
MATH236 — Weeks 5 & 6
Integrals over paths

Chen notes chapter 9

9.1 Integrals of scalar functions over paths
Suppose that the path f : @A , BD Ø —n : t # Hx1HtL, … , xnHtLL, is continuously differentiable. For any real valued function 
f Hx1, … , xnL such that the composition function f Îf : @A , BD Ø — : t # f Hx1HtL, … , xnHtLL is continuous, we define

‡
f

f  „ s = ‡
f

f Hx1, … , xnL „ s =
def ‡

A

B
 f HfHtLL »» f¢ HtL »» „ t.

Remarks

Ï   We are mainly interested in the special cases n = 2 and n = 3, and write respectively 

‡
f

f  „ s = ‡
f

f Hx, yL „ s and ‡
f

f  „ s = ‡
f

f Hx, y, zL „ s .

Ï   Suppose that f = 1 identically.  Then the integral simply represents the arc-length of f .

Ï     Note that f  has only to be defined on the image curve C = fH@A , BDL of the path f  for our definition to make sense. The continuity of the 
composition function f Îf  on the closed interval @A , BD ensures the existence of the integral.

Ï   Sometimes f  may only be piecewise continuously differentiable; in other words, there exists a dissection A = t0 < t1 < … < tk = B of the interval 
@A , BD such that f  is continuously differentiable in @ti-1 , tiD  for each i = 1, …, k . In this case, we define

‡
f

f  „ s =
def ‚

i=1

k

 ‡
ti-1

ti

 f HfHtLL »» f¢  HtL »» „ t.

  In other words, we calculate the corresponding integral for each subinterval and consider the sum of the integrals. 

Ï   For the special case n = 2 we must not confuse the integral with integrals of the type  Ÿf
f HzL „ z , which arise frequently in complex analysis.

Example 9.1.1 — on a helix

Suppose that f : @0 , 2 pD Ø —3 : t # Hcos t , sin t , tL and f Hx, y, zL = x + y + z . Then

‡
f

f  „ s = ‡
0

2 p

f Hcos t , sin t , tL »» H-sin t , cos t , 1L »» „ t = ‡
0

2 p

Hcos t + sin t + tL è!!!2 „ t = 1
ÅÅÅÅÅ
2

 H2 pL2  
è!!!2 = 2 p2  

è!!!2 .

visualisation

fHx,y,zL= x+ y+ z
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Example 9.1.2 — on a cycloid

Suppose that f : @0 , 2 pD Ø —2 : t # Ht - sin t , 1 - cos tL and f Hx , yL =
è!!!!!!2 y . Then

‡
f

f  „ s = ‡
0

2 p

f Ht - sin t , 1 - cos tL »» H1 - cos t , sin tL »» „ t = ‡
0

2 pè!!!!!!!!!!!!!!!!!!!!!!!H2 - 2 cos tL H2 - 2 cos tL 1ÅÅÅÅ2 „ t = ‡
0

2 p

H2 - 2 cos tL „ t = 4 p .
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Example 9.1.3 — on a hypocycloid

Suppose that f : @0 , pD Ø —2 : t # Hcos3 t , sin3 tL and f Hx , yL = 2 + 8 y2 . Then

‡
f

f  „ s = ‡
0

p

f  Hcos3 t , sin3 tL »» 3 cos t sin t H-cos t , sin tL »» „ t = ‡
0

p

H2 + 8 sin6 tL 3
ƒƒƒƒƒƒƒƒ cos t

ƒƒƒƒƒƒƒƒ sin t „ t = 6 ‡
0

1ÅÅÅÅ2  p

H2 sin t + 8 sin7 tL cos t „ t

= 6 ‡
0

1
H2 u + 8 u7L „ u = 6 @u2 + u8D01

= 6 µ 2 = 12 .

visualisation

-1
-0.5

0
0.5

1

x
0

0.2

0.4

0.6

0.8

1

y

0

2

4

6

8

fHx,yL

-1
-0.5

0
0.5

1

x 0 0.2 0.4 0.6 0.8 1
0
5

10
15
20
25
30

6
12

20

30
3 H2u + 8u7L

0 1
ÅÅÅÅ
2
p p

2

4

6

8
»»f£HtL»» fHfHtLL= 3 »cost» sin t H2+ 8sin6tL

fHfHtLL= 2+ 8sin6t

0

2

4

6

8

10

2 MATH236 Week-5-print.nb



Example 9.1.4 — different paths on a circle

The three distinct paths  f : @0 , 2 pD Ø —2 : t # Hcos t , -sin tL ,

 y : @0 , 1D Ø —2 : t # Hcos 2 p t , sin 2 p tL ,

 h : @0 , 1D Ø —2 : t # Hcos 2 p t2 , sin 2 p t2L
satisfy fH@0 , 2 pDL = yH@0 , 1DL = hH@0 , 1DL = C , the unit circle in —2 . 

