MATH236 — Weeks 5 & 6
Integrals over paths

Chen notes chapter 9

I 9.1 Integrals of scalar functions over paths

Suppose that the path ¢:[A, B] > R" : 1 (x1(2), ..., x,(2)), is continuously differentiable. For any real valued function
f(x1, ..., x,) such that the composition function fo¢:[A, B] >R :t+ f(x;(), ..., x,(1)) is continuous, we define

B
ffds=ff(xl,...,xn)dsd§ff F@@) | ()|l dt.
[4 [ A

Remarks

& We are mainly interested in the special cases n =2 and n = 3, and write respectively

ffds:ff(x,y)ds and ffds:ff(x,y,z)afs.
[4 [4 [4 4

& | Suppose that f =1 identically. Then the integral simply represents the arc-length of ¢ .

* Note that f has only to be defined on the image curve C = ¢([A, B]) of the path ¢ for our definition to make sense. The continuity of the
composition function fo¢ on the closed interval [A, B] ensures the existence of the integral.

& Sometimes ¢ may only be piecewise continuously differentiable; in other words, there exists a dissection A =7y <t < ... <t = B of the interval
[A, B] such that ¢ is continuously differentiable in [#;_; , #;] for eachi =1, ..., k. In this case, we define

. k i
Jras2 3 [ s ona
i=1 Vi1

i

In other words, we calculate the corresponding integral for each subinterval and consider the sum of the integrals.

& | For the special case n =2 we must not confuse the integral with integrals of the type f¢ f(z) dz , which arise frequently in complex analysis.

Example 9.1.1 — on a helix

Suppose that ¢: [0, 27] > R3: ¢+ (cost, sint, ¢) and f(x,y,7) =x+y+z. Then

27 21
ffds: f(cost,sint, t) ||(—sint,cost, 1)||dt = (cost+sint+t)\/5dt:%(2ﬂ)2\/§ :27r2\/§.
¢ 0 0
visualisation
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Example 9.1.2 — on a cycloid

Suppose that ¢: [0, 27] 5 R2: ¢+ (t—sinz, 1 —cos?) and f(x,y) =V2y .Then

21 21 27
ffds:f f(t—sint, 1 —cos?) ||(1—cost,sint)||dt=f V(2 -2cost) (2—2005t)|7dt=f 2—-2cost)dt = 4nr.
¢ 0 0 0

visualisation

F@M)= 2-2cost) T
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" (DIl f($() = (2—2cost)
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Example 9.1.3 — on a hypocycloid

Suppose that ¢: [0, 1] - R2: ¢ (cos® ¢, sin® £) and f(x, y) =2 + 8 y*. Then

o=

cost

e T
ffds:f f(cos3t,sin3t) ||3costsint(—cost,sint)||dt = f(2+85in6t)3
¢ 0 o

sintdt = 6f
0

1
= 6f Qu+8ulydu =62 +ub], =6x2=12.
0

visualisation
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Example 9.1.4 — different paths on a circle

The three distinct paths ¢:[0,27] > R?: 15 (cost, —sint),
Y:[0,1]>R>: ¢t (cos2mt,sin2nt),
n:[0,1]>R2: ¢t (cos2nt?, sin2m %)
satisfy ¢([0, 2 7]) = ([0, 1]) = ([0, 1]) = C, the unit circle in R2.
Note also that the path ¢ follows C in a clockwise direction, while the paths ¢ and 5 follow C in an anticlockwise direction.

Now consider the function f(x, y) = 1 +x+y. Then

2r 21
ffds:f f(cost, —sint) || (—sint, —cost) || dt =f (1+cost—sint)ldt=2nm;
¢ 0 0

1 1
ffafs: ff(cosZm‘,sinZnt) |27 (—=sin2xt, cos2nt)||dt = 27rf (I1+cos2nt+sin2nt)dt =2n;
" 0 0

1 1
ffds: ff(cosZﬂtz, sin27 ) ||4nt(=sin2x %, cos2n ) ||dr = 47rf (1+cos2nf +sin2n)tdt
n 0 0

