MATH236 — Weeks 12-13
Physical Applications & Differential Forms

I Conservation Laws

Conservation of mass

Let V(¢, x, v, 2) be a continuously differentiable vector field on R3 for all times ¢, and let p(z, x, y, z) be a real-valued function. Then the law of

conservation of mass for V and p is the statement that % g pdvV = _fan J-dSs = _fan J-ndS holds for all regions  in R?, where J =p V.

Theorem

For V(t,x,y,z) and p(t, x,y, z) defined on R? for all times ¢, with J = p V, the law of conservation of mass is equivalent to the condition:
V-J+22 =0 equivalently pV-V+V-(Vp)+ 2% =0.
Sketch of proof

First observe that % fn pdxdydz = gﬂ %—f dxdydz, and by the divergence theorem fon J-ds = fﬂ V.JdV.Thus gonservation of mass is
equivalent to the condition fﬂ (V -J+ 35;—) dxdydz=0. Butthis is to hold in all regions (), so it must be that V - J + ?’3‘ = 0 holds everywhere.

I Heat equation

The continuity equation applies also to heat transfer with some medium.

Let T(t, x, y, 2) be a (twice) continuously differentiable function which gives the temperature at all points in the medium, at each time ¢. Then
heat flows with the vector field F = —VT (from hot to cold, hence the ' — ' sign). In this context the source function p(¢, x, y, z) is the energy den-
sity (that is, energy per unit volume) which is given by p = cp, T, where p, is the mass density (assumed constant within a particular medium) and
¢ is the specific heat of the medium. The energy flux vector field is J =k F = -k VT, where k is a constant called the conductivity of the medium.

Thus p is proportional to the temperature while J follows the temerature gradient, leading to:

Ve (-kVD+epy GE =0 = LL_uvir=0,

where u =k/cp, isconstant, called the diffusivity of the medium. This (partial) differential equation (PDE) is known as the Heat equation.

It is very important in various physical applications; it governs conduction of heat, in the sense that if 7(0, x, y, z) is the temperature distribution at
time t =0 then 7(¢, x, y, z) is fully determined for all later times 7 > 0 by a solution of this PDE. Notice that if the temperature does not change
with time, then V2T = 0 , so that T satisfies Laplace's equation.

I Maxwell's equations

For the (time-dependent) electric field E(t, x, y, z) and magnetic field H(t, x, y, z), the source distribution p(t, x, y, z) and current density
J(t,x,y, 7)), defined on R? for times ¢, the Maxwell’s equations are the following set of (partial) differential equations:

V-E=p (Gauss’ Law)
V-H=0 (no magnetic sources)
VXE+ 86_111 =0 (Faraday’s Law)
and VxH- %—l;: =J (Ampere’s Law).
Gauss’ Law allows measurement of charge
(there is no simple magnetic charge; i.e., no magnetic monopole)
Ampere’s Law = electromagnets (Wikipedia)

Faraday’s Law = electromagmetic induction; (Wikipedia) e.g. generators.
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Ampeére’s Law (time-independent)

If the physical situation is not changing with time, then Ampeére’s Law means that you cannot have an electrical current without also having a mag-
netic field. (The term % then only has effect as the current is switched on or off.)

Suppose the current is passing through a surface S bounded by a closed curve C, that wraps once around the wire bearing the current.
Then: [ J-dS= [ (VxH)-dS= [ .H-ds.

(see Mathematica demos: CreationOf AMagneticFieldByAnElectricCurrent,SquareHelmholtzCoils,GalvanometerAsADCMultimeter)

Faraday’s Law

Faraday’s Law is often expressed as an integral equation.
Consider any surface S, with boundary 95 = C, for which Stokes’ Theorem applies. Then we have that

foBeds = [T xByds =~ [ L as =& |,

Now f E- ds physically represents the change in voltage around the curve C, in a loop of wire, say. Also, fs H -dS is the magnetic flux passing
through a surface S. Hence Faraday’s law says that: the voltage around the loop equals the negative of the rate of change of the magnetix flux
through the loop. An extremely practical application is the generation of electricity:

H-ds.

spin a coil of wire within a magnetic field —an electric current will flow in the wire.

