
MATH236 — Weeks 10–12
Integration Theorems

Chen notes, chapter 12

12.1 Green’s Theorem
Recall from Section 5.4 (studied in MATH235) that a region of the type: 

(1) R = 8Hx , yL Œ —2 : x œ @A1 , B1D and f1HxL § y § f2HxL<,
where the functions f1 : @A1 , B1D Ø — and f2 : @A1 , B1D Ø — are continuous in the interval @A1 , B1D and where f1HxL § f2HxL for every 
x œ @A1 , B1D, is called an elementary region of type 1. 

A region of the type:

(2) R = 8Hx , yL Œ —2 : y œ @A2 , B2D and y1HyL § x § y2HyL<,
where the functions y1 : @A2 , B2D Ø — and  y2 : @A2 , B2D Ø — are continuous in the interval @A2 , B2D and where y1HyL § y2HyL for every 
y œ @A2 , B2D, is called an elementary region of type 2.

Furthermore, an elementary region of type 3 is one which is of both type 1 and type 2; in other words, one that can be described by both (1) and (2). 

Green’s theorem relates a line integral along a simple closed curve C  in —2  to a double integral over the region R enclosed by the curve. We say 
that C  has positive orientation if the region R is on the left when we follow the curve C , and has negative orientation otherwise. For example, a 
circle followed in the anticlockwise direction has positive orientation with respect to the region it encloses.

Theorem 12A: Green’s theorem

Suppose that R Œ —2  is an elementary region of type 3, with boundary curve C  followed with positive orientation. Suppose further that the func-
tions P : R Ø — and Q : R Ø — are both continuously differentiable. Then

(3) ŸC
HP „ x + Q „ yL = Ÿ Ÿ R

I QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy M „ x „ y.

Remarks

Ï   Consider the vector field F = HPHx, yL , QHx, yLL  in —2 . Then (3) can be written as ŸC F ÿ „ s = ‡ ‡
R
J QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy N „ x „ y . Note that QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy  is the 

scalar curl of the vector field F = HP, QL.

Ï     Consider a vector field FHx , y , zL = HPHx , yL , QHx , yL , 0L  in —3 , and imagine the region R to be a surface S  on the x y-plane, with boundary curve C .  Then we 
have  

  (4) ŸC F ÿ „ s = ŸC HPHx , yL , QHx , yL , 0L ÿ H„ x , „ y , „ zL = ‡ ‡
R
J0 , 0 , QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy N ÿ H0 , 0 , 1L „ x „ y = ‡ ‡

R
J QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy N „ x „ y .

    On the other hand, we can parametrize the surface S  by the function F : R Ø —3 : Hx , yL # Hx , y , 0L . Then tx = H1 , 0 , 0L  and ty = H0 , 1 , 0L , so that 
tx µ ty = H0 , 0 , 1L.

http://www.maths.mq.edu.au/~wchen/lnmvafolder/mva12.pdf
http://www.maths.mq.edu.au/~wchen/lnmvafolder/mva05.pdf
http://rutherglen.ics.mq.edu.au/math236S208/notes/MATH236-Week-3&4.pdf


    Hence 

  (5) ŸF
Hcurl FL ÿ „ S = ‡ ‡

R
 J0 , 0 , QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy N ÿ H0 , 0 , 1L „ x „ y = ‡ ‡

R
J QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy N „ x „ y .

    If we take the oriented surface S  to have normal vector in the positive z-direction, then 

  (6) Ÿ S Hcurl FL ÿ „ S = ŸF
Hcurl FL ÿ „ S .

   Combining (4),(5),(6), we conclude that ŸC F ÿ „ s = Ÿ S Hcurl FL ÿ „ S . This is known as Stokes’ theorem. We shall study this in Section 12.2.

Ï    Replacing Q by P and replacing P by -Q  in (3), we obtain 

  (7) ‡ ‡
R
J PÅÅÅÅÅÅÅx +

QÅÅÅÅÅÅÅÅy N „ x „ y = ŸC HP „ y - Q „ xL .

   Consider now a vector field F = HPHx, yL , QHx, yLL in —2 . Then

   (8) ‡ ‡
R
J PÅÅÅÅÅÅÅx +

QÅÅÅÅÅÅÅÅy N „ x „ y = Ÿ Ÿ R Hdiv FL „ x „ y.

    Next, suppose that f  is an orientation preserving parametrization of C . Then a tangent vector at a point HxHtL , yHtLL is given by Hx£HtL , y£HtLL. Rotating this vector 
in the clockwise direction by an angle 1ÅÅÅÅ2  p  gives an outward normal vector to C  at the point HxHtL , yHtLL. This outward normal vector is  Hy£HtL , -x£HtLL , with unit 
vector  n =

Hy£HtL , -x£HtLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»»Hy£HtL ,-x£HtLL»» .  It follows that  

  (9) Ÿ C HP „ y - Q „ xL = Ÿ C F ÿ n „ s.

    Combining (7),(8),(9), we obtain Ÿ Ÿ R Hdiv FL „ x „ y = ŸC F ÿ n „ s .  This is the 2-dimensional version of Gauss’ Divergence Theorem which we shall study in 
Section 12.3.

