Physical Applications \& Differential Forms

Conservation Laws

Conservation of mass

Let $\boldsymbol{V}(t, x, y, z)$ be a continuously differentiable vector field on \mathbb{R}^{3} for all times t, and let $\rho(t, x, y, z)$ be a real-valued function. Then the law of conservation of mass for \boldsymbol{V} and ρ is the statement that $\frac{d}{d t} \int_{\Omega} \rho d V=-\int_{\partial \Omega} \boldsymbol{J} \cdot d \boldsymbol{S}=-\int_{\partial \Omega} \boldsymbol{J} \cdot \boldsymbol{n} d S$ holds for all regions Ω in \mathbb{R}^{3}, where $\boldsymbol{J}=\rho \boldsymbol{V}$.

Theorem

For $\boldsymbol{V}(t, x, y, z)$ and $\rho(t, x, y, z)$ defined on \mathbb{R}^{3} for all times t, with $\boldsymbol{J}=\rho \boldsymbol{V}$, the law of conservation of mass is equivalent to the condition:

$$
\nabla \cdot \boldsymbol{J}+\frac{\partial \rho}{\partial t}=0 \quad \text { equivalently } \rho \nabla \cdot \boldsymbol{V}+\boldsymbol{V} \cdot(\nabla \rho)+\frac{\partial \rho}{\partial t}=0
$$

Sketch of proof

First observe that $\frac{d}{d t} \int_{\Omega} \rho d x d y d z=\int_{\Omega} \frac{\partial \rho}{\partial t} d x d y d z$, and by the divergence theorem $\int_{\partial \Omega} \boldsymbol{J} \cdot d \boldsymbol{S}=\int_{\Omega} \nabla \cdot \boldsymbol{J} d V$. Thus conservation of mass is equivalent to the condition $\int_{\Omega}\left(\nabla \cdot \boldsymbol{J}+\frac{\partial \rho}{\partial t}\right) d x d y d z=0$. But this is to hold in all regions Ω, so it must be that $\nabla \cdot \boldsymbol{J}+\frac{\partial \rho}{\partial t}=0$ holds everywhere.

Heat equation

The continuity equation applies also to heat transfer with some medium.
Let $T(t, x, y, z)$ be a (twice) continuously differentiable function which gives the temperature at all points in the medium, at each time t. Then heat flows with the vector field $\boldsymbol{F}=-\nabla T$ (from hot to cold, hence the ' $-{ }^{\prime} \operatorname{sign}$). In this context the source function $\rho(t, x, y, z)$ is the energy density (that is, energy per unit volume) which is given by $\rho=c \rho_{0} T$, where ρ_{0} is the mass density (assumed constant within a particular medium) and c is the specific heat of the medium. The energy flux vector field is $\boldsymbol{J}=k \boldsymbol{F}=-k \nabla T$, where k is a constant called the conductivity of the medium.

Thus ρ is proportional to the temperature while \boldsymbol{J} follows the temerature gradient, leading to:

$$
\nabla \cdot(-k \nabla T)+c \rho_{0} \frac{\partial T}{\partial t}=0 \quad \Longleftrightarrow \quad \frac{\partial T}{\partial t}-\mu \nabla^{2} T=0
$$

where $\mu=k / c \rho_{0}$ is constant, called the diffusivity of the medium. This (partial) differential equation (PDE) is known as the Heat equation.
It is very important in various physical applications; it governs conduction of heat, in the sense that if $T(0, x, y, z)$ is the temperature distribution at time $t=0$ then $T(t, x, y, z)$ is fully determined for all later times $t>0$ by a solution of this PDE. Notice that if the temperature does not change with time, then $\nabla^{2} T=0$, so that T satisfies Laplace's equation.

