## MATH236 - Weeks 3\&4

## Vector fields

Chen notes, chapter 8

### 8.1 Introduction

In this chapter, we consider functions of the form
(1) $\quad \boldsymbol{F}: A \rightarrow \mathbb{R}^{n}: \boldsymbol{x} \mapsto \boldsymbol{F}(\boldsymbol{x})$,
where the domain $A \subseteq \mathbb{R}^{n}$ is a set in the $n$-dimensional euclidean space, and where the codomain is also the $n$-dimensional euclidean space $\mathbb{R}^{n}$.

For each $\boldsymbol{x} \in A$, we can write $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$. We can also write
(2) $\quad \boldsymbol{F}(\boldsymbol{x})=\left(F_{1}(\boldsymbol{x}), F_{2}(\boldsymbol{x}), \ldots, F_{n}(\boldsymbol{x})\right)$,
where $F_{1}(\boldsymbol{x}), F_{2}(\boldsymbol{x}), \ldots, F_{n}(\boldsymbol{x}) \in \mathbb{R}$.

## Definition: vector field

A function $\boldsymbol{F}$ of the type (1) above, where $A \subseteq \mathbb{R}^{n}$, is called a vector field i 자 ${ }^{n}$.
The functions $F_{i}: A \rightarrow \mathbb{R}$, defined for $i=1,2, \ldots, n$ by (2), are called the component scalar fields of $\boldsymbol{F}$.

## Remarks

- In the special cases $n=2$ and $n=3$, we usually write

$$
\boldsymbol{F}(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right) \quad \text { and } \quad \boldsymbol{F}(x, y, z)=\left(F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right) \quad \text { respectively. }
$$

- The term vector field is also used more generally for functions of the type $\phi: A \rightarrow \mathbb{R}^{n}$, with $A \subseteq \mathbb{R}^{m}$ for which $m \neq n$.

However, here we are concerned primarily with the case of $m=n$.

## Example 8.1.1 - gradient vector field, in $\mathbb{R}^{n}$

Suppose that a real-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable. Define the function $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by writing

$$
\boldsymbol{F}(\boldsymbol{x})=(\nabla f)(\boldsymbol{x})=\left(\frac{\partial f}{\partial x_{1}}(\boldsymbol{x}), \frac{\partial f}{\partial x_{2}}(\boldsymbol{x}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{x})\right) \quad \text { for every } \boldsymbol{x} \in \mathbb{R}^{n} .
$$

Recall that this is the gradient of $f$ studied in Chapter 2(MATH235).
This vector field $\boldsymbol{F}$ is sometimes called a gradient vector field.

```
plot & contours - level curves
```



## Vector-field plot



## Example 8.1.2 - non-gradient field, in $\mathbb{R}^{2}$

Consider the vector field $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-y, x)$.
There is no continuously differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\boldsymbol{F}=\nabla f$. To see this, note that if there were, then

$$
\boldsymbol{F}(x, y)=(\nabla f)(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right),
$$

so that $\frac{\partial f}{\partial x}=-y$ and $\frac{\partial f}{\partial y}=x$. It would then follow that $\frac{\partial^{2} f}{\partial y \partial x}=-1$ and $\frac{\partial^{2} f}{\partial x \partial y}=1$, which is not possible.
This vector field $\boldsymbol{F}$ is an example of a non-gradient vector field.

## plot



## Example 8.1.3 - Newton's law of gravitation

Newton's law of gravitation states that the force acting on a point mass $m$ at position $\boldsymbol{x} \in \mathbb{R}^{3}$, due to a point mass $M$ at the origin $\mathbf{0}$, is given by:

$$
\boldsymbol{F}(\boldsymbol{x})=-\epsilon \frac{M m}{\|x\|^{3}} \boldsymbol{x},
$$

where $\epsilon>0$ is a proportionality constant. This is an attractive force field.
Note that $F(x)=-\nabla f$, where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}: \boldsymbol{x} \mapsto-\epsilon \frac{M m}{\|x\|}$,
so $\boldsymbol{F}$ is a gradient vector field, the gravitational potential.

Note that $\|\boldsymbol{x}\|^{-1}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$, so that

$$
\nabla\left(-\|\boldsymbol{x}\|^{-1}\right)=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}} \times 2(x, y, z)=\|\boldsymbol{x}\|^{-3} \boldsymbol{x}=\|\boldsymbol{x}\|^{-2} \hat{\boldsymbol{x}}, \quad-\text { inverse square law }
$$

where $\hat{\boldsymbol{x}}$ denotes the unit vector in the direction of $\boldsymbol{x}$.

