are two equivalent smooth continuously differentiable parametrized surfaces. Then for any
vector field F(x, y, z) such that the composition functions Fo®: R, - R3 and Fo¥:R, - R? are continuous, we have

[, F-dS =+ F-ds,

where the equality holds: (i) with the +sign if the change of parameters is orientation preserving; and (ii) with the —sign if the change of
parameters is orientation reversing.

Sketch of proof

Since ® and ¥ are equivalent, there exists & :[A;, B1] = [Az, B,] such that & = Woh. Now

— 0(P2,P3) 0(@3,9))  9(P1,D,)
ftb F-ds = fle F(®(u, v)) ( ﬁ(tzt,v) ’ ﬁ(u,v)] ’ 6(:4,\)) )dudv

_ 0(¥2,¥3) 03, ¥)  OW1.Y2) \ (060 \ 5
‘ffR, F(¥(s. 1) e R R[] )(a(u,v))d“‘l"

_ ] oW, ¥5)  0¥.¥)  OY1.Y) ' _
_fng F(\P(é”))'( E R 1)) )déd’ _ﬁdeS.

This completes the proof.

Remark

& | Theorems 11A and 11B have natural extensions to the case when the paths are piecewise continuously differentiable.

In this case, one can clearly break the paths into continuously differentiable pieces and apply Theorems 1 1A and 11B to each piece.

I 11.4 Parametrization of surfaces

As discussed at the beginning of the last section, we shall restrict our attention to surfaces in R? which have two sides and are smooth,
except possibly at a finite number of points. Our first task is to define an orientation for such surfaces.

Suppose that x is a point on a smooth surface S. Then if z is a unit vector normal to the surface S at x, then —n is also a unit vector normal to
the surface S at x, but in the opposite direction.

We now need to make a choice as to which side of the surface we consider to be the positive side and which side we consider to be the nega-
tive side. Having made such a choice, we now take unit normal vectors n to be those that point from the negative side of the surface towards
the positive side. In this case, we say that S is an oriented surface.

Example 11.4.1 — sphere

Suppose that S is the unit sphere in R, and we choose the outside surface to be the positive side. Then unit normal vectors point away from
the origin. (see left image)

Example 11.4.2 — plane
Suppose that S is the x y-plane in R*, and we choose the bottom surface to be the positive side. Then unit normal vectors are of the form

0,0, -1).

Recall now that for any smooth parametrized surface ®: R — R?, the unit vector is normal to the surface at the point ®(u, v).

t,Xt,
I t.x ]

Definition: parametrization of a surface

Suppose that S is an oriented surface in R*. Then a piecewise continuously differentiable function ®: R - R? such that ®(R) = S is called
a parametrization of S. We say that the parametrization ® is:

t,Xt
(i) orientation preserving if | L—Y— _pat every point ®(u, v) which is smooth; and

|2 8|

. . . R .8 . L
(ii) orientation reversing if | = —n at every point ®(u , v) which is smooth.

—_X —_—
et~
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Suppose that S is an oriented surface in R?. For any real valued function f(x, y, z) continuous on S, we can define
[,rds = [, fds.
where @ is any parametrization of S. For any vector field F(x, y, z) continuous on S, we can define

[ F-dS = [ F-ds,

where ® is any orientation-preserving parametrization of S.

Suppose that S denotes the unit sphere x* + y? + 2% = 1. Let f(x,y, 2) =x+y+z, and consider the integral [, F-dS.

Now @:[0, 7] x [0, 2 7] - R? whereby (u, v) - (sinu cos v, sinu sinv, cos i) is a parametrization of S.
We have, writing R =[0, 7] x [0, 2 7],
Jofds = [, fds = [[, fGsinu cosv, sinu sinv, cosu)dudv

= ffR(sinu cosv+sinu sinv+cosu) || (sinu cosv, sinu sinv, cosu) ||dudyv

= ffR (sinu cosv+sinu sinv +cosu)|sinu|dudv

= (foﬂsinzudu)(foz”(sinv +cosv)dv)+(j;)”cosusinudu)(foznldv)
=7?7x0+0x27r=0.

visualisation

with transparency
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Let S denote the part of the cylinder x> + y? = 16 in the first octant between z =0 and z =5, with normal vector away from the z-axis.

