
MATH236 — Weeks 3&4
Vector fields

Chen notes, chapter 8

8.1 Introduction
In this chapter, we consider functions of the form

(1) F : A Ø —n : x # FHxL,
where the domain A Œ —n  is a set in the n-dimensional euclidean space, and where the codomain is also the n-dimensional euclidean 
space —n . 

For each x œ A, we can write x = Hx1 , x2 , . . . , xnL, where x1 , x2 , . . . , xn œ —. We can also write

(2) FHxL = HF1  HxL, F2  HxL, . . . , Fn  HxLL,
where F1  HxL, F2  HxL, . . . , Fn  HxL œ —.

Definition: vector field

A function F of the type (1) above, where A Œ — n , is called a vector field in —n . 

The functions Fi : A Ø — , defined for i = 1, 2, . . . , n by (2), are called the component scalar fields of F .

Remarks

Ï   In the special cases n = 2 and n = 3, we usually write 

FHx, yL = HF1Hx, yL, F2Hx, yLL    and    FHx, y, zL = HF1Hx, y, zL, F2Hx, y, zL, F3Hx, y, zLL    respectively.

Ï   The term vector field  is also used more generally for functions of the type f : A Ø —n , with A Œ —m  for which m  n . 

  However, here we are concerned primarily with the case of m = n .

Example 8.1.1 — gradient vector field, in —n

Suppose that a real-valued function f : —n Ø — is continuously differentiable. Define the function F : —n Ø —n  by writing

 FHxL = H“ f L HxL = I  fÅÅÅÅÅÅÅÅÅx1
 HxL,  fÅÅÅÅÅÅÅÅÅx2

 HxL, …,  fÅÅÅÅÅÅÅÅÅxn
 HxLM     for every x œ —n .

Recall that this is the gradient of f  studied in Chapter 2 ( MATH235 ).

This vector field F is sometimes called a gradient vector field.

plot & contours — level curves

fHx,yL = cosHxL sin HyL
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http://www.maths.mq.edu.au/~wchen/lnmvafolder/mva08.pdf


Vector-field plot
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F Hx,yL = H-sin x sin y , cos x cosyL
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H-sin x sin y , cos x cos yL

Example 8.1.2 — non-gradient field, in —2

Consider the vector field F : —2 Ø —2 : Hx, yL# H-y, xL.
There is no continuously differentiable function f : —2 Ø — such that  F = “ f . To see this, note that if there were, then

FHx, yL = H“ f L Hx, yL = I  fÅÅÅÅÅÅÅx ,  fÅÅÅÅÅÅÅy M ,

so that  fÅÅÅÅÅÅÅx = -y and   fÅÅÅÅÅÅÅy = x. It would then follow that  2 fÅÅÅÅÅÅÅÅÅÅÅÅy x = -1  and  2 fÅÅÅÅÅÅÅÅÅÅÅÅx y = 1, which is not possible. 

This vector field F is an example of a non-gradient vector field.
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Example 8.1.3 — Newton's law of gravitation

Newton's law of gravitation states that the force acting on a point mass m at position x œ —3 ‚ due to a point mass M  at the origin 0, is 
given by:

FHxL = -e M mÅÅÅÅÅÅÅÅÅÅÅÅ»» x »»3  x,

where e > 0 is a proportionality constant.  This is an attractive force field. 

Note that   FHxL = -“ f , where f : —3 Ø — : x # -e M mÅÅÅÅÅÅÅÅÅÅ»» x»» ,

so F is a gradient vector field, the gravitational potential.
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Note that »» x »»-1 = Hx2 + y2 + z2L- 1ÅÅÅÅ2 , so that 

“ H- »» x »»-1L = 1ÅÅÅÅ2  Hx2 + y2 + z2L- 3ÅÅÅÅ2 µ 2 Hx, y, zL = »» x »»-3 x = »» x »»-2  x̀ , — inverse square law 

where x̀ denotes the unit vector in the direction of x .

visualisation

2D gradient plot
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demo — Motion in a Central Field

„ Mathematica demonstration
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Example 8.1.4 — Coulomb's Law

Coulomb's law in electrostatics states that the force acting on a point charge q at position x œ —3 due to a point charge Q at the origin 0 is 
given by: FHxL = e Q qÅÅÅÅÅÅÅÅÅÅÅÅ»» x »»3  x,

where e > 0 is a proportionality constant. This is a repulsive force field. 

Note that FHxL = -“ f , where f : —3 Ø — : x # e Q qÅÅÅÅÅÅÅÅÅ»» x»» , so F is a gradient vector field, the electrostatic potential.

visualisation
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Definition: flow lines

Suppose that  F :—n Ø —n  is a vector field. By a flow line of F , we mean a path fHtL in —n  such that f£HtL = FHfHtLL; in other words, F  
yields the velocity vector of the path fHtL. 