## visualisation



2D gradient plot



demo - Motion in a Central Field

- Mathematica demonstration


## Example 8.1.4 - Coulomb's Law

Coulomb's law in electrostatics states that the force acting on a point charge $q$ at position $\boldsymbol{x} \in \mathbb{R}^{3}$ due to a point charge $Q$ at the origin $\mathbf{0}$ is given by: $\quad \boldsymbol{F}(\boldsymbol{x})=\frac{\epsilon Q q}{\|\boldsymbol{x}\|^{3}} \boldsymbol{x}$, where $\epsilon>0$ is a proportionality constant. This is a repulsive force field.
Note that $F(x)=-\nabla f$, where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}: \boldsymbol{x} \mapsto \epsilon \frac{Q q}{\|x\|}$, so $\boldsymbol{F}$ is a gradient vector field, the electrostatic potential.

## visualisation





## Definition: flow lines

Suppose that $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field. By a flow line of $\boldsymbol{F}$, we mean a path $\boldsymbol{\phi}(t)$ in $\mathbb{R}^{n}$ such that $\boldsymbol{\phi}^{\prime}(t)=\boldsymbol{F}(\boldsymbol{\phi}(t))$; in other words, $\boldsymbol{F}$ yields the velocity vector of the path $\phi(t)$.

Flow lines are useful in understanding some of the properties of vector fields, as we shall see in the following examples.

## Example 8.1.5 - circular flow

For the vector field $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:(x, y) \mapsto(-y, x)$, the path $\boldsymbol{\phi}(t)=(\cos t, \sin t)$ is a flow line, for clearly $\boldsymbol{\phi}^{\prime}(t)=\boldsymbol{\phi}(-\sin t, \cos t)$ and $\boldsymbol{F}(\boldsymbol{\phi}(t))=\boldsymbol{F}(\cos t, \sin t)=(-\sin t, \cos t)$.

Similarly, it can be shown that for any real number $c \in \mathbb{R}$, the path $\boldsymbol{\phi}(t)=(c \cos t, c \sin t)$ is a flow line of $\boldsymbol{F}$.
Here the flow is circular, anticlockwise about the origin.


## plot



## Example 8.1.6 — radial flow

Let us return to Example 8.1.4, and consider again Coulomb's law of electrostatics, where $\boldsymbol{F}(\boldsymbol{x})=\frac{\epsilon Q q}{\|\boldsymbol{x}\|^{3}} \boldsymbol{x}$.
Let $\boldsymbol{u} \in \mathbb{R}^{3}$ be a fixed unit vector.
The path $\boldsymbol{\phi}(t)=(3 \epsilon Q q t)^{\frac{1}{3}} \boldsymbol{u}$ is a flow line of $\boldsymbol{F}$, for clearly $\boldsymbol{\phi}^{\prime}(t)=\frac{\epsilon Q q}{(3 \epsilon Q q t)^{\frac{2}{3}}} \boldsymbol{u}$ and $\boldsymbol{F}(\boldsymbol{\phi}(t))=\frac{\epsilon Q q}{3 \epsilon Q q t\|\boldsymbol{u}\|^{3}}(3 \epsilon Q q t)^{\frac{1}{3}} \boldsymbol{u}$.
This shows that the flow lines are radial, away from the origin. Necessarily they are orthogonal to the level curves of the potential function.

## visualisation




## Example 8.1.7 - hyperbolic flow

Consider the vector field $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:(x, y) \mapsto(x,-y)$.
For a path $\boldsymbol{\phi}(t)=\left(\phi_{1}(t), \phi_{2}(t)\right)$ to be a flow line of $\boldsymbol{F}$, we must have $\boldsymbol{\phi}^{\prime}(t)=\boldsymbol{F}(\boldsymbol{\phi}(t))$, so that

$$
\left(\phi_{1}^{\prime}(t), \phi_{2}^{\prime}(t)\right)=\boldsymbol{F}\left(\phi_{1}(t), \phi_{2}(t)\right)=\left(\phi_{1}(t),-\phi_{2}(t)\right),
$$

whence $\phi_{1}{ }^{\prime}(t)=\phi_{1}(t)$ and $\phi_{2}{ }^{\prime}(t)=-\phi_{2}(t)$. In other words, we need $\frac{\mathrm{d}}{\mathrm{d} t} \phi_{1}(t)=\phi_{1}(t)$ and $\frac{\mathrm{d}}{\mathrm{d} t} \phi_{2}(t)=-\phi_{2}(t)$.
These two differential equations have solutions $\phi_{1}(t)=C_{1} \boldsymbol{e}^{t}$ and $\phi_{2}(t)=C_{2} \boldsymbol{e}^{-t}$, where $C_{1}, C_{2} \in \mathbb{R}$ are constants.
It follows that flow lines of $\boldsymbol{F}$ are of the form $\boldsymbol{\phi}(t)=\left(C_{1} \boldsymbol{e}^{t}, C_{2} \boldsymbol{e}^{-t}\right)$, where $C_{1}, C_{2} \in \mathbb{R}$ are constants.
Note that the curve of the path $\boldsymbol{\phi}(t)$ is given by the hyperbola $x y=C_{1} C_{2}$. The picture below shows $\boldsymbol{F}(x, y)$, at some points along the same flow line $x y=1$.