Note also that the path f follows C  in a clockwise direction, while the paths y and h follow C  in an anticlockwise direction. 

Now consider the function f Hx, yL = 1 + x + y. Then

‡
f

f  „ s = ‡
0

2 p

f  Hcos t , -sin tL »» H-sin t, -cos t L »» „ t = ‡
0

2 p

H1 + cos t - sin tL 1 „ t = 2 p ;

‡
y

f  „ s = ‡
0

1
f Hcos 2 p t , sin 2 p tL »» 2 p H-sin 2 p t, cos 2 p tL »» „ t = 2 p ‡

0

1
H1 + cos 2 p t + sin 2 p tL „ t = 2 p ;

‡
h

f  „ s = ‡
0

1
f Hcos 2 p t2, sin 2 p t2L »» 4 p tH-sin 2 p t2, cos 2 p t2L »» „ t = 4 p ‡

0

1
H1 + cos 2 p t2 + sin 2 p t2L t „ t

= 2 p ‡
0

1
H1 + cos 2 p u + sin 2 p uL „ u = 2 p.

Note that all three integrals have the same value. We shall show in Section 9.3 that this is not just a coincidence.
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9.2 Line integrals
Suppose that the path f : @A , BD Ø —n : t # Hx1HtL, … , xnHtLL, is continuously differentiable. For any vector field FHx1, … , xnL such 
that the composition function FÎf : @A , BD Ø —n : t # FHx1HtL, … , xnHtLL is continuous, we define

‡
f

F ÿ „ s = ‡
f

FHx1, … , xnL ÿ „ s =
def ‡

A

B
FHfHtLL ÿ f¢ HtL „ t.

Remarks

Ï   We are mainly interested in the special cases n = 2 and n = 3, and write  Ÿf
F ÿ „ s = Ÿf

FHx, yL ÿ „ s  and Ÿf
F ÿ „ s = Ÿf

FHx, y, zL ÿ „ s .

  Writing F = HF1 , F2L  and „ s = H„ x , „ yL  in the case n = 2 and F = HF1 , F2 , F3L  and „ s = H„ x , „ y , „ zL  in the case n = 3, we have 
respectively
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‡
f

F ÿ „ s = ‡
f
HF1 , F2L ÿ H„ x , „ yL = ‡

f
HF1  „ x + F2  „ yL = ‡

A

B
JF1  

„ x
ÅÅÅÅÅÅÅÅÅÅ
„ t

+ F2  
„ y
ÅÅÅÅÅÅÅÅÅÅ
„ t

N „ t

and

‡
f

F ÿ „ s = ‡
f
HF1 , F2 , F3L ÿ „ s = ‡

f
HF1  „ x + F2  „ y + F3  „ zL = ‡

A

B
JF1  

„ x
ÅÅÅÅÅÅÅÅÅÅ
„ t

+ F2  
„ y
ÅÅÅÅÅÅÅÅÅÅ
„ t

+ F3  
„ z
ÅÅÅÅÅÅÅÅÅ
„ t

N „ t.

Ï   Note that F  has only to be defined on the image curve C = fH@A , BDL of the path f  for our definition to make sense. The continuity of the 
composition function FÎf  on the closed interval @A , BD ensures the existence of the integral.

Ï   Sometimes f  may only be piecewise continuously differentiable; in other words, there exists a dissection A = t0 < t1 < … < tk = B of the interval 
@A , BD such that f  is continuously differentiable in @ti-1 , tiD  for each i = 1, …, k . In this case, we define

‡
f

F ÿ „ s =
def ‚

i=1

k

‡
ti-1

ti
FHfHtLL ÿ f£HtL „ t.

  In other words, we calculate the corresponding integral for each subinterval and consider the sum of the integrals. 