Flow lines are useful in understanding some of the properties of vector fields, as we shall see in the following examples.

Example 8.1.5 — circular flow

For the vector field F : —n Ø —n : Hx , yL# H-y , xL, the path fHtL = Hcos t , sin tL is a flow line, for clearly  f£HtL = fH-sin t , cos tL and 
FHfHtLL = FHcos t, sin tL = H-sin t , cos tL.
Similarly, it can be shown that for any real number c œ —, the path fHtL = Hc cos t , c sin tL is a flow line of F. 

Here the flow is circular, anticlockwise about the origin.
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F Hx, yL= H-y, xL

Example 8.1.6 — radial flow

Let us return to Example 8.1.4, and consider again Coulomb’s law of electrostatics, where FHxL = e Q qÅÅÅÅÅÅÅÅÅÅÅ»»x »»3  x . 

Let u œ —3  be a fixed unit vector. 

The path fHtL = H3 e Q q tL 1ÅÅÅÅ3  u is a flow line of F, for clearly f£HtL = e Q qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 e Q q tL 2ÅÅÅÅ3
 u and  FHfHtLL = e Q qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 e Q q t »»u »»3  H3 e Q q tL 1ÅÅÅÅ3  u.

This shows that the flow lines are radial, away from the origin. Necessarily they are orthogonal to the level curves of the potential 
function.

visualisation
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Example 8.1.7 — hyperbolic flow

Consider the vector field F : —n Ø —n : Hx , yL# Hx , -yL. 
For a path fHtL = Hf1 HtL , f2 HtLL to be a flow line of F, we must have f£HtL = FHfHtLL, so that 

Hf1
£ HtL , f2

£ HtLL = FHf1 HtL , f2 HtLL = Hf1 HtL , -f2 HtLL,
whence f1

£ HtL = f1 HtL and f2
£ HtL = -f2 HtL.  In other words, we need dÅÅÅÅÅÅd t  f1 HtL = f1 HtL and  dÅÅÅÅÅÅd t  f2 HtL = -f2 HtL.

These two differential equations have solutions f1 HtL = C1  ‰ t  and  f2 HtL = C2  ‰- t , where C1, C2 œ — are constants.

It follows that flow lines of F are of the form fHtL = HC1  ‰ t , C2  ‰- tL, where C1, C2 œ — are constants. 

Note that the curve of the path fHtL is given by the hyperbola x y = C1  C2 . The picture below shows FHx , yL, at some points along the 
same flow line x y = 1.

visualisation
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This is a gradient field

In fact this vector field F is a gradient vector field for the scalar function  f Hx, yL = 1ÅÅÅÅ2  Hx2 - y2L.

fHx, yL= 1
ÅÅÅÅ
2
Hx2-y2L
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Definition: gradient operator, —

The gradient operator in —n , denoted by “ , is given by:    “ = I ÅÅÅÅÅÅÅÅÅÅ x1
, ÅÅÅÅÅÅÅÅÅÅ x2

, …, ÅÅÅÅÅÅÅÅÅÅ xn
M .
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Remarks

Ï   In the special cases n = 2 and n = 3, we have respectively   “ = I ÅÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y M  and  “ = I ÅÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z M .

Ï   Note that for any real-valued function f Hx1, x2, . . . , xnL , the gradient vector field of f  is equal to   “ f = J  fÅÅÅÅÅÅÅÅÅÅ x1
,  fÅÅÅÅÅÅÅÅÅÅ x2

, …,  fÅÅÅÅÅÅÅÅÅÅ xn
N .

8.2 Divergence of a Vector Field
Suppose that F is the vector field describing the motion of a gas or fluid. Then we may wish to discuss the rate of expansion of the volume 
of the fluid, under this flow.

This is a scalar valued function of a vector field.

Definition: divergence

Suppose that F = HF1 , F2 , …, Fn L is a vector field in —n .  Then the divergence of F  is the scalar field

div F = “ ÿ F = I ÅÅÅÅÅÅÅÅÅÅ x1
, ÅÅÅÅÅÅÅÅÅÅ x2

, …, ÅÅÅÅÅÅÅÅÅÅ xn
M ÿ HF1 , F2 , …, Fn L = F1ÅÅÅÅÅÅÅÅÅÅ x1

+ F2ÅÅÅÅÅÅÅÅÅÅ x2
+ … + FnÅÅÅÅÅÅÅÅÅÅ xn

.

