MATH236 — Weeks 3&4
Vector fields
Chen notes, chapter 8

I 8.1 Introduction

In this chapter, we consider functions of the form
(hH F:A-R":x- F(x),

where the domain A C R” is a set in the n-dimensional euclidean space, and where the codomain is also the n-dimensional euclidean
space R".

For each x € A, we can write x = (x;, Xxo, ..., X,), Where x;, x», ..., x, € R. We can also write
2) Fx=F &), Fh®,..., F,Xx),
where F (x), F> (x), ..., F, (x) eR.

Definition: vector field

A functior F ofthe type (1) above,where A CR ", is called a vector fieldir R”".

The functionsF; : A > R, definedfor i = 1,2, ..., n by (2), are called the component scalar fields of F .

Remarks

& In the special cases n =2 and n =3, we usually write
F(x,y)= (Fi(x,y), F2(x,y)) and F(x,y,2) = (Fi(x,y,2), F2(x, y, 2), F3(x, y, z)) respectively.
& The term vector field is also used more generally for functions of the type ¢ : A - R”", with A C R” for which m # n.

However, here we are concerned primarily with the case of m = n.

Example 8.1.1 — gradient vector field, in R"

Suppose that a real-valued function f:R” — R is continuously differentiable. Define the function F:R” — R” by writing
3 3 3 u
F@)=(VH® = (25 0, 25 ), ... & () forevery xeR".
Recall that this is the gradient of f studied in Chapter 2 (MATH235 ).

This vector field F is sometimes called a gradient vector field.

plot & contours — level curves

f(xy) = cos(x) sin(y) cos(x) sin(y)



http://www.maths.mq.edu.au/~wchen/lnmvafolder/mva08.pdf
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Example 8.1.2 — non-gradient field, in R?

Consider the vector field F :R? - R?: (x, y) = (=, x).

There is no continuously differentiable function f:[R? — R such that F =V f. To see this, note that if there were, then
- — (9L 9r
Fx, ) = (VO »=(. %),

2 2
so that % =—yand % = x. It would then follow that a(;_afx =-1 and £c_afy = 1, which is not possible.
This vector field F is an example of a non-gradient vector field.

plot ]
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Example 8.1.3 — Newton's law of gravitation

Newton's law of gravitation states that the force acting on a point mass m at position x € R?, due to a point mass M at the origin 0, is
given by:

= ¢ Mm
Fo = =e i =

where € > 0 is a proportionality constant. This is an attractive force field.

Note that F(x) = —V £, where f:R> 5 R : x> —¢ 212

[Ixl >
so F is a gradient vector field, the gravitational potential.
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_1
Note that ||x || = (x® +y* +2%)" 7, so that

3
Vllx M =3 @@+ +2) %2y, = lIxIPx = [lx | &, — inverse square law

where X denotes the unit vector in the direction of x.

visualisation

2D gradient plot
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demo — Motion in a Central Field

o Mathematica demonstration



http://demonstrations.wolfram.com/MotionInACentralField/
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Example 8.1.4 — Coulomb's Law

Coulomb's law in electrostatics states that the force acting on a point charge ¢ at position x € R?due to a point charge Q at the origin 0 is |

€0q
X,
x|

given by: F(x) =

where € > 0 is a proportionality constant. This is a repulsive force field.

Note that F(x) = -V f, where f:R3 >R : x> ¢ ﬁ ,so F is a gradient vector field, the electrostatic potential.

visualisation
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Definition: flow lines

Suppose that F :R" —» R” is a vectorfield.By a flow line of F , we mean a path ¢(¢) in R” such that ¢'(t) = F(¢(?)); in other words, F
yields the velocity vector of the path ¢(z).

Flow lines are useful in understanding some of the properties of vector fields, as we shall see in the following examples. ]

Example 8.1.5 — circular flow

For the vector field F:R" - R": (x, y) = (—y, x), the path ¢(r) = (cos t, sin?) is a flow line, for clearly ¢'(r) = ¢(—sint, cost) and
F(¢(t)) = F(cost, sint) = (—sint, cos?t).

Similarly, it can be shown that for any real number ¢ € R, the path ¢(¢) = (ccos ¢, csin?) is a flow line of F'.

Here the flow is circular, anticlockwise about the origin.
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plot

Example 8.1.6 — radial flow

Let us return to Example 8.1.4, and consider again Coulomb’s law of electrostatics, where F(x) = ﬁf”z X

Let u € R3 be a fixed unit vector.