## visualisation



## This is a gradient field

In fact this vector field $\boldsymbol{F}$ is a gradient vector field for the scalar function $f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)$.

$$
f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)
$$





Definition: gradient operator, $\boldsymbol{\nabla}$

The gradient operator in $\mathbb{R}^{n}$, denoted by $\nabla$, is given by: $\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.

## Remarks

- In the special cases $n=2$ and $n=3$, we have respectively $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ and $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.
- Note that for any real-valued function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the gradient vector field of $f$ is equal to $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$.


### 8.2 Divergence of a Vector Field

Suppose that $\boldsymbol{F}$ is the vector field describing the motion of a gas or fluid. Then we may wish to discuss the rate of expansion of the volume of the fluid, under this flow.

This is a scalar valued function of a vector field.

## Definition: divergence

Suppose that $\boldsymbol{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is a vector fieldin $\mathbb{R}^{n}$. Then the divergence of $\boldsymbol{F}$ is the scalar field

$$
\operatorname{div} \boldsymbol{F}=\nabla \cdot \boldsymbol{F}=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \cdot\left(F_{1}, F_{2}, \ldots, F_{n}\right)=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\ldots+\frac{\partial F_{n}}{\partial x_{n}} .
$$

## Example 8.2.1 - zero divergence

For the vector field $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:(x, y, z) \mapsto(y z, x z, x y)$, we have $\operatorname{div} \boldsymbol{F}=\nabla \cdot \boldsymbol{F}=\frac{\partial}{\partial x}(y z)+\frac{\partial}{\partial y}(x z)+\frac{\partial}{\partial z}(x y)=0$.

## visualisation



## Example 8.2.2 - positive divergence, expansion

For the vector field $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(x, 0)$, we have $\operatorname{div} \boldsymbol{F}=1$.
Consider next the flow lines of this vector field.
Any flow line must be a path $\boldsymbol{\phi}(t)=\left(\phi_{1}(t), \phi_{2}(t)\right)$ satisfying $\boldsymbol{\phi}^{\prime}(t)=\boldsymbol{F}(\boldsymbol{\phi}(t))$, so that $\left(\phi_{1}(t), \phi_{2}(t)\right)=\boldsymbol{F}\left(\phi_{1}(t), \phi_{2}(t)\right)=\left(\phi_{1}(t), 0\right)$.
It follows that $\phi_{1}(t)=C_{1} \boldsymbol{e}^{t}$ and $\phi_{2}(t)=C_{2}$, where $C_{1}, C_{2} \in \mathbb{R}$ are constants. The flow is therefore in the $x$-direction.
If we think of $\boldsymbol{F}$ as a velocity field, then the speed becomes greater as we move further away from the line $x=0$.
This corresponds to an expansion, which is consistent with $\operatorname{div} \boldsymbol{F}>0$.


## Example 8.2.3 - negative divergence, contraction

For the vector field $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-x,-y)$, we have $\operatorname{div} \boldsymbol{F}=-2$. Consider next the flow lines of this vector field.
Any flow line must be a path $\boldsymbol{\phi}(t)=\left(\phi_{1}(t), \phi_{2}(t)\right)$ satisfying $\boldsymbol{\phi}^{\prime}(t)=\boldsymbol{F}(\boldsymbol{\phi}(t))$, so that $\left(\phi_{1}(t), \phi_{2}(t)\right)=\boldsymbol{F}\left(\phi_{1}(t), \phi_{2}(t)\right)=\left(-\phi_{1}(t),-\phi_{2}(t)\right)$.
It follows that $\phi_{1}(t)=C_{1} e^{-t}$ and $\phi_{2}(t)=C_{2} e^{-t}$, where $C_{1}, C_{2} \in \mathbb{R}$ are constants. The flow is therefore radial and towards the origin. This corresponds to a contraction, which is consistent with $\operatorname{div} \boldsymbol{F}<0$.

## plot



## Example 8.2.4 - circular flow, no divergence

For the vector field $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-y, x)$, we have shown in Example 8.1.5 that the paths of type $\phi(t)=(c \cos t$, $c \sin t)$, where $c \in \mathbb{R}$, are flow lines of this vector field. (It can be shown that these are all the flowlines of $\boldsymbol{F}$.)

It follows that the flow is circular and anticlockwise around the origin, with no expansion or contraction. Note now that div $\boldsymbol{F}=0$.

## plot



### 8.3 Curl of a Vector Field

While the divergence of a vector field is related to expansion or contraction, so the curl of a vector field is related to rotation - there are beaches in Sydney named after this operator!

Indeed, a vector field with zero curl will be called irrotational.