Example 8.2.1 — zero divergence

For the vector field F : —n Ø —n : Hx , y , zL # Hy z , x z , x yL, we have   div F = “ ÿ F = ÅÅÅÅÅÅÅÅ x  Hy zL + ÅÅÅÅÅÅÅ y  Hx zL + ÅÅÅÅÅÅÅ z  Hx yL = 0 .

visualisation

F Hx,y,zL=Hyz,xz,xyL
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Example 8.2.2 — positive divergence, expansion

For the vector  field F : —2 Ø —2 : Hx , y L# Hx , 0L, we have div F = 1.

Consider next the flow lines of this vector field. 

Any flow line must be a path fHtL = Hf1HtL, f2HtLL satisfying  f£HtL = FHfHtLL, so that Hf1HtL , f2HtLL = FHf1HtL, f2HtLL = Hf1HtL , 0L.
It follows that f1HtL = C1  ‰ t  and f2HtL = C2 , where C1, C2 œ — are constants. The flow is therefore in the x-direction. 

If we think of F as a velocity field, then the speed becomes greater as we move further away from the line x = 0.

This corresponds to an expansion, which is consistent with div F > 0.
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Example 8.2.3 — negative divergence, contraction

For the vector field F : —2 Ø —2 : Hx , y L# H-x , -yL, we have div F = -2. Consider next the flow lines of this vector field. 

Any flow line must be a path fHtL = Hf1HtL, f2HtLL satisfying f£HtL = FHfHtLL, so that   Hf1HtL , f2HtLL = FHf1HtL, f2HtLL = H-f1HtL , -f2HtLL.
It follows that f1HtL = C1  ‰- t  and f2HtL = C2  ‰- t , where C1, C2 œ — are constants. The flow is therefore radial and towards the origin.

This corresponds to a contraction, which is consistent with div F < 0.
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Example 8.2.4 — circular flow, no divergence

For the vector field F : —2 Ø —2 : Hx , yL# H-y , xL, we have shown in Example 8.1.5 that the paths of type fHtL = Hc cos t , c sin tL, where 
c œ —, are flow lines of this vector field.  (It can be shown that these are all the flowlines of F.)

It follows that the flow is circular and anticlockwise around the origin, with no expansion or contraction. Note now that div F = 0.
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8.3 Curl of a Vector Field
While the divergence of a vector field is related to expansion or contraction, so the curl of a vector field is related to rotation — there are 
beaches in Sydney named after this operator! 

Indeed, a vector field with zero curl will be called irrotational.

photos, from http://www.fotosearch.com/

www.fotosearch.com
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Definition: curl

Suppose that F = HF1 , F2 , F3 L is a vector field in —3 .

Then the curl of F  is the vector field

curl F = “ µ F = I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z Mµ HF1 , F2 , F3 L
= I F3ÅÅÅÅÅÅÅÅÅ y - F2ÅÅÅÅÅÅÅÅÅ z , F1ÅÅÅÅÅÅÅÅÅ z - F3ÅÅÅÅÅÅÅÅÅ x , F2ÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅ y M .
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Remarks

Ï   We can write curl F = “ µ F = det

i

k

jjjjjjjjjj

i j k
ÅÅÅÅÅÅÅÅ x

ÅÅÅÅÅÅÅÅ y
ÅÅÅÅÅÅÅ z

F1 F2 F3

y

{

zzzzzzzzzz
= J F3ÅÅÅÅÅÅÅÅÅ y -

F2ÅÅÅÅÅÅÅÅÅ z N i + J F1ÅÅÅÅÅÅÅÅÅ z -
F3ÅÅÅÅÅÅÅÅÅ x N j + J F2ÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅ y N k

where i = H1, 0, 0L, j = H0, 1, 0L and k = H0, 0, 1L .

Ï   Unlike gradient and divergence which are valid in any euclidean space —n  for any natural number n œ Õ,  curl  is only defined in —3 . 

Ï   Suppose that F is a vector field in —2 . While we cannot define  curl F , we can nevertheless regard F  as a vector field in —3 , for which the third compo-
nent is zero and the two other components are independent of the z coordinate. Then

curl F = I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , 0Mµ HF1 , F2 , 0L = J0, 0, F2ÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅ y N

  The function F2ÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅ y is sometimes called the scalar curl of F.

Example 8.3.1 —  — ¥ H— f L = 0

For the vector field F : —3 Ø —3 : Hx , y , zL # Hy z , x z , x yL, we  have 

curl F = J  Hx yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y -  Hx zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z ,  Hy zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z -  Hx zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x ,  Hx zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x -
 Hy zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y N = 0 .

Here, note that if we consider the function f : —3 Ø — : f Hx, y, zL = x y z ,  then F = “ f . 