Ï   Note that if f£HtL  0 for every t œ @A , BD  then

‡
f

F ÿ „ s = ‡
A

B
 JFHfHtLL ÿ

f£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» f£HtL »» N »» f¢ HtL »» „ t = ‡

A

B
 f HfHtLL »» f£HtL »» „ t , where f HfHtLL = FHfHtLL ÿ

f£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» f£HtL »» .

 Here f£HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»»f£HtL»»  is the unit tangent vector along the path f .  The integral now becomes one of the type discussed in the last section.

Ï   Suppose that F is a force field; e.g., a gravitational field or magnetic field. Consider a particle moving along a path f .

  At any time t , the force on the particle will be given by FHfHtLL. 
  On the other hand, a small displacement in the time interval @t , t + „ tD can be described by the velocity differential „ s = fHtL „ t .

  It follows that the scalar product FHfHtLL ÿ f£HtL „ t  denotes the work done in the time interval @t , t + „ tD.
  Hence the integral describes the total work done.

Example 9.2.1 — on a helix

Suppose that f : @0 , 2 pD Ø —3 : t # Hcos t , sin t , tL and FHx, y, zL = Hx, y, zL. Then

‡
f

F ÿ „ s = ‡
0

2 p

FHcos t , sin t , tL ÿ H-sin t , cos t , 1L „ t = ‡
0

2 p

Hcos t , sin t , tL ÿ H-sin t , cos t , 1L „ t = ‡
0

2 p

t „ t = 2 p2.
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Example 9.2.2 — on a cycloid

Suppose that f : @0 , 2 pD Ø —2 : t # Ht - sin t , 1 - cos tL and FHx, yL = Hy, -xL. Then

‡
f

F ÿ „ s = ‡
0

2 p

FHt - sin t , 1 - cos tL ÿ H1 - cos t , sin tL „ t = ‡
0

2 p

H1 - cos t , sin t - tL ÿ H1 - cos t , sin tL „ t

= ‡
0

2 p

H2 - 2 cos t - t sin tL „ t = 4 p - 0 + @t cos tD02 p = 6 p .
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Example 9.2.3 — on a hypocycloid

Suppose that f : @0 , pD Ø —2 : t # Hcos3 t , sin3 tL and FHx, yL = H-y, xL.  Then

‡
f

F ÿ „ s = ‡
0

p

FHcos3 t , sin3 tL ÿ H-cos t , sin tL 3 cos t sin t „ t = ‡
0

p

3 cos t sin t H-sin3 t , cos3 tL ÿ H-cos t , sin tL „ t

= 3 ‡
0

p

cos2  t sin2  t „ t =
3
ÅÅÅÅÅ
4

 ‡
0

p

sin2 2 t „ t =
3
ÅÅÅÅÅ
8

 ‡
0

p

H1 - cos 4 tL „ t =
3
ÅÅÅÅÅ
8

 p .
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Example 9.2.4 — different paths on a circle

The three distinct paths f : @0 , 2 pD Ø —2 : t # Hcos t , -sin tL ,

y : @0 , 1D Ø —2 : t # Hcos 2 p t , sin 2 p tL ,

h : @0 , 1D Ø —2 : t # Hcos 2 p t2 , sin 2 p t2L
satisfy fH@0 , 2 pDL = yH@0 , 1DL = hH@0 , 1DL = C , the unit circle in —2 . Note also that the path f  follows C  in a clockwise direction, 
while the paths y and h follow C  in an anticlockwise direction. Now consider the function FHx, yL = H-y , xL. Then

‡
f

F ÿ „ s = ‡
0

2 p

FHcos t , -sin tL ÿ H-sin t, -cos t L „ t = ‡
0

2 p

Hsin t , cos tL ÿ H-sin t, -cos t L „ t = ‡
0

2 p

H-1L „ t = -2 p ;

‡
y

F ÿ „ s = ‡
0

1
 FHcos 2 p t , sin 2 p tL ÿ 2 pH-sin 2 p t, cos 2 p tL „ t = 2 p ‡

0

1
H-sin 2 p t , cos 2 p tL ÿ H-sin 2 p t, cos 2 p tL „ t

= 2 p ‡
0

1
1 „ t = 2 p ;

‡
h

F ÿ „ s = ‡
0

1
 FHcos 2 p t2, sin 2 p t2L ÿ 4 p tH-sin 2 p t2, cos 2 p t2L „ t = 4 p ‡

0

1
H-sin 2 p t2, cos 2 p t2L ÿ H-sin 2 p t2, cos 2 p t2L t „ t

= 2 p ‡
0

1
2 t „ t = 2 p @t2D01 = 2 p.
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Note that  -Ÿf
F ÿ „ s = Ÿy