## photos, from http://www.fotosearch.com/


www. fotosearch.com
http:///Ic.fotosearch h.com/bigcomps/UPC/UPCOO1/cri01 104.jpg
http://www.fotosearch.com/comp/PSK/PSK 005/ow-angle-vie


## Definition: curl

Suppose that $\boldsymbol{F}=\left(F_{1}, F_{2}, F_{3}\right)$ is a vector field in $\mathbb{R}^{3}$.
Then the $\boldsymbol{c u r l}$ of $\boldsymbol{F}$ is the vector field

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{F} & =\nabla \times \boldsymbol{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(F_{1}, F_{2}, F_{3}\right) \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) .
\end{aligned}
$$

## Remarks

- We can write

$$
\operatorname{curl} \boldsymbol{F}=\nabla \times \boldsymbol{F}=\operatorname{det}\left(\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right)=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k}
$$

where $\boldsymbol{i}=(1,0,0), \boldsymbol{j}=(0,1,0)$ and $\boldsymbol{k}=(0,0,1)$.

- Unlike gradient and divergence which are valid in any euclidean space $\mathbb{R}^{n}$ for any natural number $n \in \mathbb{N}$, curl is only defined in $\mathbb{R}^{3}$.
- Suppose that $\boldsymbol{F}$ is a vector field in $\mathbb{R}^{2}$. While we cannot define curl $\boldsymbol{F}$, we can nevertheless regard $\boldsymbol{F}$ as a vector field in $\mathbb{R}^{3}$, for which the third component is zero and the two other components are independent of the $z$ coordinate. Then

$$
\operatorname{curl} \boldsymbol{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 0\right) \times\left(F_{1}, F_{2}, 0\right)=\left(0,0, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
$$

The function $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}$ is sometimes called the scalar curl of $\boldsymbol{F}$.

## Example 8.3.1 - $\nabla \times(\nabla f)=0$

For the vector field $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}:(x, y, z) \mapsto(y z, x z, x y)$, we have

$$
\operatorname{curl} \boldsymbol{F}=\left(\frac{\partial(x y)}{\partial y}-\frac{\partial(x z)}{\partial z}, \frac{\partial(y z)}{\partial z}-\frac{\partial(x z)}{\partial x}, \frac{\partial(x z)}{\partial x}-\frac{\partial(y z)}{\partial y}\right)=\mathbf{0}
$$

Here, note that if we consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}: f(x, y, z)=x y z$, then $\boldsymbol{F}=\nabla f$.
We shall show later (in Theorem 8 G ) that $\nabla \times(\nabla f)=0$, for any twice continuously differentiable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$.

## visualisation: symmetrical - one corner only \& homogeneity


level surface: $f(x, y, z)=x$ y $z=.1$

movie of level surfaces


## Example 8.3.2

For the vector field $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}:(x, y, z) \mapsto\left(x^{2},(x+y)^{2},(x+y+z)^{2}\right)$, we have

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{F}= & \left(\frac{\partial(x+y+z)^{2}}{\partial y}-\frac{\partial(x+y)^{2}}{\partial z}, \frac{\partial\left(x^{2}\right)}{\partial z}-\frac{\partial(x+y+z)^{2}}{\partial x}, \frac{\partial(x+y)^{2}}{\partial x}-\frac{\partial\left(x^{2}\right)}{\partial y}\right) \\
& =(2(x+y+z)-0,0-2(x+y+z), 2(x+y)-0) \\
& =2(x+y+z,-x-y-z, x+y)
\end{aligned}
$$

Hence $\quad \nabla \cdot(\operatorname{curl} \boldsymbol{F})=\frac{\partial(2(x+y+z))}{\partial x}+\frac{\partial(-2(x+y+z))}{\partial y}+\frac{\partial(2(x+y))}{\partial z}=2-2+0=0$.
We shall show later in Theorem 8 F that $\nabla \cdot(\nabla \times \boldsymbol{F})=0$, for any twice continuously differentiable function $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.

## visualisation


top corner \& curl $F=2(x+y+z,-(x+y+z), x+y)$


## Example 8.3.3

Consider again the vector field $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-y, x)$.
We have shown in Examples 8.1.5 and 8.2.4 that the flow is circular and anti-clockwise around the origin.
Note now that the scalar curl of $\boldsymbol{F}$ is equal to: $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=1-(-1)=2$.
This is consistent with a positive circulation for this flow.

### 8.4 Basic Identities of Vector Analysis

The first three theorems do not involve curl and are therefore valid in $\mathbb{R}^{n}$ for any natural number $n \in \mathbb{N}$.
The first two of these theorems are easy to prove.

## Theorem 8A - properties of $\nabla$ (grad)

For any continuously differentiablefunctions $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, and for any fixed real number $c \in \mathbb{R}$, we have
(a) $\nabla(f+g)=\nabla f+\nabla g$;
(b) $\nabla(c f)=c \nabla f$;
(c) $\nabla(f g)=f \nabla g+g \nabla f$; and
(d) $\nabla(f / g)=(g \nabla f-f \nabla g) / g^{2}$, at any point $x \in A$ for which $g(x) \neq 0$.