We shall show later (in Theorem 8G) that “ µ H“ f L = 0, for any twice continuously differentiable function f : —3 Ø — .

visualisation:  symmetrical — one corner only  &  homogeneity
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level surface:   f Hx, y, zL = x y z = .1

fHx,y,zL = xyz = .1
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Example 8.3.2

For the vector field F : —3 Ø —3 : Hx , y , zL # Hx2 , Hx + yL2 , Hx + y + zL2L, we have 

curl F =
i
k
jjj  Hx+y+zL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y -

 Hx+yL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z ,  Hx2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z -
 Hx+y+zL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x ,  Hx+yL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x -  Hx2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y

y
{
zzz

= H2 Hx + y + zL - 0, 0 - 2 Hx + y + zL , 2 Hx + yL - 0L
= 2 Hx + y + z , -x - y - z , x + yL .

Hence    “ ÿ Hcurl FL =
 H2 Hx+y+zLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x +

 H-2 Hx+y+zLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y +
 H2 Hx+yLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z = 2 - 2 + 0 = 0 .

We shall show later in Theorem 8F that  “ ÿ H“ µ FL = 0‚ for any twice continuously differentiable function F : —3 Ø —3 .
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visualisation
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Example 8.3.3

Consider again the vector field F : —2 Ø —2 : Hx , yL# H-y , xL. 
We have shown in Examples 8.1.5 and 8.2.4 that the flow is circular and anti-clockwise around the origin.

Note now that the scalar curl  of F is equal to:  F2ÅÅÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅÅÅ y = 1 - H-1L = 2 .

This is consistent with a positive circulation for this flow.
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8.4 Basic Identities of Vector Analysis
The first three theorems do not involve  curl  and are therefore valid in —n  for any natural number n œ Õ.

The first two of these theorems are easy to prove.

Theorem 8A — properties of  —  (grad)

For any continuously differentiable functions f : A Ø —  and g : A Ø — , where A Œ —n , and for any fixed real number c œ — , we have

(a)  “ H f + gL = “ f + “g ;

(b)  “ Hc f L = c “ f ;

(c)  “ H f gL = f  “g + g “ f ; and

(d)  “ H f ê gL = Hg “ f - f  “gL êg2 , at any point x œ A  for which gHxL  0.

Theorem 8B — properties of  —   (div)

For any continuously differentiable functions F : A Ø —n  and G : A Ø —n , where A Œ —n , and for any fixed real number c œ — , 

we have

(a)  “ ÿ HF + GL = “ ÿ F + “ ÿ G ;

(b)  “ ÿ Hc FL = c “ ÿ F .

Theorem 8C —  div  of product with scalar field 

For any continuously differentiable functions F : A Ø —n  and f : A Ø — , where A Œ —n , we have  “ ÿ H f FL = H“ f L ÿ F + f “ ÿ F .

Proof

Let F = HF1 , F2 , …, FnL, then

     “ ÿ H f FL =  H f F1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x1
+  H f F2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x2

+ … +  H f FnLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ xn
= I  fÅÅÅÅÅÅÅÅÅÅ x1

 F1 + f  F1ÅÅÅÅÅÅÅÅÅÅÅÅ x1
M + … + I  fÅÅÅÅÅÅÅÅÅÅ xn

 Fn + f  FnÅÅÅÅÅÅÅÅÅÅÅÅ xn
M

= I  fÅÅÅÅÅÅÅÅÅÅ x1
 F1 + … +  fÅÅÅÅÅÅÅÅÅÅ xn

 FnM + I f   F1ÅÅÅÅÅÅÅÅÅÅÅÅ x1
+ … + f   FnÅÅÅÅÅÅÅÅÅÅÅÅ xn

M
= I  fÅÅÅÅÅÅÅÅÅÅ x1

, …,  fÅÅÅÅÅÅÅÅÅÅ xn
M ÿ HF1, …, FnL + f I  F1ÅÅÅÅÅÅÅÅÅÅÅÅ x1

+ … +  FnÅÅÅÅÅÅÅÅÅÅÅÅ xn
M

= H“ f L ÿ F + f “ ÿ F.

We also have the following four theorems which involve curl and are therefore restricted to —3 .

Theorem 8D — properties of  — ¥  (curl)

For any continuously differentiable functions F : A Ø —n  and G : A Ø —n , where A Œ —n , and for any fixed real number c œ — , 

we have

(a)  “ µ HF + GL = “ µ F + “ µ G ;

(b)  “ µ Hc FL = c “ µ F; and

(c)  “ ÿ HF µ GL = H“ µ FL ÿ G - F ÿ H“ µ GL.
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Proof

Parts (a) and (b) are easy to check. 