F ÿ „ s = Ÿh
F ÿ „ s, where y and h follow the unit circle C  in the same direction, while f follows C  in the 

opposite direction. The  three integrals have the same absolute value, differing only in sign. We shall show in Section 9.3 that this 
is not just a coincidence.
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Example 9.2.5 — different paths with the same endpoints

The three distinct paths  f : @0 , 1D Ø —2 : t # Ht , tL ,

 y : @0 , 1D Ø —2 : t # Ht , t2L ,

 h : @0 , 1ÅÅÅÅ2  pD Ø —2 : t # H1 - cos t , sin tL
all have the same initial point H0 , 0L and the same terminal point H1 , 1L. The curve fH@0 , 1DL is part of the straight line y = x, the 
curve yH@0 , 1DL is part of the parabola y = x2 , while the curve hH@0 , 1DL is part of the circle Hx - 1L2 + y2 = 1. Hence the three paths 
have different curves.  Consider now the vector field FHx , yL = Hy , xL. Then

‡
f

F ÿ „ s = ‡
0

1
 FHt , tL ÿ H1 , 1L „ t = ‡

0

1
2 t „ t = 1

‡
y

F ÿ „ s = ‡
0

1
 FHt , t2L ÿ H1 , 2 tL „ t = ‡

0

1
Ht2 , tL ÿ H1 , 2 tL „ t = ‡

0

1
3 t2  „ t = @t3D01 = 1

‡
h

F ÿ „ s = ‡
0

1ÅÅÅÅ2  p

FH1 - cos t , sin tL ÿ Hsin t , cos tL „ t = ‡
0

1ÅÅÅÅ2  p

Hsin t , 1 - cos tL ÿ Hsin t , cos tL „ t = ‡
0

1ÅÅÅÅ2  p

Hsin2 t - cos2 t + cos tL „ t

= ‡
0

1ÅÅÅÅ2  p

Hcos t - cos 2 tL „ t = Asin t - 1
ÅÅÅÅÅ
2

 sin 2 tE
0

1ÅÅÅÅ2  p
= 1.
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this is a gradient field

Next note that F = “ f , where f Hx , yL = x y. Hence we have that

‡
f

F ÿ „ s = ‡
f

“ f ÿ „ s , ‡
y

F ÿ „ s = ‡
y

“ f ÿ „ s , ‡
h

F ÿ „ s = ‡
h

“ f ÿ „ s .

Observe that f H1 , 1L - f H0 , 0L = 1 - 0 = 1, so is it a coincidence that

‡
f

“ f ÿ „ s = ‡
y

“ f ÿ „ s = ‡
h

“ f ÿ „ s = f H1 , 1L - f H0 , 0L ,

so that the integrals depend only on the endpoints of the paths?  On the other hand, note that F is the total derivative of f , so this 
is really just a statement like the Fundamental Theorem of Calculus. The images above show the line integrals to be just giving 
different routes for climbing the potential hill defined by the function f Hx , yL; the total height climbed is the same in each case. 

Let us investigate this problem in general. Suppose that F is a gradient vector field in —n , so that there exists a continuously differ-
entiable function f Hx1 , …, xnL such that F = “ f . Suppose that f : @A , BD Ø —n  is a continuously differentiable path. 

Consider the composite function  g = f Î f : @A , BD Ø —.  By the Chain rule, we have 

g£HtL = J  fÅÅÅÅÅÅÅÅx1
 HfHtLL …  fÅÅÅÅÅÅÅÅxn

 HfHtLL N 
i

k

jjjjjjjjj

f1
£HtL
ª

fn
£HtL

y

{

zzzzzzzzz

where the right hand side is the matrix product of the total derivatives Hˇ f L HfHtLL and HˇfL HtL.
It follows that  g£HtL = “ f HfHtLL ÿ f£HtL = FHfHtLL ÿ f£HtL,  and so 

‡
f

F ÿ „ s = ‡
A

B
FHfHtLL ÿ f£HtL „ t = ‡

A

B
g£HtL „ t = gHBL - gHAL = f HfHBLL- f HfHALL

by the Fundamental Theorem of Calculus applied to the function g. 

We have proved the following result.