1
=27rf (1+cos2nu+sin2nu)du=2n.
0

Note that all three integrals have the same value. We shall show in Section 9.3 that this is not just a coincidence.

visualisation

f(cosO,sin 6) = 1+ cosf —sin 0
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I 9.2 Line integrals

Suppose that the path ¢ :[A, B > R": 1t (x,(?), ..., x,(1)), is continuously differentiable. For any vector field F(x, ..., x,) such
that the composition function Feo¢:[A, B] > R" :t = F(x(t), ..., x,(¢)) is continuous, we define

B
des = fF(xl, e x)ds e f F(¢(0)- ¢ (1) d1.
[ ¢ A
Remarks
&  We are mainly interested in the special cases n =2 and n = 3, and write f¢ F-ds= f,p F(x,y)-ds and f¢ F-ds= j‘; F(x,y,z)-ds.

Writing F = (F;, F;) and ds = (dx,dy) inthecase n=2and F = (F,, F,, F3) and ds =(dx,dy, dz) in the case n =3, we have
respectively
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B dx dy
F-ds:f(Fl,Fﬁ-(a?x,dy):f(Flan+F2dy)=f F1—+F2 dt
L ¢ ¢ ( dt dz)

aj

nd
B d d d
fF-ds:f(Fl,Fz,F3)~dls :f(Fldx+F2dy+F3dz):f (P 2R iR Z)d/t
» s » dt dt dt

Note that F has only to be defined on the image curve C = ¢([A, B]) of the path ¢ for our definition to make sense. The continuity of the

composition function Fog¢ on the closed interval [A, B] ensures the existence of the integral.

Sometimes ¢ may only be piecewise continuously differentiable; in other words, there exists a dissection A =1y <t < ... < f; = B of the interval

[A, B] such that ¢ is continuously differentiable in [#_; , #;] foreachi =1, ..., k. In this case, we define

f F-ds® Z f Fg) - ¢/ (0dr.

In other words, we calculate the corresponding integral for each subinterval and consider the sum of the integrals.
Note that if ¢’ () #+ O for every € [A, B] then

KAV

B 40)
f¢ F-ds= fA (Feo)- —2==)11¢' @) | di = f FO I #@dt, where f§©) = FOW0)- 1500

rer @l

Here ”:;,% is the unit tangent vector along the path ¢. The integral now becomes one of the type discussed in the last section.

Suppose that F is a force field; e.g., a gravitational field or magnetic field. Consider a particle moving along a path ¢.

At any time ¢, the force on the particle will be given by F(¢(7)).

On the other hand, a small displacement in the time interval [z, ¢ + d f] can be described by the velocity differential ds = ¢(r) d'¢.
It follows that the scalar product F(¢(z))-¢’(¢) dt denotes the work done in the time interval [z, ¢ + d].

Hence the integral describes the fotal work done.

Example 9.2.1 — on a helix

Suppose that ¢ : [0, 27] » R : ¢+ (cost, sint, ) and F(x, y, z) = (x, y, z). Then

27 2 27
fF-ds:f F(cost,sint, t) -(—sint, cost, 1)dt = (cost,sint, t) -(—sint, cost, 1)dt :f tdt = 21°.
¢ 0 0 0
visualisation
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Example 9.2.2 — on a cycloid

Suppose that ¢ : [0, 2] > R?: ¢+ (t —sint, 1 —cos ) and F(x, y) = (y, —x). Then

27

27
des:f F(t—sint, 1 —cost)-(1 —cost,sint)dt = (1 —cost,sint—1)-(1 —cost,sint)dt
¢ 0 0

27
:f (2—2COSl‘—tSint)Lﬂt=4ﬂ_0+[tcosl]027r=671_.
0

visualisation
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Example 9.2.3 — on a hypocycloid

Suppose that ¢: [0, 7] - R2: ¢ (cos® ¢, sin’ £) and F(x, y) = (-y, x). Then

s T
fF-aYs:f F(cos’ t, sin’ 1) - (—cost, sinf)3cos rsinrdt = f 3costsint(—sin’ 7, cos’ £)- (—cos 1, sint) dt
¢ 0 0

d 2 ) 3 ” 3 ” 3
=3 | cos*tsin“tdt :;f sinZZIaft:~f(lfcos4t)dt:—ﬂ.
b 4, 8 Jo 3

visualisation
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Example 9.2.4 — different paths on a circle
The three distinct paths ¢:10,27] > R?: ¢t (cost, —sint),