## Theorem 8B - properties of $\boldsymbol{\nabla} \cdot(\mathrm{div})$

For any continuously differentiablefunctions $\boldsymbol{F}: A \rightarrow \mathbb{R}^{n}$ and $\boldsymbol{G}: A \rightarrow \mathbb{R}^{n}$, where $A \subseteq \mathbb{R}^{n}$, and for any fixed real number $c \in \mathbb{R}$, we have
(a) $\nabla \cdot(\boldsymbol{F}+\boldsymbol{G})=\nabla \cdot \boldsymbol{F}+\nabla \cdot \boldsymbol{G}$;
(b) $\nabla \cdot(c \boldsymbol{F})=c \nabla \cdot \boldsymbol{F}$.

## Theorem 8C - div of product with scalar field

For any continuously differentiablefunctions $\boldsymbol{F}: A \rightarrow \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, we have $\nabla \cdot(f \boldsymbol{F})=(\nabla f) \cdot \boldsymbol{F}+f \nabla \cdot \boldsymbol{F}$.

## Proof

Let $\boldsymbol{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$, then

$$
\begin{aligned}
\nabla \cdot(f \boldsymbol{F}) & =\frac{\partial\left(f F_{1}\right)}{\partial x_{1}}+\frac{\partial\left(f F_{2}\right)}{\partial x_{2}}+\ldots+\frac{\partial\left(f F_{n}\right)}{\partial x_{n}}=\left(\frac{\partial f}{\partial x_{1}} F_{1}+f \frac{\partial F_{1}}{\partial x_{1}}\right)+\ldots+\left(\frac{\partial f}{\partial x_{n}} F_{n}+f \frac{\partial F_{n}}{\partial x_{n}}\right) \\
& =\left(\frac{\partial f}{\partial x_{1}} F_{1}+\ldots+\frac{\partial f}{\partial x_{n}} F_{n}\right)+\left(f \frac{\partial F_{1}}{\partial x_{1}}+\ldots+f \frac{\partial F_{n}}{\partial x_{n}}\right) \\
& =\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \cdot\left(F_{1}, \ldots, F_{n}\right)+f\left(\frac{\partial F_{1}}{\partial x_{1}}+\ldots+\frac{\partial F_{n}}{\partial x_{n}}\right) \\
& =(\nabla f) \cdot \boldsymbol{F}+f \nabla \cdot \boldsymbol{F} .
\end{aligned}
$$

We also have the following four theorems which involve curl and are therefore restricted to $\mathbb{R}^{3}$.

## Theorem 8D - properties of $\nabla \times$ (curl)

For any continuously differentiablefunctions $\boldsymbol{F}: A \rightarrow \mathbb{R}^{n}$ and $\boldsymbol{G}: A \rightarrow \mathbb{R}^{n}$, where $A \subseteq \mathbb{R}^{n}$, and for any fixed real number $c \in \mathbb{R}$, we have
(a) $\nabla \times(\boldsymbol{F}+\boldsymbol{G})=\nabla \times \boldsymbol{F}+\nabla \times \boldsymbol{G}$;
(b) $\nabla \times(c \boldsymbol{F})=c \nabla \times \boldsymbol{F}$; and
(c) $\nabla \cdot(\boldsymbol{F} \times \boldsymbol{G})=(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{G}-\boldsymbol{F} \cdot(\nabla \times \boldsymbol{G})$.

## Proof

Parts (a) and (b) are easy to check.
To prove (c), let $\boldsymbol{F}=\left(F_{1}, F_{2}, F_{3}\right)$ and $\boldsymbol{G}=\left(G_{1}, G_{2}, G_{3}\right)$. Then

$$
\begin{aligned}
\nabla \cdot(\boldsymbol{F} & \times \boldsymbol{G})=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{2} G_{3}-F_{3} G_{2}, F_{3} G_{1}-F_{1} G_{3}, F_{1} G_{2}-F_{2} G_{1}\right) \\
& =\frac{\partial\left(F_{2} G_{3}-F_{3} G_{2}\right)}{\partial x}+\frac{\partial\left(F_{3} G_{1}-F_{1} G_{3}\right)}{\partial y}+\frac{\partial\left(F_{1} G_{2}-F_{2} G_{1}\right)}{\partial z} \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) G_{1}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) G_{2}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) G_{3}-F_{1}\left(\frac{\partial G_{3}}{\partial y}-\frac{\partial G_{2}}{\partial z}\right)-F_{2}\left(\frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}\right)-F_{3}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \\
& =(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{G}-\boldsymbol{F} \cdot(\nabla \times \boldsymbol{G}),
\end{aligned}
$$

using the sum and product rules for differentiation, and rearranging terms.