Note that S can be parametrized by ®:R - R>: (u, v) - (4sinu, 4cosu, v) where R = [0, % n] %[0, 5].
Let F(x,y,z) =(z, x, —3*2), and consider the integral fs F-dS. Note that

toxt, = (9%, 00 02y, (Bx By 02y (qeosu, —4sinu, 0)x(0,0, 1) = —4(sinu, cosu, 0).
so @ is an orientation-reversing parametrization of S.
We have that fSF-dS= —fQF-dS =—ffRF(4sinu,4cosu,v)-(—4sinu,—4cosu,0)dudv

= —ffR (v,4sinu, —48 vcos?u)-(—4sinu, —4cosu,0)dudv=4ffR (vsinu +4sinu cosu) dudv

=4(f0%”sinudu)(f05vdv)+8(f0%"sin2udu)(f051dv)=(4><%><25)+(8x1x5) =90.

visualisation
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F(w)yaz) = (27377—3y22)
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Example 11.4.5 — triangular region

Let S denote the part of the plane 2x+ 3 y + 6 z = 12 in the first octant, with normal vector away from the origin.

Note that S is a triangle with vertices (6,0, 0), (0, 4, 0) and (0, 0, 2), and can be parametrized by ®: R — R3 whereby

u,vyo>(u,v, % (12-2u-3v)), where R is the triangular region R={(u,v)€R?>:u,v=>0 and 2u+3v <12}, so ® is an orientation-
preserving parametrization of S.

Let F(x,y,z)=(18z,—-12, 3y), and consider the integral fSFdS. Note that

_(9x % o dx Oy 0z _ 1 Iy_ (1 1
tuxty= (G g o)X (G g 50) = 1.0, -9)xO, 1, =) =(5. 7. .
Wehave that  [(F-dS= [ F-dS = [[ Fu,v,¢(12-2u=3v)-(5, 5, dudv

= [[,302-2u=3v),-12,3v)-(§, 5, Ddudv=[[ (12-2u-3v)+6-3v)dudv

4 3 3
= [[,6-2uydudv = fo (7= 6-2wdu)dv = [*[6u=-)," T dv = [ Ov-F ") av

=3[3v -1 = 324-16) = 24.

visualisation
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F(x7y7z) = (182,—12,3@ F(a:,y,z) = (182’7—12739)

57 - aagad
/‘t//e‘ggg =

Y e = =) =

T == 1 R
oo E
— o— —

5
aﬁ

3
et
Rarfe
i

i

Y

Viewed from above, it's hard to see how much flux is through the surface. The view from underheath shows this better.

with transparency

Example 11.4.6 — surface of a cube

Let S denote the surface of the cube with vertices (1, £ 1, +1), with outward normal vector. Let F(x, y, z) = (x, y, 2), and consider the
integral fs F-ds.

To evaluate this integral, consider first of all the face S; with vertices (+1, +1, 1). The function ®; : [-1, 1]x[~1, 1] - R? whereby
(u,v) (u,v, 1) isaparametrization of S;. Note that £, x#, =(1,0,0)%x(0,1,0)=(0,0, 1), so ®is an orientation-preserving parame-
trization of S;.

We have, writing R =[~1, 1]x[~1, 1], that
fs’ F.ds= f‘l’l F-d§ = ffRF(“’V’ 1-(0,0, l)dudv=ff1e(u,v, 1)-(0,0, 1)dudv=ff1a ldudv
(L 1) ([ 1) = 2x2 =4

Consider next the face S, with vertices (+ 1, +1, —1). The function ¥, : [-1, 1]x[-1, 1] > R3: (u, v) = (u, v, —1) is a parametrization of
S,. Note that ¢, xt,=(1,0,0)x(0,1,0)=(0,0, 1), soV¥, is an orientation-reversing parametrization of S, .We have, writing
R=[-1,1]x[-1, 1], that

Jy, F-dS=~[, F-dS=—[[Fu.,v.1):0,0, Ddudv==~[[ .v.-D-0,0, )hdudv==[[ (~D)dudy
=+([, 1du)(f ' 1dv)=2x2=4.
Thus [ F-dS+ [  F-dS=8.
It follows from symmetry arguments, concerning the other two pairs of opposite faces, that the full surface integral gives

JoF-dS=3x8=24.
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