Theorem 9A — line integral of — f

Suppose that F = “ f  is a gradient vector field in —n . Then for any continuously differentiable path f : @A , BD Ø —n  such that 
the composition function FÎ f : @A , BD Ø —n  is continuous, we have Ÿf

F ÿ „ s = f HfHBLL - f HfHALL.
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9.3 Equivalent paths
We return to the questions posed by Examples 9.1.4 and 9.2.4. 

Definition: change of parameter

Suppose that f : @A1 , B1D Ø —n  and y : @A2 , B2D Ø —n  are two continuously differentiable paths.  Then we say that f and y are 
equivalent if there exists a continuously differentiable and strictly monotonic function h : @A1 , B1D Ø @A2 , B2D  such that 
hH@A1 , B1DL = @A2 , B2D and f = yÎh. In this case, we say that the function h defines a change of parameter.  

Furthermore, we say that the change of parameter is:  (i)  orientation preserving if h is strictly increasing; and  (ii)  orientation 
reversing if h is strictly decreasing.

Remarks

Ï   It is easy to see that if two paths are equivalent, then they have the same curve.  If the change of parameter is orientation preserving, then the 
curve is followed in the same direction.  If the change of parameter is orientation reversing, then the curve is followed in different directions.

Ï   Note that the change of parameter is: orientation preserving if and only if h£HtL ¥ 0 for every t œ @A1 , B1D; and orientation reversing if and 
only if h£HtL § 0 for every t œ @A1 , B1D .

Ï   Since h : @A1 , B1D Ø @A2 , B2D is strictly monotonic and onto, it follows that it has an inverse function h-1 : @A2 , B2D Ø @A1 , B1D. 
  Clearly y = fÎh-1 .  Furthermore, the inverse function is also continuously differentiable.

Example 9.3.1

Recall the three distinct paths  f : @0 , 2 pD Ø —2 : t # Hcos t , -sin tL,
 y : @0 , 1D Ø —2 : t # Hcos 2 p t , sin 2 p tL,
 h : @0 , 1D Ø —2 : t # Hcos 2 p t2 , sin 2 p t2L

considered in Examples 9.1.4 and 9.2.4. 

Let us examine first of all y and h. The function  h : @0 , 1D Ø @0 , 1D : t # è!!t   is strictly increasing. It defines an orientation-pre-
serving change of parameter with y = hÎh. Note that the inverse function h-1 : @0 , 1D Ø @0 , 1D : t # t2   is also strictly increasing, 
and h = yÎh-1 . Clearly y and h follow the unit circle in the same direction.

Consider next f and y. The function h2 : @0 , 1D Ø @0 , 2 pD : t # 1 - tÅÅÅÅÅÅÅ2 p  is strictly decreasing. It defines an orientation-reversing 
change of parameter with f = yÎh2 .  Note that the inverse function  h2

-1 : @0 , 2 pD Ø @0 , 1D : t # 2 pH1 - tL is also strictly decreas-
ing, and y = fÎh2

-1 . Clearly f and y follow the unit circle in opposite directions.

Theorem 9B

Suppose that f : @A1 , B1D Ø —n  and y : @A2 , B2D Ø —n  are two equivalent continuously differentiable paths.  Then for any real-
valued function f Hx1 , . . . , xnL such that the composition functions f Îf : @A1 , B1D Ø — and  f Îy : @A2 , B2D Ø — are continu-
ous, we have  Ÿf

f  „ s = Ÿy
f  „ s.

Proof

Since f and y are equivalent, there exists h : @A1 , B1D Ø @A2 , B2D such that f = yÎh.  It follows from the Chain Rule that 
f£HtL = y£HhHtLL h£HtL, and so

‡
f

f  „ s = ‡
A1

B1

 f HfHtLL »» f£HtL »» „ t = ‡
A1

B1

f HyHhHtLLL »» y£HhHtLL h£HtL »» „ t.

In the orientation-preserving case, we have h£HtL ¥ 0 always. So with a change of variables u = hHtL, we have 

‡
f

f  „ s = ‡
A1

B1

 f HyHhHtLLL »» y£HhHtLL »» h£HtL „ t = ‡
A2

B2

f HyHuLL »» y£HuL »» „ u = ‡
y

f  „ s.