## Theorem 8E - curl of product with scalar field

For any continuously differentiablefunctions $\boldsymbol{F}: A \rightarrow \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, we have $\nabla \times(f \boldsymbol{F})=(\nabla f) \times \boldsymbol{F}+f \nabla \times \boldsymbol{F}$.

## Proof

Let $\boldsymbol{F}=\left(F_{1}, F_{2}, F_{3}\right)$. Then

$$
\begin{aligned}
\nabla \times(f \boldsymbol{F}) & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(f F_{1}, f F_{2}, f F_{3}\right) \\
& =\left(\frac{\partial\left(f F_{3}\right)}{\partial y}-\frac{\partial\left(f F_{2}\right)}{\partial z}, \frac{\partial\left(f F_{1}\right)}{\partial z}-\frac{\partial\left(f F_{3}\right)}{\partial x}, \frac{\partial\left(f F_{2}\right)}{\partial x}-\frac{\partial\left(f F_{1}\right)}{\partial y}\right) \\
& =\left(\frac{\partial f}{\partial y} F_{3}-\frac{\partial f}{\partial z} F_{2}, \frac{\partial f}{\partial z} F_{1}-\frac{\partial f}{\partial x} F_{3}, \frac{\partial f}{\partial x} F_{2}-\frac{\partial f}{\partial y} F_{1}\right)+f\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \times\left(F_{1}, F_{2}, F_{3}\right)+f\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(F_{1}, F_{2}, F_{3}\right) \\
& =(\nabla f) \times \boldsymbol{F}+f \nabla \times \boldsymbol{F}
\end{aligned}
$$

using the sum and product rules for differentiation, and rearranging terms.

## Theorem 8F- div of a curl vanishes, $\nabla \cdot(\nabla \times F) \equiv 0$

For any twice continuously differentiablefunction $\boldsymbol{F}: A \rightarrow \mathbb{R}^{3}$, where $A \subseteq \mathbb{R}^{n}$, we have $\nabla \cdot(\nabla \times \boldsymbol{F})=0$.

## Proof

Let $\boldsymbol{F}=\left(F_{1}, F_{2}, F_{3}\right)$. Then

$$
\begin{aligned}
\nabla \cdot(\nabla & \times \boldsymbol{F})=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =\frac{\partial^{2} F_{3}}{\partial x \partial y}-\frac{\partial^{2} F_{2}}{\partial x \partial z}+\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F_{3}}{\partial y \partial x}+\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{1}}{\partial z \partial y}=\left(\frac{\partial^{2} F_{3}}{\partial x \partial y}-\frac{\partial^{2} F_{3}}{\partial y \partial x}\right)+\left(\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{2}}{\partial x \partial z}\right)+\left(\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F_{1}}{\partial z \partial y}\right) \\
& =0+0+0=0,
\end{aligned}
$$

in view of the fact that for a twice continuously differentiable function $g$, the 2 nd partial derivatives satisfy $\frac{\partial^{2} g}{\partial x \partial y}=\frac{\partial^{2} g}{\partial y \partial x}$, etc. .

## Theorem 8G - curl of a JUDG vanishes: $\nabla \times(\nabla f) \equiv 0$

For any twice continuously differentiableffunction $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{3}$, we have $\nabla \times(\nabla f)=\mathbf{0}$.

## Proof

We have that

$$
\begin{aligned}
\nabla \times(\nabla f) & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}, \frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial x \partial z}, \frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \\
= & (0,0,0)=\mathbf{0},
\end{aligned}
$$

in a similar way to the previous result.

## Example 8.4.1

Consider the vector field $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}:(x, y, z) \mapsto(x, y, z)$. It is easily checked that $\nabla \cdot \boldsymbol{F}=3$.
It follows that there is no function $\boldsymbol{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{F}=\nabla \times \boldsymbol{G}$, for otherwise $\nabla \cdot \boldsymbol{F}=0$ by Theorem 8 F .

## visualisation



## Example 8.4.2

Consider the vector field $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}:(x, y, z) \mapsto(y,-x, 0)$. It is easily checked that $\nabla \times \boldsymbol{F}=(0,0,-2)$.
It follows that there is no function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\boldsymbol{F}=\nabla f$, for otherwise $\nabla \times \boldsymbol{F}=0$ by Theorem 8 G .

## visualisation



For any twice continuously differentiable function $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, we have

$$
\operatorname{div}(\nabla f)=\nabla \cdot(\nabla f)=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \cdot\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}+\frac{\partial^{2} f}{\partial x_{2}{ }^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}^{2}} .
$$

## Definition: Laplace operator, $\boldsymbol{\nabla}^{2}$

The Laplace operator $\nabla^{2}$ in $\mathbb{R}^{n}$, also known as the Laplacian, is defined to be the divergence of the gradient, so that for any twice continuously differentiablefunction $f: A \rightarrow \mathbb{R}$, we have:

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}+\frac{\partial^{2} f}{\partial x_{2}{ }^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}{ }^{2}} .
$$

## Example 8.4.3

A function $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, is said to satisfy Laplace's equation if $\nabla^{2} f=0$.
An example of such a function is given in the case $n=3$ by $f(x)=f(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}}=\frac{1}{\|x\|}$.