The path ¢(r) = 3€Qq t)% u is a flow line of F, for clearly ¢'(r) = Lq& u and F(¢((t)) = EQ—q3 (BeQq t)% u.
(BeQqn? 3eQqtlull

This shows that the flow lines are radial, away from the origin. Necessarily they are orthogonal to the level curves of the potential
function.

visualisation
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Consider the vector field F:R"” > R": (x, y) = (x, —y).
For a path ¢(r) = (¢ (r), ¢ (1)) to be a flow line of F, we must have ¢’ (r) = F(¢(?)), so that

(@ @), ¢ ) =F (1 (), 2 (1) = (¢1 (1), —¢2 (1)),
whence ¢’ (t) = ¢; () and @,’ (f) = =@, (¢). In other words, we need % ¢, (1) = ¢y (¢) and % &y (1) = = (1).
These two differential equations have solutions ¢, (r) = C; e and ¢, (t) = C, e” ', where C;, C; € R are constants.
It follows that flow lines of F are of the form ¢(z) = (C, e’, C, e "), where C;, C; € R are constants.

Note that the curve of the path ¢(¢) is given by the hyperbola x y = C; C,. The picture below shows F(x, y), at some points along the
same flow line xy = 1.

visualisation }

This is a gradient field }

In fact this vector field F is a gradient vector field for the scalar function f(x, y) = % (2 —y?). ]

f@, ) =1 @)
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Remarks
& | Inthe special cases n =2 and n = 3, we have respectively V = (;;x (.}a—y) and V = (aa—x, %, z?iz) .
. . - . af  of of
& | Note that for any real-valued function f(x;, x2, ..., X,), the gradient vector fieldof £ is equalto Vf = (ml—, Txy 0 Dx ) .
n

I 8.2 Divergence of a Vector Field

Suppose that F is the vector field describing the motion of a gas or fluid. Then we may wish to discuss the rate of expansion of the volume |
of the fluid, under this flow.

This is a scalar valued function of a vector field.

Definition: divergence

Suppose that F = (F , F , ..., F,,) is a vectorfieldin R”. Then the divergence of F is the scalar field

divF =V -F = (52, 52 8 ).(F\ Fyy .y Fp) = L 80 00

ax1’ 0xp’ "7 dxy a X1 dXxp U dx,

Example 8.2.1 — zero divergence

For the vector field F:R" - R":(x,y,z)~ (yz, xz, xy),wehave divF =V .F = % (yz)+ aiy (x2)+ aiz (xy)=0.

visualisation }

Example 8.2.2 — positive divergence, expansion
For the vector field F:R?> - R?: (x,y)~ (x,0), we have divF = 1.
Consider next the flow lines of this vector field.
Any flow line must be a path ¢(7) = (¢ (?), $2(?)) satisfying ¢'(t) = F(¢(2)), so that (¢, (?) , $2(1)) = F(¢1(2), $2(1)) = (¢1(1) , 0).
It follows that ¢,(t) = C; e’ and ¢,(t) = C,, where C;, C; € R are constants. The flow is therefore in the x-direction.

If we think of F as a velocity field, then the speed becomes greater as we move further away from the line x = 0.

This corresponds to an expansion, which is consistent with div F > 0.
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plot

Example 8.2.3 — negative divergence, contraction

For the vector field F:R> - R?:(x, y)~ (=x, —y), we have div F = —2. Consider next the flow lines of this vector field.
Any flow line must be a path ¢(¢) = (¢, (¢), ¢»(7)) satisfying ¢'(r) = F($(2)), so that (¢1(7), $2(1) = F(h1(5), $2(1)) = (=1 (1) , —2(1)).

It follows that ¢1(f) = C; e~" and ¢,(f) = C; e~ ', where C;, C; € R are constants. The flow is therefore radial and towards the origin.

This corresponds to a contraction, which is consistent with div F < 0.

plot

Example 8.2.4 — circular flow, no divergence

For the vector field F:R? - R?: (x, y) = (-, x), we have shown in Example 8.1.5 that the paths of type ¢(1) = (c cos ¢, ¢ sint), where
c € R, are flow lines of this vector field. (It can be shown that these are all the flowlines of F'.)

It follows that the flow is circular and anticlockwise around the origin, with no expansion or contraction. Note now that div F = 0.

plot

F(z, y)=(z,0)
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I 8.3 Curl of a Vector Field

While the divergence of a vector field is related to expansion or contraction, so the curl of a vector field is related to rotation — there are
beaches in Sydney named after this operator!