Y:[0,1] >Rt (cos2nmt,sin2ni),
n:[0,1]>R?: ¢t (cos2nt?, sin2mt?)

satisfy ¢([0, 2 7]) = ([0, 1]) = ([0, 1]) = C, the unit circle in R?. Note also that the path ¢ follows C in a clockwise direction,
while the paths ¢ and 5 follow C in an anticlockwise direction. Now consider the function F(x, y) = (=Y, x). Then

27 2

21
des:f F(cost, —sint)-(—sint, —cost)dt = (sint, cost)-(—sint, —cost)dt = (-dt=-2nm;
) 0 0 0

1 1
des = f F(cos2nt,sin2nt)-2n(—sin2nt, cos2nt)dt = 27rf (=sin2nmt,cos2mt)-(—sin2nmt,cos2nmt)dt
[ 0 0

1
:271[ 1dt=2m;
0

1 1
fF-ds: f F(cos2n i, sin2nt?)-dnt(-sin2 7, cos2nt?)dt = 47rf (=sin27 1%, cos2mt?)-(—=sin2 7%, cos2m ) tdt
n 0 0

1
:27rf 2tdt =27[f]) =21
0

= w
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Note that — f'p F.ds= fw F.ds= f" F -ds, where ¢ and 5 follow the unit circle C in the same direction, while ¢ follows C in the
opposite direction. The three integrals have the same absolute value, differing only in sign. We shall show in Section 9.3 that this

is not just a coincidence.

visualisation

Example 9.2.5 — different paths with the same endpoints

The three distinct paths

Y:[0,1]->R*:t (2, 2)

n:[0, + 7] 5R?*:t (1 —cost, siny)

all have the same initial point (0, 0) and the same terminal point (1, 1). The curve ¢([0, 1]) is part of the straight line y = x, the
curve ([0, 1]) is part of the parabola y = x*, while the curve 5([0, 1]) is part of the circle (x — 1%+ y? = 1. Hence the three paths
have different curves. Consider now the vector field F(x, y) = (v, x). Then

1 1
des :f Fit,n-(1,1)dt :f 2tdt=1
4 0 0

1 1 1
fF-ds:f F(t,%)-(1,20dt :f (tz,t)~(l,2t)dt:f 3t2dt:[t3](l):l
[4 0 0 0

¢:[0,11>R%>:t> (1,0,

s
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visualisation
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this is a gradient field

Next note that F =V f, where f(x, y) = xy. Hence we have that

\LF-JS:\L;VfAd’s, LFds:j,;Vf-ds,fF-a?s:fo-ds.
n n

Observe that f(1,1)— f(0,0)=1-0=1,sois it a coincidence that

\[;Vf-ds: LVf-tis:jT;Vf-d’s:f(l,1)—f(0,0),

so that the integrals depend only on the endpoints of the paths? On the other hand, note that F is the total derivative of f, so this
is really just a statement like the Fundamental Theorem of Calculus. The images above show the line integrals to be just giving
different routes for climbing the potential hill defined by the function f(x, y); the total height climbed is the same in each case.

Let us investigate this problem in general. Suppose that F is a gradient vector field in R”, so that there exists a continuously differ-
entiable function f(x;, ..., x,) such that F =V f. Suppose that ¢ : [A, B] » R”" is a continuously differentiable path.

Consider the composite function g = fo ¢:[A, B] » R. By the Chain rule, we have
¢, J
[0

where the right hand side is the matrix product of the total derivatives (D f) (¢(¢)) and (D ¢) (¢).

It follows that g’ (1) = V.f (¢(1)) - ¢ (t) = F(@(©)) - ¢' (), and so
B B
des =f F(p0)-¢' (ndt= f g dt = g(B) - g(A) = f(PB) — f(P(A)
[ A A

g0 =35 @0 .. 3L @)

by the Fundamental Theorem of Calculus applied to the function g.