To prove (c), let  F = HF1 , F2 , F3L and  G = HG1 , G2 , G3L. Then 

“ ÿ HF µ GL = I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z M ÿ HF2  G3 - F3  G2 , F3  G1 - F1  G3 , F1  G2 - F2  G1L
=  HF2  G3-F3  G2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x +  HF3  G1-F1  G3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y +  HF1  G2-F2  G1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z

=
i
k
jjjjjj
F3ÅÅÅÅÅÅÅÅÅÅÅ y - F2ÅÅÅÅÅÅÅÅÅÅÅ z

y
{
zzzzzz G1 +

i
k
jjjjjj
F1ÅÅÅÅÅÅÅÅÅÅÅ z - F3ÅÅÅÅÅÅÅÅÅÅÅ x M G2 + I F2ÅÅÅÅÅÅÅÅÅÅÅ x -  F1ÅÅÅÅÅÅÅÅÅÅÅ y N G3 - F1

i
k
jjj  G3ÅÅÅÅÅÅÅÅÅÅÅ y -  G2ÅÅÅÅÅÅÅÅÅÅÅ z

y
{
zzz - F2

i
k
jjj G1ÅÅÅÅÅÅÅÅÅÅÅ z - G3ÅÅÅÅÅÅÅÅÅÅÅ x

y
{
zzz - F3

i
k
jjj  G2ÅÅÅÅÅÅÅÅÅÅÅ x -  G1ÅÅÅÅÅÅÅÅÅÅÅ y

y
{
zzz

= H“ µ FL ÿ G - F ÿ H“ µ GL ,

using the sum and product rules for differentiation, and rearranging terms.

Theorem 8E —  curl  of product with scalar field 

For any continuously differentiable functions F : A Ø —n  and f : A Ø — , where A Œ —n , we have  “ µ H f FL = H“ f Lµ F + f “ µ F .

Proof

Let  F = HF1 , F2 , F3L. Then 

“ µ H f FL = I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z Mµ H f F1 , f F2 , f F3L
= J  H f F3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y -  H f F2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z ,  H f F1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z -  H f F3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x ,  H f F2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x -  H f F1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y N
= I  fÅÅÅÅÅÅÅ y  F3 -  fÅÅÅÅÅÅÅ z  F2 ,  fÅÅÅÅÅÅÅ z  F1 -  fÅÅÅÅÅÅÅ x  F3,  fÅÅÅÅÅÅÅ x  F2 -  fÅÅÅÅÅÅÅÅ y  F1M + f I F3ÅÅÅÅÅÅÅÅÅÅ y - F2ÅÅÅÅÅÅÅÅÅÅ z , F1ÅÅÅÅÅÅÅÅÅÅ z - F3ÅÅÅÅÅÅÅÅÅÅ x , F2ÅÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅÅ y N

= I  fÅÅÅÅÅÅÅÅ x ,  fÅÅÅÅÅÅÅ y ,  fÅÅÅÅÅÅÅ z Nµ HF1, F2, F3L + f I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z N µ HF1, F2, F3L
= H“ f Lµ F + f “ µ F

using the sum and product rules for differentiation, and rearranging terms.

Theorem 8F —  div  of a  curl  vanishes, —  H— ¥ F L  0  

For any twice continuously differentiable function F : A Ø —3 , where A Œ —n , we have  “ ÿ H“ µ FL = 0.

Proof

Let  F = HF1 , F2 , F3L. Then 

   “ ÿ H“ µ FL = I ÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z M ÿ I F3ÅÅÅÅÅÅÅÅÅÅ y - F2ÅÅÅÅÅÅÅÅÅÅ z , F1ÅÅÅÅÅÅÅÅÅÅ z - F3ÅÅÅÅÅÅÅÅÅÅ x , F2ÅÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅÅ y M
= 2 F3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y - 2 F2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  z + 2 F1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  z - 2F3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x + 2F2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  x - 2F1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  y = I 2 F3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y - 2F3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x M + I 2F2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  x - 2 F2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  z M + I 2 F1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  z - 2F1ÅÅÅÅÅÅÅÅÅÅÅÅÅ z  y M
= 0 + 0 + 0 = 0 ,

in view of the fact that for a twice continuously differentiable function g, the 2nd partial derivatives satisfy 2 gÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y = 2 gÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x , etc. .

Theorem 8G —  curl  of a  grad  vanishes,  — ¥ H — f  L  0

For any twice continuously differentiable  function f : A Ø — , where A Œ —3 , we have  “ µ H“ f L = 0.