Indeed, a vector field with zero curl will be called irrotational.

photos, from http://www.fotosearch.com/

www . fotosearch.com

http://be fotosearch.com/bigeomps/UPC/UPC001/crio1104.jpg
/PSK 005/low-angle-view_~1574R-24289.jpg

hitp:/ibc UPC/UPCH ipg
http://bc DX/BD! 125857 jpg

Definition: curl

Suppose that F = (F, , F, , F3) is a vector fieldin R3.
Then the curl of F is the vector field

curl F =V xF = (L&, &, Z)x(Fi ,F2, Fy)

(3F3 _ (')Fz (9F1 (9F3 3F2 5F1 )
“\dy dz > 0z dx ’ O0x ay /°



http://www.fotosearch.com/
http://bc.fotosearch.com/bigcomps/UPC/UPC001/cri01104.jpg
http://www.fotosearch.com/comp/PSK/PSK005/low-angle-view_~1574R-24289.jpg
http://bc.fotosearch.com/bigcomps/UPC/UPC005/shf04009.jpg
http://bc.fotosearch.com/bigcomps/BDX/BDX365/bxp125857.jpg
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Remarks
i J k
: _ _ O 0 0 |_(0F _OF )\, (OF 9K \. (O0F, _ OF,
& | We can write curl F =V XF = det 3x 9y 0z _(6)/ T )t+(az - ox )J+(¢9x 3y )k
Fy F, F;

where i =(1,0,0), j=(0, 1,0) and k= (0,0, 1).

¢ | Unlike gradient and divergence which are valid in any euclidean space R” for any natural number n € N, curl is only defined in R?.

¢ | Suppose that F is a vector field in R?. While we cannot define curl F, we can nevertheless regard F as a vector field in R3, for which the third compo-
nent is zero and the two other components are independent of the z coordinate. Then

_(0 0 (0.0 9> _ OFL
cl F = (. 25, 0)x(Fi, F2,0)= (0,0, 5= — 5L}
The function %L; = %L; is sometimes called the scalar curl of F .

Example 8.3.1 — Vx(Vf) =0

For the vector field F:R®* > R3:(x,y,z) - (yz,xz,xy), we have

d(xy) alxz) 9z  dlxz) d(xz) 902
ay dz ¥ 0z dx ° 0x ay

curlF:( )=0.

Here, note that if we consider the function f:R3 >R : f(x,y,z)=xyz, then F=Vf.

We shall show later (in Theorem 8G) that V x (V f) = 0, for any twice continuously differentiable function f:R> — R.

visualisation: symmetrical — one corner only & homogeneity

in one corner in a larger region

F(x,y,2)=(yz, xz, xY)
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level surface: f(x,y,2)=xyz=.1

f(zy,2) = zyz = .1

movie of level surfaces

Example 8.3.2

For the vector field F:R?> 5 R>:(x, y, 20 (X2, (x+y)*, (x + y +2)*), we have
cul F ( oyt aGhy) a0 | achyta)’ aGhy)  a(d) )

ay 0z 0z ox > ox ay

=Q2x+y+2 -0,0-2(x+y+2),2x+y)—-0)
=2(x+y+z,-x—-y—z, x+y).

Hence V -(curl F) = 5(2("8?“)) 422 E;‘y*y“)) + 6(ngz+y)) =2-240=0.

We shall show later in Theorem 8F that V - (V x F) = 0, for any twice continuously differentiable function F:R> — R?,
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visualisation

F(zy.2)=(2, (x+y)*, (x+y+2)*)

~

~ S Y RN
~

=

Consider again the vector field F:R? > R?: (x, y) & (-y, x).

We have shown in Examples 8.1.5and 8.2.4 that the flow is circular and anti-clockwise around the origin.
Note now that the scalar curl of F is equal to: 06_1‘;2 - aa—l;' =1-(-1H=2.
This is consistent with a positive circulation for this flow.
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I 8.4 Basic ldentities of Vector Analysis

The first three theorems do not involve curl and are therefore valid in R” for any natural number n € N.

The first two of these theorems are easy to prove.

Theorem 8A — properties of V (grad)

For any continuously differentiablefunctions f : A - R and g:A — R, where A C R”, and for any fixedreal number ¢ € R, we have
(@ V(f+g)=Vf+Vg;

(b) Vicf)=cVf;

(©) V(fg)=fVg+gVf;and

(d) V(f/g) =(@eVf-fVeg)/g*, atany pointx € A for which g(x) # 0.

Theorem 8B — properties of V- (div)

For any continuously differentiablefunctions ¥ : A - R"” and G:A —» R",where A C R", and for any fixed real number c € R,
we have

(@ V-F+G)=V-F+V -G;

®) V- (cF)=cV-F.

Theorem 8C — div of product with scalar field

For any continuously differentiablefunctions F : A - R” and f: A - R, where A CR"”,wehave V-(fF)=(Vf)-F+fV-F.