In the orientation-reversing case, we have h£HtL § 0 always. So with a change of variables u = hHtL, we have 

‡
f

f  „ s = -‡
A1

B1

 f HyHhHtLLL »» y£HhHtLL »» h£HtL „ t = -‡
B2

A2

 f HyHuLL »» y£HuL »» „ u = ‡
A2

B2

f HyHuLL »» y£HuL »» „ u = ‡
y

f  „ s.

All cases are covered, so this completes the proof.
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Theorem 9C 

Suppose that f : @A1 , B1D Ø —n  and y : @A2 , B2D Ø —n  are two equivalent continuously differentiable paths.  Then for any vec-
tor field FHx1 , . . . , xnL such that the composition functions FÎf : @A1 , B1D Ø —n  and  FÎy : @A2 , B2D Ø —n  are continuous, we 
have Ÿf

F ÿ „ s = Ÿy
F ÿ „ s,    where the equality holds:  (i)  with +sign if the change of parameter is orientation preserving; 

and  (ii)  with the -sign if the change of parameter is orientation reversing.

Proof

Since f and y are equivalent, there exists h : @A1 , B1D Ø @A2 , B2D such that f = yÎh. It follows from the Chain Rule that 
f£HtL = y£HhHtLL h£HtL, and so

‡
f

F ÿ „ s = ‡
A1

B1

 FHfHtLL ÿ f£HtL „ t = ‡
A1

B1

FHyHhHtLLL ÿ y£HhHtLL h£HtL „ t.

With a change of variables u = hHtL, we have in the orientation-preserving case:  

‡
f

F ÿ „ s = ‡
A2

B2

 FHyHuLL ÿ y£HuL „ u = ‡
y

F ÿ „ s,

and in the orientation-reversing case, 

‡
f

F ÿ „ s = ‡
B2

A2

FHyHuLL ÿ y£HuL „ u = -‡
A2

B2

 FHyHuLL ÿ y£HuL „ u = -‡
y

F ÿ „ s.

All cases are covered, so this completes the proof.

Remark

Ï   Theorems 9B and 9C have natural extensions to the case when the paths are piecewise continuously differentiable. 

  In this case, one can clearly break the paths into continuously differentiable pieces and apply Theorems 9B and 9C to each piece.

9.4 Simple curves
Theorems 9B and 9C demonstrate that integrals over differentiable paths depend only on the (oriented) curves of these paths.  It 
therefore seems natural to try to express the theory in terms of these curves instead of the paths. The purpose of this section is to 
consider this problem. 

Before we start, we examine the example below which suggests that some care is required. 

Example 9.4.1

Consider the curve below with endpoints indicated.

a b

Clearly it is not enough to say that a path has initial point a and terminal point b , since any two paths that trace the curve in the 
two different ways indicated below are clearly not equivalent.

a b a b

To temporarily avoid situations like this, we make the following definition.
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Definition: simple curve

By a simple curve C  in —n , we mean the image C = fH@A , BDL of a piecewise continuously differentiable path f : @A , BD Ø —n  
with the property that  fHt1L  fHt2L whenever A § t1 < t2 § B, with the possible exception that fHAL = fHBL may hold. 

A simple curve together with a direction is called an oriented simple curve. The function f is called a parametrization of the 
oriented simple curve C , and the parametrization is said to be:  (i)  orientation preserving if f  follows the direction of C; and 
(ii)  orientation reversing if f follows the opposite direction of C .

Definition: integral along a curve

Suppose that C  is an oriented simple curve in —n .  For any real-valued function f Hx1 , . . . , xnL continuous on C , we can define  
ŸC

f  „ s = Ÿf
f  „ s,  where f is any parametrization of C .  For any vector field FHx1 , . . . , xnL continuous on C , we can define  

ŸC F ÿ „ s = Ÿf
F ÿ „ s,  where f is any orientation-preserving parametrization of C .

The integrals along the curve   ŸC f  „ s  and   ŸC F ÿ „ s  are well defined in view of Theorems 9B and 9C respectively.

Remarks

Ï    Suppose that the oriented simple curve C-  is obtained from the oriented simple curve C  by taking the opposite orientation.  Then

   ŸC- f  „ s = ŸC f  „ s     and     ŸC- F ÿ „ s = -ŸC F ÿ „ s .

Ï    The theory can be extended to curves that are not simple, provided that we indicate very carefully how these curves are to be followed, and 
take note where some parts may be followed more than once. In particular, it is often convenient to break up an oriented curve into several 
components, each of which is simple.  