We have proved the following result.

Theorem 9A — line integral of Vf

Suppose that F =V f is a gradient vector field in R”. Then for any continuously differentiable path ¢ :[A, B] - R” such that
the composition function Fo ¢ : [A, B] - R” is continuous, we have f¢ F-ds = f(¢(B)) — f(¢(A)).

u 4 4
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I 9.3 Equivalent paths

We return to the questions posed by Examples 9.1.4 and 9.2.4. ]

Definition: change of parameter

Suppose that ¢:[A;, B;] > R" and ¥ : [A, , B,] = R" are two continuously differentiable paths. Then we say that¢ and ¥ are
equivalent if there exists a continuously differentiable and strictly monotonic function h:[A;, B;] - [A;, B,] such that
h([A;, B1]) = [A;, By] and ¢ = yoh. In this case, we say that the function & defines a change of parameter.

Furthermore, we say that the change of parameter is: (i) orientation preserving if h is strictly increasing; and (ii) orientation
reversing if h is strictly decreasing.

Remarks

& | Itis easy to see that if two paths are equivalent, then they have the same curve. If the change of parameter is orientation preserving, then the
curve is followed in the same direction. If the change of parameter is orientation reversing, then the curve is followed in different directions.

& | Note that the change of parameter is: orientation preserving if and only if A’(¢) = O for every ¢ € [A; , B;]; and orientation reversing if and
only if #'(¢) <0 for every t € [A;, By].

e | Since h:[A;, Bi] - [Ay, By] is strictly monotonic and onto, it follows that it has an inverse function /™' : [As, By] — [A; , B1].

Clearly ¥ = ¢oh~'. Furthermore, the inverse function is also continuously differentiable.

Example 9.3.1

Recall the three distinct paths ¢:[0,27] >R?:t > (cost, —sint),
Y:[0,1]>R>: ¢t (cos2nt,sin2nt),
n:[0,1]>R?:tr (cos2mt?, sin2mt?)

considered in Examples 9.1.4 and 9.2.4.

Let us examine first of all ¢ and 5. The function 2:[0, 1] = [0, 1]:t— \/? is strictly increasing. It defines an orientation-pre-
serving change of parameter with i = 570/. Note that the inverse function 47! : [0, 1] = [0, 1]: ¢ #> is also strictly increasing,
and 17 = yoh™!. Clearly ¢ and 7 follow the unit circle in the same direction.

Consider next ¢ and y. The function hy:[0,1] = [0,2x]:t—>1— # is strictly decreasing. It defines an orientation-reversing
change of parameter with ¢ = y¥oh,. Note that the inverse function h':[0,27] 5[0, 1]: ¢+ 27(1 — 1) is also strictly decreas-

ing, and ¢ = ¢poh, ™" . Clearly ¢ and ¢ follow the unit circle in opposite directions.

Theorem 9B

Suppose that ¢:[A;, B;] > R" and ¢ :[A,, B,] - R" are two equivalent continuously differentiable paths. Then for any real-
valued function f(x, ..., x,) such that the composition functions foé:[A;, Bj] >R and foy:[A;, B,] » R are continu-
ous, we have f¢ fds= fw fds.

Proof

Since ¢ and ¥ are equivalent, there exists h:[A;, B;] = [Ay, By] such that ¢ = yoh. It follows from the Chain Rule that
&' (1) =y (h(1)) (1), and so

B, B,
fftf5= fg) ¢’ llde = JWh©) 1Y () K @) |1 dt.
4 Ay Ay

In the orientation-preserving case, we have /’(f) = 0 always. So with a change of variables u = h(f), we have ]
By B,
fftis = S 1y () 1R () dt = F@@) 1y @l du =ff£f&
¢ Al 42 v

In the orientation-reversing case, we have h’(f) < 0 always. So with a change of variables u = h(f), we have j

By Ay B,
f fds=- f FWR@) 1§ R@) 1K (O dt == | )@ @)l du = f f@@) Y @ lldu = f fds.
] A B, Az v

All cases are covered, so this completes the proof. ]7
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Theorem 9C

Suppose that ¢:[A;, B;] > R" and ¥ : [A; , B,] -» R" are two equivalent continuously differentiable paths. Then for any vec-
tor field F(x;, ..., x,) such that the composition functions Fo¢ : [A; , B;] - R" and Foy :[A,, B,] - R” are continuous, we
have f¢ F-ds=+ fw F-ds, where the equality holds: (i) with +sign if the change of parameter is orientation preserving;

and (ii) with the —sign if the change of parameter is orientation reversing.