(see Mathematica demos: InducedEMFEThroughAW ire,MagneticFluxThroughALoopOfW ire)

waves

Take the time derivative of Faraday’s Law :

if:—%(VxE) ~VxZE =V (J-VxH)=(VxJ)-VX(VxH) =V H-V(V-H)+(V xJ)=V2H+(VxJ).

2
Hence we have that ‘96 ZIZJ —V2H =V xJ, so that the magnetic field satisfies an inhomogeneous wave equation; that is, with source term V x J..

Similarly take the time derivative of Ampere’s Law :

PE _ 0 8 _yxdH _4l __ 2 :
o = 57 (VxXH)— 55 =V x m ~9L = Vx(VxE)- 2L =VE-V(V.-E)- &L =vE- (4L + V).
aE

Hence we have that
aJ
ar +V pP.

=+ Vp, so that the electric field also satisfies an inhomogeneous wave equation, with source term

gauge field and guage potential

Starting from V - H = 0 there must be a gauge field A, such that H = V X A; note that this determines A only up to the gauge freedom A — A + f,
for any scalar function f. Now Faraday’s Law becomes 0 =V X E + % (VxA)=Vx (E + %) so that E + <— 5‘4 = =V ¢, for some guage poten-
tial function ¢ (defined up to addition of a constant) Thus the electric and magnetic fields are fully determined by the guage pair (A , ¢), via the

expressions: H=V xA and E=-V¢ — . The gauge freedom A — A + V f means that ¢ is determined up to ¢ — ¢ —
Using these, Gauss’ Law gives p =V -(—qu - —) =-Vip- = (V -A), while Ampere s Law gives that
0
J= VxH——_VX(VxA) ( V- ) V(V-A) -V2A+ 2 M +(9t (Vo) = —-V2A+V(V-A+6—f).
Now if it were true that necessarily V - A + 6? = 0 everywhere, then these expressions would reduce to: (; roal V2A=J and V2¢— g—tf =p.

That is, both A and ¢ satisfy inhomogeneous wave equations, with the specified current and charge distributions.

To show that this is indeed always achievable, consider next the gauge freedom: A — A + V f. That is, suppose that the pair (Ao , ¢9) determines
the fields E and H. Thenfor A=Ay +Vf and ¢ —» ¢y — %- we first verify that:

==V ~ L VA=V (- L) - L V- A-V)=-V2- L (V-A)+ (V2L - L (v2ip)=-V2p- L (V-4), and
J=2M _v24,49(V-40+ 2 =‘2)2—;‘—V2A (L vy- Vz(Vf))+V(V ho+ h)= T4 _va+v(-5 f FVILV A+ ),

This latter equation means that, if we can solve the (inhomogeneous) wave equation: —;’i —-V2If=V.-Ay+ > ad’“ , then we can choose the guage

field and potential (A , ¢) such that: V-A + Z(ﬁ =0, ﬁ t2 -V2A =] and V? g tf = p. Indeeditis p0551b1e to solve for f under very gen-
eral conditions on the form of Ay and ¢,. Thus the study of solutions for Maxwell’s equations reduces to studying wave equations.
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Note that any funtion of the form f(x, y, z, f) = g(x — 1) is a solution of the homogeneous wave equation V2 f — g—/; = 0. This solution just propa-

gates the graph of g along the x-direction, like a wave. Thus, particularly in regions without sources or currents, one might conjecture that solutions
of Maxwell’s equations are wavelike in nature. Historically it was Maxwell’s great achievement to postulate the existence of electromagnetic waves.
This soon led to the discovery of radio waves. (Much later came the realisation that light also is an example of electromagnetic radiation.)

The study of waves in general contexts is the content of the unit MATH331, for next year’s study.

I Differential Forms

integration of differential forms on R®

n=Fidx+F,dy w=Fidyrdz+
f +F3dz F,dzadx+F3dxnady k=pdxadyndz
0-forms —<2 , 1—forms —2% 2 — forms 4 , 3—forms
feVf F-Vx F F—-V-F
[ U U U
f(a) Fund. Thm. Calc. fc n Stokes' Thm. fs w Gauss' Thm. fv K
n n n m
signed ——— oriented — oriented — elementary
points curves surfaces regions
integration of differential forms on R2
f n=Fidx+F,dy w=pdxady
0O—forms — <4, 1—forms — %, 2—forms
fVf OF, _ OF,
~ Tox ay
U | U
f(a) Fund. Thm. Calc. fC n Green's Thm. fR w
n n n
signed —— oriented —— elementary
points curves regions

wedge product of forms

WAy = (=1)¥evxdeex oy for any forms i and y.
Thus dxadx=0=dynrdy=dzrdz also dyrndx=-dxnrdy and dxrdz=-dzrdx and dzrdy=-dynrdz.
differential d

d(f x)=dfAx+fdy forany function f and form y.
dWry)=dyry+ (=)%Y yady forany forms y and y — think of d as being (an operator) 1-form.
d(dx)=0=d(dy) = d(dz) — in general, this means that d*> = 0.