   For example, if C = C1 + . . .+Ck , where the sum denotes that the oriented curve C  is obtained by following the oriented (simple) curves  
C1, . . ., Ck  one after another, then we have

‡
C

f  „ s = ‚
i=1

k

 ‡
Ci

 f  „ s and  ‡
C

F ÿ „ s = ‚
i=1

k

‡
Ci

F ÿ „ s.

   In this case, each of C1, . . ., Ck  can be parametrized separately, so it doesn't matter if two or more of the curves have points in common.

Example 9.4.2

Let FHx, yL = H3 x y, -y2L and let C  denote the path of the parabola y = 2 x2  from H1 , 2L to H0 , 0L. 
Clearly f : @0 , 1D Ø —2 : t # Ht , 2 t2L is an orientation preserving parametrization of C- , and so

‡
C-

F ÿ „ s = ‡
f

F ÿ „ s = ‡
0

1
FHfHtLL ÿ f£HtL „ t = ‡

0

1
FHt , 2 t2L ÿ H1 , 4 tL „ t = ‡

0

1
H6 t3, -4 t4L ÿ H1 , 4 tL „ t = ‡

0

1
H6 t3 - 16 t5L „ t = A 3

ÅÅÅÅÅ
2

 t4 - 16
ÅÅÅÅÅÅÅÅÅ
6

 t6E
0
1

= 3
ÅÅÅÅÅ
2

- 16
ÅÅÅÅÅÅÅÅÅ
6

= - 7
ÅÅÅÅÅ
6

.

Hence  ŸC F ÿ „ s = 7ÅÅÅÅ6 .

visualisation

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

2

t

Fÿ f£ = H6t3-16t5L,  -»»f£HtL»» , -»»F »» , 2cosq
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Example 9.4.3

Let FHx, y, zL = H2 x - y + z , x + y - z2, 3 x - 2 y + 4 zL, and let C  denote the circle on the x y-plane with centre at H0 , 0L and radius 
3, followed in the anti-clockwise direction on the x y-plane.

Clearly f : @0 , 2 pD Ø —3 : t # H3 cos t , 3 sin t , 0L is an orientation-preserving parametrization of  C , and so

‡
C

F ÿ „ s = ‡
f

F ÿ „ s = ‡
0

2 p

FHfHtLL ÿ f£HtL „ t = ‡
0

2 p

FH3 cos t , 3 sin t , 0L ÿ H-3 sin t , 3 cos t , 0L „ t

= ‡
0

2 p

32  H2 cos t - sin t, cos t + sin t, 3 cos t - 2 sin tL ÿ H-sin t , cos t , 0L „ t = 9 ‡
0

2 p

Hsin2 t - 2 cos t sin t + cos2  t + sin t cos tL „ t

= 9 ‡
0

2 p

H1 - cos t sin tL „ t = 18 p .

visualisation

-2

0

2
x -2

0

2

y
-0.4
-0.2

0
0.2
0.4
z

-2

0

2
x 0 1

ÅÅÅÅ
2
p p 3

ÅÅÅÅ
2
p 2 p

0

2

4

6

8

10

12

14

3

9

Fÿ f£ = H9 - 9cos t sin tL,  »»f£HtL»» , »»F »»

Example 9.4.4

Let FHx, y, zL = H3 x2 + 6 y , -14 y z , 20 x z2L, and let  C  denote a succession of the straight line segments from H0 , 0 , 0L to 
H1 , 0 , 0L to H1 , 1 , 0L to H1 , 1 , 1L.
Let C1  denote the straight line segment from  H0 , 0 , 0L to H1 , 0 , 0L; C2  denote the straight line segment from H1 , 0 , 0L to 
H1 , 1 , 0L; and  C3  denote the straight line segment from  H1 , 1 , 0L to H1 , 1 , 1L. 
Clearly f : @0 , 1D Ø —3 : t # Ht , 0 , 0L , y : @0 , 1D Ø —3 : t # H1 , t , 0L  and  h : @0 , 1D Ø —3 : t # H1 , 1 , tL are orientation-preserv-
ing parametrizations of C1 , C2 , C3  respectively.

visualisation

0

0.5

1
x

0

0.5

1y

0

0.5

1

z

0

0.5

1
x

0

0.5

1y
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integrate the vector field