Proof
Since ¢ and ¥ are equivalent, there exists i :[A;, B;] - [A;, B,] such that ¢ = yoh. It follows from the Chain Rule that
&' (1) =¥ (h(t) I (1), and so
B By
f Feds= f Fg0)- ¢ (1 dt = f F@o) - ¢/ (ko) (0 dr
¢ A

A

With a change of variables u = h(t), we have in the orientation-preserving case:

B,
fF-ds:f Fyw)-¢' (u)du :fF-ds,
[ Ay [

and in the orientation-reversing case,

Az B,
fF-ds:f Fw) -y (u)du :7‘[ Fpw) - () du :7des.
) B A v

7]

All cases are covered, so this completes the proof.

Remark

& | Theorems 9B and 9C have natural extensions to the case when the paths are piecewise continuously differentiable.

In this case, one can clearly break the paths into continuously differentiable pieces and apply Theorems 9B and 9C to each piece.

I 9.4 Simple curves

Theorems 9B and 9C demonstrate that integrals over differentiable paths depend only on the (oriented) curves of these paths. It
therefore seems natural to try to express the theory in terms of these curves instead of the paths. The purpose of this section is to
consider this problem.

Before we start, we examine the example below which suggests that some care is required.

Example 9.4.1

Consider the curve below with endpoints indicated.

Clearly it is not enough to say that a path has initial point a and terminal point b, since any two paths that trace the curve in the
two different ways indicated below are clearly not equivalent.

To temporarily avoid situations like this, we make the following definition.

) L
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Definition: simple curve

By a simple curve C in R"”, we mean the image C = ¢([A, B]) of a piecewise continuously differentiable path ¢ :[A, B] » R"
with the property that ¢(¢,) + ¢(#,) whenever A <t, <1, < B, with the possible exception that ¢(A) = ¢(B) may hold.

A simple curve together with a direction is called an oriented simple curve. The function ¢ is called a parametrization of the
oriented simple curve C, and the parametrization is said to be: (i) orientation preserving if ¢ follows the direction of C; and
(ii) orientation reversing if ¢ follows the opposite direction of C.

Definition: integral along a curve

Suppose that C is an oriented simple curve in R”. For any real-valued function f(x;, ..., x,) continuous on C, we can define
f c fds= f‘ﬁ fds, where ¢ is any parametrization of C. For any vector field F(x;, ..., x,) continuous on C, we can define

f c F-ds= f¢ F -ds, where ¢ is any orientation-preserving parametrization of C.

The integrals along the curve f cf ds and f F- ds are well defined in view of Theorems 9B and 9C respectively.

Remarks

& | Suppose that the oriented simple curve C~ is obtained from the oriented simple curve C by taking the opposite orientation. Then

Jo fds=[.fds and [ F-ds=-[, F-ds.

* The theory can be extended to curves that are not simple, provided that we indicate very carefully how these curves are to be followed, and
take note where some parts may be followed more than once. In particular, it is often convenient to break up an oriented curve into several
components, each of which is simple.

For example, if C = C; +...+Cy, where the sum denotes that the oriented curve C is obtained by following the oriented (simple) curves
Ci, ..., C; one after another, then we have

fcfdszgj;’fds and LF-afs:Zk:\fC’F-d’s.

i=1

In this case, each of Cy, ..., Ci can be parametrized separately, so it doesn't matter if two or more of the curves have points in common.

Example 9.4.2

Let F(x, y) = (3xy, —y*) and let C denote the path of the parabola y = 2 x> from (1, 2) to (0, 0).