differential of a 0-form (in R3):

df = 3L ax+ f;—f; dy+ 3L dz = Vf-(@dx.dy. d).
0 d 0
d@df)=d(gh)ndx+d(Gh)ndy+d(5E)ndz
(S > f P f P f P f & f
—(ayax dy+ 379% dz)/\dx+(axay dx+ 920y dz)/\aiy + (0x6z dx+ 3y97 dy)/\dz

(B f > f o f & f o f > f -
—(ayaz - f)zﬁy)d/y/\dz-'_(ﬂz@x - axaz)‘l“‘“ + (axay - 3y¢9x)dx/\dy_0'

differential of a 1-form (in R3):

dn=dF-dx,dy,dz)=dF\rdx+dF,rdy+dF;rdz
OF oF JF JF; JF
=(6_yl a?y+3—zldz)/\dx+( 6; dx+ BZZ dz)/\dy+( 6; dx+ 6;
0 F5 JF; OF JF O F JF,
= (G5 — 32 )dynde+ (G - G ) dandx+ (G5 - G5 )dxndy
=VXF-(dyrdz,dzrdx,dxrdy).

JF:

dy)/\dz
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ddn) =d (%—aﬂ)/\dy/\dz+d(aFl aF3)Adz/\dx+d(aF2 6F1)Adx/\dy

ay
_ 62F3 (9F2 &2 F 0 F3 l’)ze 6? F _
=(Fx55 ~ Fwoz t Tyos ~ 9yar T 9e0s ~ ozay)dxndyndz=0.

differential of a 2-form (in R3):

do=dF-(dyrdz,dzrdx,dxrdy))=dF\rdyrdz+dFyrdzrdx+dF;rndxnrdy
=(% Lﬂx/\dy/\dz)+(aal;z dy/\dz/\dx)+(aaiz3 dz/xd)f/\dy) = (aail + 3052 3F3 )dx/\dy/\dz
=(V-F)dxrdynrdz.

d(dw)=d(V-F)andxardyn~dz=0, as there are no 4-forms on R>.

differential of a 3-form (in R®):

de=d(fdxnrdyndz) = (af dx+ af dy+ fdz)/\(dx/\dy/\dz)

Fundamental theorem of calculus:

fcdf=facf= [f]Z for a curve C from a to b.
Stokes’ theorem:

f B dn= f as for a surface S with (oriented) boundary 9.
Gauss’ divergence theorem:

f ydw= f oy @ foraregion V with outward-pointing normals on the boundary av.

Fundamental theorem of calculus:
fctlf=facf= [f]Z for a curve C froma to b.

Greens’ theorem:

fquzfaRn for a region R with (oriented) boundary dR. Withn = Pdx + Q dy then dn— dy/\dx + = tix/\dy (Z—g - g—l;)dx/\dy.

Let QO denote the space of k-forms on R3. Then we have an exact sequence:

0—R500 Lo Lo Lo o corresponding to: 0—R-50 Lot o2 Yo o,
That is:

df =0 = fisconstant; thatis, V f = 0 for constant functions only;

dn=0 = n=df forsome function f, with 7 a 1-form; equivalently, VXF =0 = F=Vf;

dw=0 = w=dn forsome l-form 7, with w a 2-form; equivalently, V-H=0 > H=V X F;

any 3-form « can be written as k = dw, for some 2-form w.

Let QF denote the space of k-forms on R3. Then we have an exact sequence:
0—R500- 5o L2 0 corresponding to: 0—R-500 50 02 0.
That is:
df =0 = fisconstant; thatis, V f = 0 for constant functions only;
dn=0 = n=df forsome function f, with  a 1-form; equivalently, curl F =0 = F =V f — using the scalar curl;

any 2-form w can be written as w = dn, for some 1-form 7.