Proof

We have that

“ µ H“ f L = I ÅÅÅÅÅÅÅÅ x , ÅÅÅÅÅÅÅ y , ÅÅÅÅÅÅÅ z Mµ I  fÅÅÅÅÅÅÅ x ,  fÅÅÅÅÅÅÅ y ,  fÅÅÅÅÅÅÅ z M = J 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅ y  z - 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅ z  y , 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  x - 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  z , 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y - 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x N
= H0 , 0 , 0L = 0 ,

in a similar way to the previous result.
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Example 8.4.1

Consider the vector field F : —3 Ø —3 : Hx, y, zL # Hx, y, zL.  It is easily checked that  “ ÿ F = 3. 

It follows that there is no function G : —3 Ø —3  such that F = “ µ G, for otherwise “ ÿ F = 0 by Theorem 8F.

visualisation

F Hx,y,zL=Hx,y,zL
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Example 8.4.2

Consider the vector field F : —3 Ø —3 : Hx, y, zL # Hy, -x, 0L.  It is easily checked that  “ µ F = H0 , 0 , -2L.
It follows that there is no function f : —3 Ø — such that F = “ f , for otherwise “ µ F = 0 by Theorem 8G.

visualisation

F Hx,y,zL=Hy,-x,0L
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For any twice continuously differentiable function f : A Ø —, where A Œ —n , we have

 div H“ f L = “ ÿ H“ f L = I ÅÅÅÅÅÅÅÅÅÅ x1
, ÅÅÅÅÅÅÅÅÅÅ x2

, …, ÅÅÅÅÅÅÅÅÅÅ xn
M ÿ I  fÅÅÅÅÅÅÅÅÅÅ x1

,  fÅÅÅÅÅÅÅÅÅÅ x2
, …,  fÅÅÅÅÅÅÅÅÅÅ xn

N = 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + 2 fÅÅÅÅÅÅÅÅÅÅÅÅ

 x22 + … + 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 xn2 .
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Definition: Laplace operator, —2

The Laplace operator “2  in —n , also known as the Laplacian, is defined to be the divergence of the gradient, so that for any twice continu-
ously differentiable function f : A Ø — , we have:

 “2 f = “ ÿ H“ f L = 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + 2 fÅÅÅÅÅÅÅÅÅÅÅÅ

 x22 + … + 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 xn2 .

Example 8.4.3

A function f : A Ø —, where A Œ —n , is said to satisfy Laplace’s equation if  “2 f = 0.

An example of such a function is given in the case n = 3 by f HxL = f Hx, y, zL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2+y2+z2L 1ÅÅÅÅ2
= 1ÅÅÅÅÅÅÅÅÅ»»x»» .

visualisation

F Hx,y,zL=Hx2+y2+z2L- 1ÅÅÅÅ2
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Theorem 8H — Laplacian  of a product

For any twice continuously differentiable functions f : A Ø —  and g : A Ø — , where A Œ —n , we have

(a)  “2 H f gL = H“2 f L g + 2 H“ f ÿ “gL + f  “2 g;

(b)  “ ÿ H f  “g - g “ f L = f  “2 g - g “2 f .

Proof

Note that  “2 H f gL =
 2H f gLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x12 + … +

2 H f gLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ xn2

= J  2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12  g + 2 

 fÅÅÅÅÅÅÅÅÅÅ x1
  gÅÅÅÅÅÅÅÅÅÅ x1

+ f  
 2gÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 N + … + J  2 fÅÅÅÅÅÅÅÅÅÅÅÅ

 xn2  g + 2 
 fÅÅÅÅÅÅÅÅÅÅ xn

  gÅÅÅÅÅÅÅÅÅÅ xn
+ f  

 2gÅÅÅÅÅÅÅÅÅÅÅÅ
 xn2 N

= J  2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + … +  2 fÅÅÅÅÅÅÅÅÅÅÅÅ

 xn2 N g + f J  2gÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + … +  2gÅÅÅÅÅÅÅÅÅÅÅÅ

 xn2 N + 2 I  fÅÅÅÅÅÅÅÅÅÅ x1
, …,  fÅÅÅÅÅÅÅÅÅÅ xn

M ÿ I  gÅÅÅÅÅÅÅÅÅÅ x1
, …,  gÅÅÅÅÅÅÅÅÅÅ xn

M
= H“2 f L g + 2 H“ f ÿ “gL + f  “2 g .