Maxwell's equations

For the (time-dependent) electric field $\boldsymbol{E}(t, x, y, z)$ and magnetic field $\boldsymbol{H}(t, x, y, z)$, the source distribution $\rho(t, x, y, z)$ and current density $\boldsymbol{J}(t, x, y, z)$, defined on \mathbb{R}^{3} for times t, the Maxwell's equations are the following set of (partial) differential equations:

$$
\begin{array}{rlrl}
\nabla \cdot \boldsymbol{E} & =\rho & & \text { (Gauss'Law) } \\
\nabla \cdot \boldsymbol{H} & =0 & & \text { (no magnetic sources) } \\
\nabla \times \boldsymbol{E}+\frac{\partial \boldsymbol{H}}{\partial t} & =\mathbf{0} & & \text { (Faraday's Law) } \\
\text { and } & & \text { (Ampère's Law). }
\end{array}
$$

Gauss' Law allows measurement of charge
(there is no simple magnetic charge; i.e., no magnetic monopole)
Ampère's Law \Longrightarrow electromagnets (Wikipedia)
Faraday's Law \Longrightarrow electromagmetic induction; (Wikipedia) e.g. generators.

Ampère's Law (time-independent)

If the physical situation is not changing with time, then Ampère's Law means that you cannot have an electrical current without also having a magnetic field. (The term $\frac{\partial \boldsymbol{E}}{\partial t}$ then only has effect as the current is switched on or off.)

Suppose the current is passing through a surface S bounded by a closed curve C, that wraps once around the wire bearing the current.
Then: $\quad \int_{S} \boldsymbol{J} \cdot d \boldsymbol{S}=\int_{S}(\nabla \times \boldsymbol{H}) \cdot d \boldsymbol{S}=\int_{C} \boldsymbol{H} \cdot d s$.
(see Mathematica demos: CreationOfAMagneticFieldByAnElectricCurrent,SquareHelmholtzCoils,GalvanometerAsADCMultimeter)

Faraday's Law

Faraday's Law is often expressed as an integral equation.
Consider any surface S, with boundary $\partial S=C$, for which Stokes' Theorem applies. Then we have that

$$
\int_{C} \boldsymbol{E} \cdot d s=\int_{S}(\nabla \times \boldsymbol{E}) \cdot d \boldsymbol{S}=-\int_{S} \frac{\partial \boldsymbol{H}}{\partial t} \cdot d \boldsymbol{S}=-\frac{\partial}{\partial t} \int_{S} \boldsymbol{H} \cdot d \boldsymbol{S} .
$$

Now $\int_{C} \boldsymbol{E} \cdot d s$ physically represents the change in voltage around the curve C, in a loop of wire, say. Also, $\int_{S} \boldsymbol{H} \cdot d \boldsymbol{S}$ is the magnetic flux passing through a surface S. Hence Faraday's law says that: the voltage around the loop equals the negative of the rate of change of the magnetix flux through the loop. An extremely practical application is the generation of electricity:
spin a coil of wire within a magnetic field-an electric current will flow in the wire.
(see Mathematica demos: InducedEMFThroughAW ire,MagneticFluxThroughALoopOfW ire)

waves

Take the time derivative of Faraday's Law :

$$
\frac{\partial^{2} \boldsymbol{H}}{\partial t^{2}}=-\frac{\partial}{\partial t}(\nabla \times \boldsymbol{E})=-\nabla \times \frac{\partial \boldsymbol{E}}{\partial t}=\nabla \times(\boldsymbol{J}-\nabla \times \boldsymbol{H})=(\nabla \times \boldsymbol{J})-\nabla \times(\nabla \times \boldsymbol{H})=\nabla^{2} \boldsymbol{H}-\nabla(\nabla \cdot \boldsymbol{H})+(\nabla \times \boldsymbol{J})=\nabla^{2} \boldsymbol{H}+(\nabla \times \boldsymbol{J}) .
$$