Hence

‡
C1

F ÿ „ s = ‡
f
F ÿ „ s = ‡

0

1
FHfHtLL ÿ f£HtL „ t = ‡

0

1
FHt , 0 , 0L ÿ H1 , 0 , 0L „ t = ‡

0

1
H3 t2, 0, 0L ÿ H1 , 0 , 0L „ t = ‡

0

1
3 t2 „ t = 1 ;

‡
C2

F ÿ „ s = ‡
y

F ÿ „ s = ‡
0

1
FHyHtLL ÿ y£HtL „ t = ‡

0

1
FH1 , t , 0L ÿ H0 , 1 , 0L „ t = ‡

0

1
H3 + 6 t , 0, 0L ÿ H0 , 1 , 0L „ t = ‡

0

1
0 „ t = 0 ;

‡
C3

F ÿ „ s = ‡
h
F ÿ „ s = ‡

0

1
FHhHtLL ÿ h£HtL „ t = ‡

0

1
FH1 , 1 , tL ÿ H0 , 0 , 1L „ t = ‡

0

1
H9, -14 t, 20 t2L ÿ H0 , 0 , 1L „ t

= ‡
0

1
20 t2 „ t =

20
ÅÅÅÅÅÅÅÅÅ
3

,

so that ‡
C

F ÿ „ s = ‡
C1

 F ÿ „ s + ‡
C2

 F ÿ „ s + ‡
C3

F ÿ „ s = 1 + 0 +
20
ÅÅÅÅÅÅÅÅÅ
3

=
23
ÅÅÅÅÅÅÅÅÅ
3

.

graphs

0 0.2 0.4 0.6 0.8 1
0
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20

Fÿ f£ = 83 t2,0 ,20t2<

level surfaces of a function—nested spherical shells (movie)

Next let f Hx, y, zL = x2 + y2 + z2 . 
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 … using transparency

integrate the function

Then

‡
C1

f  „ s = ‡
f

f  „ s = ‡
0

1
 f HfHtLL »» f£HtL »» „ t = ‡

0

1
f Ht , 0 , 0L »» H1 , 0 , 0L »» „ t = ‡

0

1
t2  „ t =

1
ÅÅÅÅÅ
3

;

‡
C2

f  „ s = ‡
y

f  „ s = ‡
0

1
 f HyHtLL »» y£HtL »» „ t = ‡

0

1
f H1 , t , 0L »» H0 , 1 , 0L »» „ t = ‡

0

1
H1 + t2L „ t =

4
ÅÅÅÅÅ
3

;

‡
C3

f  „ s = ‡
h

f  „ s = ‡
0

1
 f HhHtLL »» h£HtL »» „ t = ‡

0

1
f H1 , 1 , tL »» H0 , 0 , 1L »» „ t = ‡

0

1
H2 + t2L „ t =

7
ÅÅÅÅÅ
3

;

so that

‡
C

f  „ s = ‡
C1

f  „ s + ‡
C2

f  „ s + ‡
C3

f  „ s =
1
ÅÅÅÅÅ
3

+
4
ÅÅÅÅÅ
3

+ 7
ÅÅÅÅÅ
3

=
12
ÅÅÅÅÅÅÅÅÅ
3

= 4 .

graphs
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MATH236 Week-5-print.nb 13


	9.1 Integrals of scalar functions over paths
	Remarks
	Example 9.1.1 — on a helix
	visualisation

	Example 9.1.2 — on a cycloid
	visualisation

	Example 9.1.3 — on a hypocycloid
	visualisation

	Example 9.1.4 — different paths on a circle
	visualisation


	9.2 Line integrals
	Remarks
	Example 9.2.1 — on a helix
	visualisation

	Example 9.2.2 — on a cycloid
	visualisation

	Example 9.2.3 — on a hypocycloid
	visualisation

	Example 9.2.4 — different paths on a circle
	visualisation

	Example 9.2.5 — different paths with the same endpoints
	plots
	visualisation
	this is a gradient field

	Theorem 9A — line integral of grad f

	9.3 Equivalent paths
	Definition: change of parameter
	Remarks
	Example 9.3.1
	Theorem 9B
	Proof

	Theorem 9C
	Proof

	Remark

	9.4 Simple curves
	Example 9.4.1
	Definition: simple curve
	Definition: integral along a curve
	Remarks
	Example 9.4.2
	visualisation

	Example 9.4.3
	visualisation

	Example 9.4.4
	visualisation
	integrate the vector field
	graphs
	level surfaces of a function—nested spherical shells (movie)
	… using transparency
	integrate the function
	graphs