## visualisation



## Theorem 8H - Laplacian of a product

For any twice continuously differentiablefunctions $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{n}$, we have
(a) $\nabla^{2}(f g)=\left(\nabla^{2} f\right) g+2(\nabla f \cdot \nabla g)+f \nabla^{2} g$;
(b) $\nabla \cdot(f \nabla g-g \nabla f)=f \nabla^{2} g-g \nabla^{2} f$.

## Proof

Note that

$$
\begin{aligned}
\nabla^{2}(f g) & =\frac{\partial^{2}(f g)}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2}(f g)}{\partial x_{n}{ }^{2}} \\
& =\left(\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} g+2 \frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{1}}+f \frac{\partial^{2} g}{\partial x_{1}{ }^{2}}\right)+\ldots+\left(\frac{\partial^{2} f}{\partial x_{n}{ }^{2}} g+2 \frac{\partial f}{\partial x_{n}} \frac{\partial g}{\partial x_{n}}+f \frac{\partial^{2} g}{\partial x_{n}{ }^{2}}\right) \\
& =\left(\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}{ }^{2}}\right) g+f\left(\frac{\partial^{2} g}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2} g}{\partial x_{n}{ }^{2}}\right)+2\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \cdot\left(\frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}\right) \\
& =\left(\nabla^{2} f\right) g+2(\nabla f \cdot \nabla g)+f \nabla^{2} g .
\end{aligned}
$$

This gives (a).

On the other hand, $\nabla \cdot(f \nabla g-g \nabla f)=\nabla \cdot\left(f\left(\frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}\right)-\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) g\right)$

$$
\begin{aligned}
& =\nabla \cdot\left(f \frac{\partial g}{\partial x_{1}}-\frac{\partial f}{\partial x_{1}} g, \ldots, f \frac{\partial g}{\partial x_{n}}-\frac{\partial f}{\partial x_{n}} g\right) \\
& =\left(f \frac{\partial^{2} g}{\partial x_{1}{ }^{2}}+\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{1}}-\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} g-\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{1}}\right)+\ldots+\left(f \frac{\partial^{2} g}{\partial x_{n}{ }^{2}}+\frac{\partial f}{\partial x_{n}} \frac{\partial g}{\partial x_{n}}-\frac{\partial^{2} f}{\partial x_{n}{ }^{2}} g-\frac{\partial f}{\partial x_{n}} \frac{\partial g}{\partial x_{n}}\right) \\
& =\left(f \frac{\partial^{2} g}{\partial x_{1}{ }^{2}}-\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} g\right)+\ldots+\left(f \frac{\partial^{2} g}{\partial x_{n}{ }^{2}}-\frac{\partial^{2} f}{\partial x_{n}{ }^{2}} g\right) \\
& =f\left(\frac{\partial^{2} g}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2} g}{\partial x_{n}{ }^{2}}\right)-\left(\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}{ }^{2}}\right) g \\
& =f \nabla^{2} g-g \nabla^{2} f .
\end{aligned}
$$

## Theorem 8J - cross product of gradients

For any twice continuously differentiablefunctions $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}^{3}$, we have $\nabla \cdot(\nabla f \times \nabla g)=0$.

## Proof

Exercise for the reader; do it in a similar way to the others!

## Definition: Total Derivative, DF

Let in $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field, then the total derivative $\bar{D} \boldsymbol{F}$ is the $3 \times 3$ matrix of partial derivatives:

$$
D \boldsymbol{F}=\left(\begin{array}{lll}
\frac{\partial \boldsymbol{F}_{1}}{\partial x} & \frac{\partial \boldsymbol{F}_{1}}{\partial y} & \frac{\partial \boldsymbol{F}_{1}}{\partial z} \\
\frac{\partial \boldsymbol{F}_{2}}{\partial x} & \frac{\partial \boldsymbol{F}_{2}}{\partial y} & \frac{\partial \boldsymbol{F}_{2}}{\partial z} \\
\frac{\partial \boldsymbol{F}_{3}}{\partial x} & \frac{\partial \boldsymbol{F}_{3}}{\partial y} & \frac{\partial \boldsymbol{F}_{3}}{\partial z}
\end{array}\right) .
$$