Hence we have that $\frac{\partial^{2} \boldsymbol{H}}{\partial t^{2}}-\nabla^{2} \boldsymbol{H}=\nabla \times \boldsymbol{J}$, so that the magnetic field satisfies an inhomogeneous wave equation; that is, with source term $\nabla \times \boldsymbol{J}$. Similarly take the time derivative of Ampère's Law :

$$
\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}=\frac{\partial}{\partial t}(\nabla \times \boldsymbol{H})-\frac{\partial \boldsymbol{J}}{\partial t}=\nabla \times \frac{\partial \boldsymbol{H}}{\partial t}-\frac{\partial \boldsymbol{J}}{\partial t}=-\nabla \times(\nabla \times \boldsymbol{E})-\frac{\partial \boldsymbol{J}}{\partial t}=\nabla^{2} \boldsymbol{E}-\nabla(\nabla \cdot \boldsymbol{E})-\frac{\partial \boldsymbol{J}}{\partial t}=\nabla^{2} \boldsymbol{E}-\left(\frac{\partial \boldsymbol{J}}{\partial t}+\nabla \rho\right)
$$

Hence we have that $\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}-\nabla^{2} \boldsymbol{E}=\frac{\partial \boldsymbol{J}}{\partial t}+\nabla \rho$, so that the electric field also satisfies an inhomogeneous wave equation, with source term $\frac{\partial J}{\partial t}+\nabla \rho$.

gauge field and guage potential

Starting from $\nabla \cdot \boldsymbol{H}=0$ there must be a gauge field \boldsymbol{A}, such that $\boldsymbol{H}=\nabla \times \boldsymbol{A}$; note that this determines \boldsymbol{A} only up to the gauge freedom $\boldsymbol{A} \mapsto \boldsymbol{A}+f$, for any scalar function f. Now Faraday's Law becomes $\mathbf{0}=\nabla \times \boldsymbol{E}+\frac{\partial}{\partial t}(\nabla \times \boldsymbol{A})=\nabla \times\left(\boldsymbol{E}+\frac{\partial \boldsymbol{A}}{\partial t}\right)$, so that $\boldsymbol{E}+\frac{\partial \boldsymbol{A}}{\partial t}=-\nabla \phi$, for some guage potential function ϕ (defined up to addition of a constant). Thus the electric and magnetic fields are fully determined by the guage pair (\boldsymbol{A}, ϕ), via the expressions: $\boldsymbol{H}=\nabla \times \boldsymbol{A}$ and $\boldsymbol{E}=-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t}$. The gauge freedom $\boldsymbol{A} \mapsto \boldsymbol{A}+\nabla f$ means that ϕ is determined up to $\phi \mapsto \phi-\frac{\partial f}{\partial t}$.
Using these, Gauss' Law gives $\rho=\nabla \cdot\left(-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t}\right)=-\nabla^{2} \phi-\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{A})$, while Ampère's Law gives that

$$
\boldsymbol{J}=\nabla \times \boldsymbol{H}-\frac{\partial \boldsymbol{E}}{\partial t}=\nabla \times(\nabla \times \boldsymbol{A})-\frac{\partial}{\partial t}\left(-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t}\right)=\nabla(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}+\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}+\frac{\partial}{\partial t}(\nabla \phi)=\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}+\nabla\left(\nabla \cdot \boldsymbol{A}+\frac{\partial \phi}{\partial t}\right) .
$$

Now if it were true that necessarily $\nabla \cdot \boldsymbol{A}+\frac{\partial \phi}{\partial t}=0$ everywhere, then these expressions would reduce to: $\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}=\boldsymbol{J}$ and $\nabla^{2} \phi-\frac{\partial^{2} \phi}{\partial t^{2}}=\rho$. That is, both A and ϕ satisfy inhomogeneous wave equations, with the specified current and charge distributions.
To show that this is indeed always achievable, consider next the gauge freedom: $\boldsymbol{A} \mapsto \boldsymbol{A}+\nabla f$. That is, suppose that the pair $\left(\boldsymbol{A}_{0}, \phi_{0}\right)$ determines the fields \boldsymbol{E} and \boldsymbol{H}. Then for $\boldsymbol{A}=\boldsymbol{A}_{0}+\nabla f$ and $\phi \mapsto \phi_{0}-\frac{\partial f}{\partial t}$ we first verify that:

$$
\rho=-\nabla^{2} \phi_{0}-\frac{\partial}{\partial t}\left(\nabla \cdot \boldsymbol{A}_{0}\right)=-\nabla^{2}\left(\phi-\frac{\partial f}{\partial t}\right)-\frac{\partial}{\partial t}(\nabla \cdot(\boldsymbol{A}-\nabla f))=-\nabla^{2} \phi-\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{A})+\left(\nabla^{2} \frac{\partial f}{\partial t}-\frac{\partial}{\partial t}\left(\nabla^{2} f\right)\right)=-\nabla^{2} \phi-\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{A}) \text {, and }
$$ $\boldsymbol{J}=\frac{\partial^{2} \boldsymbol{A}_{0}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}_{0}+\nabla\left(\nabla \cdot \boldsymbol{A}_{0}+\frac{\partial \phi_{0}}{\partial t}\right)=\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}-\left(\frac{\partial^{2}}{\partial t^{2}} \nabla f-\nabla^{2}(\nabla f)\right)+\nabla\left(\nabla \cdot \boldsymbol{A}_{0}+\frac{\partial \phi_{0}}{\partial t}\right)=\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}+\nabla\left(-\frac{\partial^{2} f}{\partial t^{2}}+\nabla^{2} f+\nabla \cdot \boldsymbol{A}_{0}+\frac{\partial \phi_{0}}{\partial t}\right)$.

This latter equation means that, if we can solve the (inhomogeneous) wave equation: $\frac{\partial^{2} f}{\partial t^{2}}-\nabla^{2} f=\nabla \cdot \boldsymbol{A}_{0}+\frac{\partial \phi_{0}}{\partial t}$, then we can choose the guage field and potential (\boldsymbol{A}, ϕ) such that: $\nabla \cdot \boldsymbol{A}+\frac{\partial \phi}{\partial t}=0, \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla^{2} \boldsymbol{A}=\boldsymbol{J}$ and $\nabla^{2} \phi-\frac{\partial^{2} \phi}{\partial t^{2}}=\rho$. Indeed it is possible to solve for f under very general conditions on the form of \boldsymbol{A}_{0} and ϕ_{0}. Thus the study of solutions for Maxwell's equations reduces to studying wave equations.

Note that any funtion of the form $f(x, y, z, t)=g(x-t)$ is a solution of the homogeneous wave equation $\nabla^{2} f-\frac{\partial^{2} f}{\partial t^{2}}=0$ ．This solution just propa－ gates the graph of g along the x－direction，like a wave．Thus，particularly in regions without sources or currents，one might conjecture that solutions of Maxwell＇s equations are wavelike in nature．Historically it was Maxwell＇s great achievement to postulate the existence of electromagnetic waves． This soon led to the discovery of radio waves．（Much later came the realisation that light also is an example of electromagnetic radiation．）

The study of waves in general contexts is the content of the unit MATH331，for next year＇s study．

Differential Forms

integration of differential forms on \mathbb{R}^{3}

f	d	$\begin{gathered} \eta=F_{1} d x+F_{2} d y \\ +F_{3} d z \end{gathered}$	$\begin{gathered} \omega=F_{1} d y \wedge d z+ \\ F_{2} d z \wedge d x+F_{3} d x \wedge d y \end{gathered}$			$\kappa=\rho d x \wedge d y \wedge d z$
0 －forms		1 －forms	$\xrightarrow[\boldsymbol{F} \mapsto \nabla \times \boldsymbol{F}]{d}$	2 －forms	$\xrightarrow[F \mapsto \nabla \cdot \boldsymbol{F}]{\boldsymbol{d}}$	3 －forms
\Downarrow		\Downarrow		\Downarrow		\Downarrow
$f(a)$	Fund．Thm．Calc．	$\int_{c}{ }^{\prime}$	Stokes＇Thm．	$\int_{S} \omega$	Gauss＇Thm．	$\int_{V}{ }^{\text {k }}$
介		$介$		介		介
signed points	∂	oriented curves	∂	oriented surfaces	∂	elementary regions