This gives (a). 
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On the other hand,  “ ÿ H f  “g - g “ f L = “ ÿ I f I  gÅÅÅÅÅÅÅÅÅÅ x1
, …,  gÅÅÅÅÅÅÅÅÅÅ xn

M - I  fÅÅÅÅÅÅÅÅÅÅ x1
, …,  fÅÅÅÅÅÅÅÅÅÅ xn

M gM
= “ ÿ J f  

 gÅÅÅÅÅÅÅÅÅÅ x1
-

 fÅÅÅÅÅÅÅÅÅÅ x1
 g , …, f  

 gÅÅÅÅÅÅÅÅÅÅ xn
-

 fÅÅÅÅÅÅÅÅÅÅ xn
 gN

= J f  
 2gÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 +

 fÅÅÅÅÅÅÅÅÅÅ x1
  gÅÅÅÅÅÅÅÅÅÅ x1

-
 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12  g -

 fÅÅÅÅÅÅÅÅÅÅ x1
  gÅÅÅÅÅÅÅÅÅÅ x1

N + … + J f  
 2gÅÅÅÅÅÅÅÅÅÅÅÅ
 xn2 +

 fÅÅÅÅÅÅÅÅÅÅ xn
  gÅÅÅÅÅÅÅÅÅÅ xn

-
 2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 xn2  g -

 fÅÅÅÅÅÅÅÅÅÅ xn
  gÅÅÅÅÅÅÅÅÅÅ xn

N
= J f  

 2gÅÅÅÅÅÅÅÅÅÅÅÅ x12 -
 2 fÅÅÅÅÅÅÅÅÅÅÅÅ x12  gN + … + J f  

 2gÅÅÅÅÅÅÅÅÅÅÅÅ xn2 -
 2 fÅÅÅÅÅÅÅÅÅÅÅÅ xn2  gN

= f J  2gÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + … +  2gÅÅÅÅÅÅÅÅÅÅÅÅ

 xn2 N - J  2 fÅÅÅÅÅÅÅÅÅÅÅÅ
 x12 + … +  2 fÅÅÅÅÅÅÅÅÅÅÅÅ

 xn2 N g
= f  “2 g - g “2 f .

Theorem 8J — cross product of gradients

For any twice continuously differentiable functions f : A Ø —  and g : A Ø — , where A Œ —3 , we have  “ ÿ H“ f µ “gL = 0.

Proof

Exercise for the reader; do it in a similar way to the others!

Definition: Total Derivative, ˇF

Let in F :—3 Ø —3  be a vector field, then the total derivative ˇF  is the 3 µ 3 matrix of partial derivatives:

 ˇF =

i

k

jjjjjjjjjjjjjjj

 F1ÅÅÅÅÅÅÅÅÅÅ x
 F1ÅÅÅÅÅÅÅÅÅÅ y

 F1ÅÅÅÅÅÅÅÅÅÅ z
 F2ÅÅÅÅÅÅÅÅÅÅ x

 F2ÅÅÅÅÅÅÅÅÅÅ y
 F2ÅÅÅÅÅÅÅÅÅÅ z

 F3ÅÅÅÅÅÅÅÅÅÅ x
 F3ÅÅÅÅÅÅÅÅÅÅ y

 F3ÅÅÅÅÅÅÅÅÅÅ z

y

{

zzzzzzzzzzzzzzz
.

 ˇ+  F = 1ÅÅÅÅ2  HˇF + HˇFLTL =

i

k

jjjjjjjjjjjjjjj

 F1ÅÅÅÅÅÅÅÅÅÅ x
1ÅÅÅÅ2  I  F1ÅÅÅÅÅÅÅÅÅÅ y +  F2ÅÅÅÅÅÅÅÅÅÅ x N 1ÅÅÅÅ2  I  F1ÅÅÅÅÅÅÅÅÅÅ z +

 F3ÅÅÅÅÅÅÅÅÅÅ x M
1ÅÅÅÅ2  I  F2ÅÅÅÅÅÅÅÅÅÅ x +

 F1ÅÅÅÅÅÅÅÅÅÅ y N  F2ÅÅÅÅÅÅÅÅÅÅ y
1ÅÅÅÅ2  I  F2ÅÅÅÅÅÅÅÅÅÅ z +

 F3ÅÅÅÅÅÅÅÅÅÅ y M
1ÅÅÅÅ2  I  F3ÅÅÅÅÅÅÅÅÅÅ x +  F1ÅÅÅÅÅÅÅÅÅÅ z N 1ÅÅÅÅ2  I  F3ÅÅÅÅÅÅÅÅÅÅ y +  F2ÅÅÅÅÅÅÅÅÅÅ z M  F3ÅÅÅÅÅÅÅÅÅÅ z

y

{

zzzzzzzzzzzzzzz

is the symmetric part of  ˇF .   Notice that  Hˇ+  FLT = ˇ+  F .