Clearly ¢:[0, 1] > R?:¢+ (¢, 2%) is an orientation preserving parametrization of C~, and so

1 1 1 1
f F-afs:fp-a‘s:fF(¢(t))-¢’(t)c£t:fF(r,ztz)-(l,m)dt:f (6t3,—4t4)-(1,4t)dt:f(6t3—16r5)dt :[M-&ﬂ‘ =2--_7
- 14 0 0 0 o 2 6 0 2 6 6

C

Hence fCF-ds =

o=

visualisation
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Example 9.4.3

Let F(x, y,2)=Qx—-y+z,x+y— 2, 3x-2 y+47), and let C denote the circle on the x y-plane with centre at (0, 0) and radius
3, followed in the anti-clockwise direction on the x y-plane.

Clearly ¢:[0,27] »R3:¢+ (3cost, 3sint, 0) is an orientation-preserving parametrization of C, and so

27 21
fF~d/s=fF-a?s=f F(¢(t))-¢’(t)a?t=f F(3cost,3sint,0)-(—3sint, 3cost, 0)dt
c ¢ 0 0

27 27
:f 32 (2cost— sint, cost+sinz, 3cost—2sinf)-(—sint, cost,0)dr =9 (sin® 1 —2costsint+ cos> ¢ +sinzcos 1) dt
0 0

27
=9 (1 —costsint)dt= 18n.
0

visualisation

F.¢" =9 —=9cost sin t), [|¢"@OIl, IIF]|

o 1\ A :

Example 9.4.4

Let F(x,y,2)=3x>+6y,-14yz,20xz%), and let C denote a succession of the straight line segments from (0, 0, 0) to
1,0,0)to(1,1,0)to(1,1,1).

Let C; denote the straight line segment from (0,0, 0) to (1,0, 0); C, denote the straight line segment from (1, 0, 0) to
(1,1,0);and C; denote the straight line segment from (1, 1,0)to(1, 1, 1).

Clearly ¢:[0,1]>R3*:¢t (t,0,0), ¢:[0,1] > R3:z~(1,¢,0) and p:[0, 1] >R3>:¢t+ (1, 1, £) are orientation-preserv-
ing parametrizations of C;, C,, C; respectively.

visualisation
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integrate the vector field

Hence ]

1 1 1 1
des:fF-ds:fF(¢(t))-¢’(t)dt=fF(t,0,0)~(1,0,0)dt =f(312,0,0)-(1,0,0)dt=f3t2dt=1;
C ¢ 0 0 0 0

des

Cy

des
C3

1
=f20t207t=£,
) 3

so that des:f F-ds+f F~cls+fF~ds:l+0+§:£3—.
c C e Cs 3 3

graphs

1 1 1 1
fF-ds=fF(:ﬁ(t))~¢’(t)dt=fF(1,t,0)-(O,1,0)dt=f(3+6t,0,0)~(0,l,O)alt:det:O;
v 0 0 0 0

1 1 1
des:fF(n(t))-n’(t)dt:fF(l,l,t)-(O,O,l)dt:f(9,—14t,20t2)-(0,0,1)dt
n 0 0 0

F. ¢’ ={3t2,0,20t%}

20

15

) /
5

level surfaces of a function—nested spherical shells (movie)

Nextlet f(x, y, z) = x> +y? + 22, ]
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... using transparency

integrate the function

Then
1 1 1
ffcls=ffafs=f F@B0) |I¢'(t)||cﬂt=ff(t,0,0) ||(1,o,0>||dt=fr2ah=§;
C ¢ 0 0 0
1 1 1
ffds=ffds=f JiU0)) ||¢’(z)||clz=ff(1,t,0) ||(0,1,0)||aft=f(1+t2)dt=§;
(&) Y 0 0 0
1 1 1
fds=ffds=f @) ||n’(z)||clt=ff(1,1,t) ||(0,0,1)||dt=f(2+t2)dt=;;
C3 n 0 0 0
so that
1 4 7 12
Lfa?s: C]fds+ szds+£3fds=§+§+§=T=4.
graphs
F. ¢ = {31+, 2+ t*)
i ‘ ‘ ‘
2.5
2
1.5
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