integration of differential forms on \mathbb{R}^{2}

wedge product of forms
$\psi \wedge \chi=(-1)^{\operatorname{deg} \psi \times \operatorname{deg} \chi} \chi \wedge \psi$ for any forms ψ and χ ．
Thus $d x \wedge d x=0=d y \wedge d y=d z \wedge d z \quad$ also $\quad d y \wedge d x=-d x \wedge d y$ and $d x \wedge d z=-d z \wedge d x$ and $d z \wedge d y=-d y \wedge d z$ ．

differential d

$d(f \chi)=d f \wedge \chi+f d \chi$ for any function f and form χ ．
$d(\psi \wedge \chi)=d \psi \wedge \chi+(-1)^{\operatorname{deg} \psi} \psi \wedge d \chi$ for any forms ψ and $\chi-$ think of d as being（an operator）1－form．
$d(d x)=0=d(d y)=d(d z)-$ in general，this means that $d^{2}=0$.
differential of a 0 －form（in \mathbb{R}^{3} ）：

$$
\begin{aligned}
& d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z=\nabla f \cdot(d x, d y, d z) . \\
& \begin{aligned}
d(d f)= & d\left(\frac{\partial f}{\partial x}\right) \wedge d x+d\left(\frac{\partial f}{\partial y}\right) \wedge d y+d\left(\frac{\partial f}{\partial z}\right) \wedge d z \\
& =\left(\frac{\partial^{2} f}{\partial y \partial x} d y+\frac{\partial^{2} f}{\partial z \partial x} d z\right) \wedge d x+\left(\frac{\partial^{2} f}{\partial x \partial y} d x+\frac{\partial^{2} f}{\partial z \partial y} d z\right) \wedge d y+\left(\frac{\partial^{2} f}{\partial x \partial z} d x+\frac{\partial^{2} f}{\partial y \partial z} d y\right) \wedge d z \\
& =\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) d y \wedge d z+\left(\frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial x \partial z}\right) d z \wedge d x+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) d x \wedge d y=0 .
\end{aligned}
\end{aligned}
$$

differential of a 1－form（in \mathbb{R}^{3} ）：

$$
\begin{aligned}
d \eta=d & (\boldsymbol{F} \cdot(d x, d y, d z))=d F_{1} \wedge d x+d F_{2} \wedge d y+d F_{3} \wedge d z \\
& =\left(\frac{\partial F_{1}}{\partial y} d y+\frac{\partial F_{1}}{\partial z} d z\right) \wedge d x+\left(\frac{\partial F_{2}}{\partial x} d x+\frac{\partial F_{2}}{\partial z} d z\right) \wedge d y+\left(\frac{\partial F_{3}}{\partial x} d x+\frac{\partial F_{3}}{\partial y} d y\right) \wedge d z \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) d y \wedge d z+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) d z \wedge d x+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x \wedge d y \\
& =\nabla \times \boldsymbol{F} \cdot(d y \wedge d z, d z \wedge d x, d x \wedge d y) .
\end{aligned}
$$

$$
\begin{aligned}
d(d \eta)= & d\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \wedge d y \wedge d z+d\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \wedge d z \wedge d x+d\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \wedge d x \wedge d y \\
& =\left(\frac{\partial^{2} F_{3}}{\partial x \partial y}-\frac{\partial^{2} F_{2}}{\partial x \partial z}+\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F_{3}}{\partial y \partial x}+\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{1}}{\partial z \partial y}\right) d x \wedge d y \wedge d z=0 .
\end{aligned}
$$

differential of a 2-form (in \mathbb{R}^{3}):