Proof

Let F =(F,, F,, ..., F,), then
v.gp =28 0 | AR (B p OB (3L Fep )

X1 dXo a Xy, JX1 aX| ax, " X,
_(of af oF o F,
_(_ax, Fi+ ..+ 5 F,)+ (f_ax,] fo+f 6xn)
_af af 9 F o F,
‘(_rm e T ) (Fro s F) + f( TR T )
=(Vf)-F+fV-F.

We also have the following four theorems which involve curl and are therefore restricted to R3.

Theorem 8D — properties of V x (curl)

For any continuously differentiablefunctions ¥ : A - R” and G:A —» R",where A C R", and for any fixed real number ¢ € R,
we have

(@ VX(F +G)=V XF +V XG;

(b) VX(cF)=cV xXF;and

(©) V-(FxG)=(V XF)-G—-F-(V xG).

Lo
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Proof

Parts (a) and (b) are easy to check.
To prove (c), let F =(Fy, F,, F3) and G = (G, G,, G3). Then

V-FxG)= (L, L, L).(F, G ~F: Gy, F3G, ~F Gs, F\ G, ~F, Gy)

dx’ 9y’ 01
_ 0(FG3-F3Gy) + 0(F3Gi-F, G3) 3(F1 G,—F, Gy)
- dx ay 0z
_(0F; 6F2 BFI _ oF; oF, BFI 0G; 0G, G, G, 0G, 0G,
_[ ay ]Gl [ dz dx )G2+( dx )G3 _Fl( dy ~ oz ]_Fz( dz ~ Ox ]_F3( ax ~ dy

= (V ><F)~G—F~(V xG),

using the sum and product rules for differentiation, and rearranging terms.

Theorem 8E — curl of product with scalar field

For any continuously differentiablefunctions F : A - R” and f: A -» R, where A C R",wehave VX(f F)=(Vf)XF +fV XF.

Proof
Let F=(F,,F,, F3). Then

VX(F) = (35 550 3=)XUFiL fF2, [ F)
_(a<fF3> 0 F) dUF) U F) ofF) a(an)
- ay dz 0z ax °  dx ay

of af af 6f af af oF;, oF, oF, oF;, oF, oF,
=(y Fi-gr P gz Fi- gy B gy Fam g5 P 4 F (55 = 52 55— 9 5 — 5y )

=(§{; o gé)x(Fl,Fz,me( L i)x(Fl,Fz,m
= (VAHAXF+ fVXF

using the sum and product rules for differentiation, and rearranging terms.

Theorem 8F — div of a curl vanishes, V- (VxF)=0

For any twice continuously differentiablefunction F : A — R3, where A ¢ R”,wehave V -(V xXF) =

Proof

Let F =(F,, F,, F3). Then
( 6 Jél ).(6F3 3F2 6F1 (9F3 an 6F1)

V.(Vx F)=

dx’ 8y’ 9z ay 0z > 0z ox ° Ox ay
_F & F + fial A o0 i) *F,  PF _( P Fs 0*F; )+( ’r, kK )+(62F1 _0F, )
T 9xdy 0x0z 0yoz dydx 0z0x dzdy ~—\dxdy ~ dyodx 0z0x 0xdz 0yoz 020y
=0+0+0=0,
. . . . . . . . . . 2 ?
in view of the fact that for a twice continuously differentiable function g, the 2nd partial derivatives satisfy £ £ etc. .

axdy dydx’

Theorem 8G — curl of a grad vanishes, Vx( Vf) =0

For any twice continuously differentiable function f:A — R, where A C R3,wehave V x(Vf) =0.

Proof

We have that

(D B D\ (OL of Ofy_(&f  &f &f  &f &  &f
VXV _(6x’ dy> Bz)x(ﬁx’ dy> c')z)_(ﬁyt')z_azﬁy’ dzdx ~ 9xdz’ E)xby_ﬁyax)

=0,0,00=0

in a similar way to the previous result.
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Consider the vector field F:R> » R?: (x, y, 2) = (x, y, 2). Itis easily checked that V -F = 3.

It follows that there is no function G :R3 — R3 such that F = V x G, for otherwise V - F = 0 by Theorem 8F.

visualisation ]

F(z,y,2)=(,y,2)

Consider the vector field F:R> - R3: (x, y, 2) & (v, —x, 0). Itis easily checked that VxF = (0,0, —2).