$$
D^{+} \boldsymbol{F}=\frac{1}{2}\left(\boldsymbol{D} \boldsymbol{F}+(\boldsymbol{D} \boldsymbol{F})^{\mathrm{T}}\right)=\left(\begin{array}{ccc}
\frac{\partial \boldsymbol{F}_{1}}{\partial x} & \frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{1}}{\partial y}+\frac{\partial \boldsymbol{F}_{2}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{1}}{\partial z}+\frac{\partial \boldsymbol{F}_{3}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{2}}{\partial x}+\frac{\partial \boldsymbol{F}_{1}}{\partial y}\right) & \frac{\partial \boldsymbol{F}_{2}}{\partial y} & \frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{2}}{\partial z}+\frac{\partial \boldsymbol{F}_{3}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{3}}{\partial x}+\frac{\partial \boldsymbol{F}_{1}}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial \boldsymbol{F}_{3}}{\partial y}+\frac{\partial \boldsymbol{F}_{2}}{\partial z}\right) & \frac{\partial \boldsymbol{F}_{3}}{\partial z}
\end{array}\right)
$$

is the symmetric part of $\boldsymbol{D} \boldsymbol{F}$. Notice that $\left(\mathcal{D}^{+} \boldsymbol{F}\right)^{\mathrm{T}}=D^{+} \boldsymbol{F}$.

$$
D^{-} \boldsymbol{F}=\frac{1}{2}\left(\boldsymbol{D} \boldsymbol{F}-(\boldsymbol{D} \boldsymbol{F})^{\mathrm{T}}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & \left(\frac{\partial \boldsymbol{F}_{1}}{\partial y}-\frac{\partial \boldsymbol{F}_{2}}{\partial x}\right) & \left(\frac{\partial \boldsymbol{F}_{1}}{\partial z}-\frac{\partial \boldsymbol{F}_{3}}{\partial x}\right) \\
\left(\frac{\partial \boldsymbol{F}_{2}}{\partial x}-\frac{\partial \boldsymbol{F}_{1}}{\partial y}\right) & 0 & \left(\frac{\partial \boldsymbol{F}_{2}}{\partial z}-\frac{\partial \boldsymbol{F}_{3}}{\partial y}\right) \\
\left(\frac{\partial \boldsymbol{F}_{3}}{\partial x}-\frac{\partial \boldsymbol{F}_{1}}{\partial z}\right) & \left(\frac{\partial \boldsymbol{F}_{3}}{\partial y}-\frac{\partial \boldsymbol{F}_{2}}{\partial z}\right) & 0
\end{array}\right)
$$

is the anti-symmetricpart of $\boldsymbol{D F}$. Notice that $\left(\boldsymbol{D}^{-} \boldsymbol{F}\right)^{\mathrm{T}}=-\boldsymbol{D}^{-} \boldsymbol{F}$.

## Remarks

- $D \boldsymbol{F}=D^{+} \boldsymbol{F}+D^{-} \boldsymbol{F}$, so the information contained within the full derivative $D \boldsymbol{F}$ is precisely that contained within its symmetric and anti-symmetric parts $\boldsymbol{D}^{+} \boldsymbol{F}$ and $\boldsymbol{D}^{-} \boldsymbol{F}$.
- The components of $D^{-} \boldsymbol{F}$ are the same (up to $\pm$ sign) as the components of $\nabla \times \boldsymbol{F}$; namely,

$$
\operatorname{curl} \boldsymbol{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k}
$$

- For a gradient vector field $\boldsymbol{F}=\nabla f$ in $\mathbb{R}^{3}$ we have that

$$
D(\nabla f)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial z \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial z \partial y} \\
\frac{\partial^{2} f}{\partial x \partial z} & \frac{\partial^{2} f}{\partial y \partial z} & \frac{\partial^{2} f}{\partial z^{2}}
\end{array}\right),
$$

which is necessarily a symmetric matrix; thus $D(\nabla f)=D^{+}(\nabla f)$ with $D^{-}(\nabla f)=\mathbf{0}$.
Together with the previous remark this shows that necessarily have that $\nabla \times(\nabla f)=\mathbf{0}$, for any continuous scalar function $f$ on $\mathbb{R}^{3}$.
In particular, for the general (homogeneous) quadratic function $f(x, y, z)=a x^{2}+2 b x y+2 c x z+d y^{2}+2 g y z+h z^{2}$
we have that $\frac{1}{2} \mathcal{D}(\nabla f)=\left(\begin{array}{lll}a & b & c \\ b & d & g \\ c & g & h\end{array}\right)$, which is the matrix of the quadratic form for $f(x, y, z)$.

- For any vector field $\boldsymbol{F}$ we have that:

$$
\nabla \cdot \boldsymbol{F}=\operatorname{trace} \boldsymbol{D} \boldsymbol{F}=\frac{\partial \boldsymbol{F}_{1}}{\partial x}+\frac{\partial \boldsymbol{F}_{2}}{\partial y}+\frac{\partial \boldsymbol{F}_{3}}{\partial z},
$$

where the trace of a square matrix is the sum of the elements on the major diagonal.
In particular, for a gradient field we have the Laplacian: $\quad \nabla \cdot(\nabla f)=\operatorname{trace} D(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\nabla^{2} f$.