$$
\begin{aligned}
d \omega= & d(\boldsymbol{F} \cdot(d y \wedge d z, d z \wedge d x, d x \wedge d y))=d F_{1} \wedge d y \wedge d z+d F_{2} \wedge d z \wedge d x+d F_{3} \wedge d x \wedge d y \\
& =\left(\frac{\partial F_{1}}{\partial x} d x \wedge d y \wedge d z\right)+\left(\frac{\partial F_{2}}{\partial y} d y \wedge d z \wedge d x\right)+\left(\frac{\partial F_{3}}{\partial z} d z \wedge d x \wedge d y\right)=\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x \wedge d y \wedge d z \\
& =(\nabla \cdot \boldsymbol{F}) d x \wedge d y \wedge d z . \\
d(d \omega)= & d(\nabla \cdot \boldsymbol{F}) \wedge d x \wedge d y \wedge d z=0, \text { as there are no 4-forms on } \mathbb{R}^{3} .
\end{aligned}
$$

differential of a 3-form (in \mathbb{R}^{3}):

$$
d \kappa=d(f d x \wedge d y \wedge d z)=\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \wedge(d x \wedge d y \wedge d z)=0
$$

Integration theorems, on \mathbb{R}^{3}

Fundamental theorem of calculus:

$\int_{C} d f=\int_{\partial C} f=[f]_{a}^{b}$ for a curve C from a to b.

Stokes' theorem:

$\int_{S} d \eta=\int_{\partial S} \eta$ for a surface S with (oriented) boundary ∂S.

Gauss' divergence theorem:

$\int_{V} d \omega=\int_{\partial V} \omega$ for a region V with outward-pointing normals on the boundary ∂V.

Integration theorems, on \mathbb{R}^{2}

Fundamental theorem of calculus:

$\int_{C} d f=\int_{\partial C} f=[f]_{a}^{b}$ for a curve C from a to b.

Greens' theorem:

$\int_{R} d \eta=\int_{\partial R} \eta$ for a region R with (oriented) boundary ∂R. With $\eta=P d x+Q d y$ then $d \eta=\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y$.

Exact sequence of forms, on \mathbb{R}^{3}

Let Ω^{k} denote the space of k-forms on \mathbb{R}^{3}. Then we have an exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{i} \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{d} \Omega^{2} \xrightarrow{d} \Omega^{3} \longrightarrow 0 \quad \text { corresponding to: } \quad 0 \longrightarrow \mathbb{R} \xrightarrow{i} \Omega^{0} \xrightarrow{\nabla} \Omega^{1} \xrightarrow{\nabla \times} \Omega^{2} \xrightarrow{\nabla} \Omega^{3} \longrightarrow 0 .
$$

That is:
$d f=0 \Rightarrow f$ is constant; that is, $\nabla f=0$ for constant functions only;
$d \eta=0 \Rightarrow \eta=d f$ for some function f, with η a 1-form; equivalently, $\nabla \times \boldsymbol{F}=0 \Rightarrow \boldsymbol{F}=\nabla f$;
$d \omega=0 \Rightarrow \omega=d \eta$ for some 1-form η, with ω a 2-form; equivalently, $\nabla \cdot \boldsymbol{H}=0 \Rightarrow \boldsymbol{H}=\nabla \times \boldsymbol{F}$;
any 3 -form κ can be written as $\kappa=d \omega$, for some 2 -form ω.

Exact sequence of forms, on \mathbb{R}^{2}

Let Ω^{k} denote the space of k-forms on \mathbb{R}^{3}. Then we have an exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{i} \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{d} \Omega^{2} \longrightarrow 0 \quad \text { corresponding to: } \quad 0 \longrightarrow \mathbb{R} \xrightarrow{i} \Omega^{0} \xrightarrow{\nabla} \Omega^{1} \xrightarrow{\text { curl }} \Omega^{2} \longrightarrow 0 .
$$

That is:
$d f=0 \Rightarrow f$ is constant; that is, $\nabla f=0$ for constant functions only;
$d \eta=0 \Rightarrow \eta=d f$ for some function f, with η a 1-form; equivalently, $\operatorname{curl} \boldsymbol{F}=0 \Rightarrow \boldsymbol{F}=\nabla f-$ using the scalar curl; any 2-form ω can be written as $\omega=d \eta$, for some 1-form η.