It follows that there is no function f:R3 — R such that F =V f, for otherwise V x F = 0 by Theorem 8G.

visualisation }

F(%?J,Z'):(y, —CE,O) |

For any twice continuously differentiable function f: A - R, where A CR”", we have

div(VH) =V (V) =(52, 2 L).(i ar ﬁ)zifz_,_az_f_,_m_,_az_f

ax;’ dxp "t dxy Ax;’ Oxp’ "t dxy dx 0x22 9 x,2 "
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ously differentiablefunction f: A - R, we have:

2 2 2
Vf=v.fH=2L v Ly 2L

X2 w dxy i Ox,2 °

The Laplace operator V* inR", also known as the Laplacian, is defined to be the divergence of the gradient, so that for any twice continu-

A function £ : A - R, where A CR”, is said to satisfy Laplace’s equation if V> f =0.

An example of such a function is given in the case n =3 by f(x) = f(x, y, 2) = —_—t =L
(2+y2+22)"

visualisation

[lxll

For any twice continuously differentiablefunctions f : A - R and g: A —» R, where A C R", we have
@ V2(fe)=(Vg+2(Vf-Vg)+fVig;
(b) V- (fVg-gV)=fVig-gVf.

Proof
2 _ 0o * (e
Note that Va(feg = Il ot s
_ (9 of dg d%g 9% f of dg
- (6x12 §+2 dx; 0x +f Bx12)+"' +(6x,,2 §+2 x, 0x, +
_(9°f % f 3%g 3%g af af
_(ax12 o+ aan)g+f(ax12 ot g )+2(6x1 s Fx

=(Vg+2(Vf-Vg+[fVig.
This gives (a).

f
)

9%g

2}

o

X2 )

98

0

X0

.

ax,
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On the other hand, V-(fVg—-gV /) =V-(f(2&, .., 2£) (2 ALy o)

X1
_ ag _of af
—V'(fm—mg’---’fT,,— Tam 8

z(.ﬂzg of og

f 6x12 (9X1 (9)(1 axlz (9)(1 (9x1
62g 62f ﬁzg ﬁzf
_(f ax2 ~ 9x? g)+ -t (f ax,2 ~ 0x,” g)
_ 9%g 9%g 8% f 9% f
- (E)x|2 + 6x,12)_(0x12 Tt 0 x,2 8
=fVig-gVf.

Theorem 8J — cross product of gradients

For any twice continuously differentiablefunctions f : A — R and g: A - R, where A C R3,wehave V- (VfxVg)=0.

Proof

Exercise for the reader; do it in a similar way to the others!

I Definition: Total Derivative, D F

Letin F :R? - R? be a vectorfield,then the fotal derivative DF is the 3 x 3 matrix of partial derivatives:
p

o0F, OF, O0F,
ox ay 0z
| aF, 8F, 9F
DF = dx ay 0z
0F; O0F; O0F;
dx ay 0z
6F1 1 z’)F] BF2 1 aF] 6F3
0x 7(6y+(}x)7(8z+()x)
S Ty 1 (0F, OF, oF, 1 (0F, O0F;
D' F =1 (DF+DF)") = 2(ax+ay) 75 2(62+ay)
1 6F3 BFI 1 6F3 (3F2 (9F3
7(6x+z)7(6y+6z) 9z

="y
D F=1(DF-0F") = 1| (5 &) 0 Gy
i) o

is the anti-symmetricpart of DF . Notice that (D~ F)' = -D~ F.

Remarks

& | DF =D"F+ D F,so the information contained within the full derivative D F is precisely that contained within its symmetric and anti-symmetric
parts D* F and D™ F.

& | The components of D~ F are the same (up to +sign) as the components of V X F; namely,

B i (- 4 (4 - S

dy ~ 0z

curlF:( o ox

>f  Pf Pf
J x2 dydx dzdx
2
& | For a gradient vector field F = V f in R3 we have that D(Vf)= zfxéy 2 ﬁzéy s
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which is necessarily a symmetric matrix; thus D(V f) = D* (V f) with D~ (V f) = 0.

Together with the previous remark this shows that necessarily have that V x (V f) = 0, for any continuous scalar function f on R3.

In particular, for the general (homogeneous) quadratic function f(x, y,z)=ax>+2bxy+2cxz+dy* +2gyz+hz?

a b c
we have that % D(Vf)=|b d g|, which is the matrix of the quadratic form for f(x, y, z).
c g h

For any vector field F we have that:

_ _ JF, OF, = 0F;
V .F =trace DF = x + _ﬁy + W
where the frace of a square matrix is the sum of the elements on the major diagonal.
2 2 2
In particular, for a gradient field we have the Laplacian: V- (V f) = trace D(V f) = gx]; aF zy]; + gzj; =

V2 f.
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