ˇ-  F = 1ÅÅÅÅ2  IˇF - HˇFLT M = 1ÅÅÅÅ2  

i

k

jjjjjjjjjjjjjjj

0 I  F1ÅÅÅÅÅÅÅÅÅÅ y -  F2ÅÅÅÅÅÅÅÅÅÅ x M I  F1ÅÅÅÅÅÅÅÅÅÅ z -
 F3ÅÅÅÅÅÅÅÅÅÅ x M

I  F2ÅÅÅÅÅÅÅÅÅÅ x -
 F1ÅÅÅÅÅÅÅÅÅÅ y M 0 I  F2ÅÅÅÅÅÅÅÅÅÅ z -

 F3ÅÅÅÅÅÅÅÅÅÅ y M
I  F3ÅÅÅÅÅÅÅÅÅÅ x -  F1ÅÅÅÅÅÅÅÅÅÅ z M I  F3ÅÅÅÅÅÅÅÅÅÅ y -  F2ÅÅÅÅÅÅÅÅÅÅ z M 0

y

{

zzzzzzzzzzzzzzz

is the anti-symmetric part of  ˇF .  Notice that  Hˇ-  FLT = -ˇ-  F .

Remarks

Ï   ˇF = ˇ+  F + ˇ-  F , so the information contained within the full derivative ˇF  is precisely that contained within its symmetric and anti-symmetric 
parts ˇ+  F and  ˇ-  F .

Ï   The components of ˇ-  F are the same (up to sign) as the components of  “ µ F; namely,

   curl F = J F3ÅÅÅÅÅÅÅÅÅ y -
F2ÅÅÅÅÅÅÅÅÅ z N i + J F1ÅÅÅÅÅÅÅÅÅ z -

F3ÅÅÅÅÅÅÅÅÅ x N j + J F2ÅÅÅÅÅÅÅÅÅ x - F1ÅÅÅÅÅÅÅÅÅ y N k .

Ï   For a gradient vector field F = “ f  in —3  we have that  ˇH“ f L =

i

k

jjjjjjjjjjjjjjjjjjjj

2 fÅÅÅÅÅÅÅÅÅÅ
 x2

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x
2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  x

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y
2 fÅÅÅÅÅÅÅÅÅÅ
 y2

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  y
2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  z

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  z
2 fÅÅÅÅÅÅÅÅÅÅ
 z2

y

{

zzzzzzzzzzzzzzzzzzzz

,

 

  which is necessarily a symmetric matrix; thus  ˇ H“ f L = ˇ+ H“ f L  with ˇ- H“ f L = 0 . 

  Together with the previous remark this shows that necessarily have that “ µ H“ f L = 0 , for any continuous scalar function f  on —3 . 

  In particular, for the general (homogeneous) quadratic function  f Hx, y, zL = a x2 + 2 b x y + 2 c x z + d y2 + 2 g y z + h z2

  we have that  1ÅÅÅÅ2  ˇ H“ f L =
i

k
jjjjjjj

a b c
b d g
c g h

y

{
zzzzzzz ,  which is the matrix of the quadratic form for f Hx, y, zL.
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Ï   For a gradient vector field F = “ f  in —3  we have that  ˇH“ f L =

i

k

jjjjjjjjjjjjjjjjjjjj

2 fÅÅÅÅÅÅÅÅÅÅ
 x2

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  x
2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  x

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  y
2 fÅÅÅÅÅÅÅÅÅÅ
 y2

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z  y
2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x  z

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ y  z
2 fÅÅÅÅÅÅÅÅÅÅ
 z2

y

{

zzzzzzzzzzzzzzzzzzzz

,

 

  which is necessarily a symmetric matrix; thus  ˇ H“ f L = ˇ+ H“ f L  with ˇ- H“ f L = 0 . 

  Together with the previous remark this shows that necessarily have that “ µ H“ f L = 0 , for any continuous scalar function f  on —3 . 

  In particular, for the general (homogeneous) quadratic function  f Hx, y, zL = a x2 + 2 b x y + 2 c x z + d y2 + 2 g y z + h z2

  we have that  1ÅÅÅÅ2  ˇ H“ f L =
i

k
jjjjjjj

a b c
b d g
c g h

y

{
zzzzzzz ,  which is the matrix of the quadratic form for f Hx, y, zL.

Ï   For any vector field F we have that: 

“ ÿ F = trace ˇF =
 F1ÅÅÅÅÅÅÅÅÅÅ x +  F2ÅÅÅÅÅÅÅÅÅÅ y +

 F3ÅÅÅÅÅÅÅÅÅÅ z , 

where the trace of a square matrix is the sum of the elements on the major diagonal. 

In particular, for a gradient field we have the Laplacian:      “ ÿ H“ f L = trace ˇ H“ f L =
2 fÅÅÅÅÅÅÅÅÅÅ
 x2 + 2 fÅÅÅÅÅÅÅÅÅÅ

 y2 +
2 fÅÅÅÅÅÅÅÅÅÅ
 z2 = “2 f .
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