Ï     Green’s theorem can be extended to regions R  which are finite unions of essentially disjoint elementary regions of type 3.  For example, consider the annulus  
R = 8Hx , yL œ —2 : 1 § x2 + y2 § 4< . We can cut R into four subregions of type 3 by the lines x = 0 and y = 0.

   The boundary curve is now the union of the two circles C1 = 8Hx , yL œ —2 : x2 + y2 = 1<  and C2 = 8Hx , yL œ —2 : x2 + y2 = 4< , with C1  followed in the clock-
wise direction and C2  followed in the anticlockwise direction.

Proof of Theorem 12A

Consider first of all the integral:

(10)   ŸC P „ x.

Since R is an elementary region of type 3, it is also an elementary region of type 1, and so can be described in the form (1): 

The boundary curve C  of this region can be split into four parts. There are two straight line segments:  from HA1 , f2HA1LL to HA1 , f1HA1LL and from 
HB1 , f1HB1LL to HB1 , f2HB1LL. There are also two curves  C1 = 8Hx , f1HxLL : x œ @A1 , B1D<  and  C2 = 8Hx , f2HxLL : x œ @A1 , B1D<, followed from 
HA1 , f1HA1LL to HB1 , f1HB1LL and from HB1 , f2HB1LL to  HA1 , f2HA1LL respectively.

The contribution from the two straight line segments to the integral (10) is zero, since „ x = 0 on these two line segments. It follows that

ŸC P „ x = ŸC1
P „ x + ŸC2

P „ x = ŸA1

A2 PHx , f1HxLL „ x + ŸA2

A1 PHx , f2HxLL „ x = -ŸA1

A2 HPHx , f2HxLL - PHx , f1HxLLL „ x .
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On the other hand, it follows from Fubini’s theorem that  Ÿ Ÿ R
PÅÅÅÅÅÅÅy  „ x „ y = ŸA1

B1 IŸf1 HxL
f2 HxL PÅÅÅÅÅÅÅy  „ yM „ x = ŸA1

B1 H PHx , f2HxLL - PHx , f1HxLLL „ x , by the 
Fundamental theorem of calculus. Hence

 (11) ŸC P „ x = -Ÿ ŸR
PÅÅÅÅÅÅÅy  „ x „ y.

Similarly, it can be proved that

 (12) ŸC Q „ y = Ÿ ŸR
QÅÅÅÅÅÅÅÅx  „ x „ y.

The formula (3) now follows on combining (11) and (12). 

Example 12.1.1 — area of a region

Consider the special case when PHx , yL = - 1ÅÅÅÅ2  y and QHx , yL = 1ÅÅÅÅ2  x. Then (3) becomes  1ÅÅÅÅ2  ŸC Hx „ y - y „ xL = Ÿ Ÿ R 1 „ x „ y. This is equal to the 
area of R. 

Suppose now that R is the region bounded by the hypocycloid C  of four cusps, given by the equation x
2ÅÅÅÅ3 + y

2ÅÅÅÅ3 = 1 and parametrized by 
f : @0 , 2 pD Ø —2 : t # Hcos3 t , sin3  tL. Then „ x = -3 cos2  t sin t „ t  and  „ y = 3 sin2  t cos t „ t . Hence the area of the region bounded by the hypo-
cycloid is given by

1ÅÅÅÅ2  ŸC Hx „ y - y „ xL = 1ÅÅÅÅ2  Ÿ0
2 p H3 cos4  t sin2  t + 3 cos2  t sin4  tL „ t = 3ÅÅÅÅ2  Ÿ0

2 p cos2  t sin2  t „ t

= 3ÅÅÅÅ8  Ÿ0
2 p sin2  2 t „ t = 3ÅÅÅÅÅÅ16  Ÿ0

4 p 1ÅÅÅÅ2  H1 - cos 2 qL „ q = 3ÅÅÅÅ4  Ÿ0
p 1ÅÅÅÅ2  H1 - cos 2 qL „ q = 3ÅÅÅÅ8 @ q D0

p
= 3ÅÅÅÅ8  p .
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Example 12.1.2 

Let PHx , yL = x2  y cos x + 2 x y sin x - y2  ex  and QHx , yL = x2  sin x - 2 y ex . Then 
QÅÅÅÅÅÅÅx = 2 x sin x + x2 cos x - 2 y ex =

PÅÅÅÅÅÅÅy .

It follows from Green’s theorem that 

  (13) ŸC HP „ x + Q „ yL = 0

for the boundary curve C  of any elementary region of type 3. Note that (13) holds if C is the boundary curve of any elementary region of type 3 in 

which the equality 
QÅÅÅÅÅÅÅx =

PÅÅÅÅÅÅÅy  holds. In particular this holds when F = HPHx, yL , QHx, yLL is a vector field in —2  such that  F = “ f , for some 
continuously differentiable function f Hx , yL.

Example 12.1.3

Let PHx , yL = x2 - x y3  and QHx , yL = y2 - 2 x y, and let R denote the square with vertices H0 , 0L, H2 , 0L, H2 , 2L and H0 , 2L.
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The boundary curve is then C = C1 ‹ C2 ‹ C3 ‹ C4 , where C1 , C2 , C3 , C4  are the four sides of R followed in the anticlockwise direction with 
initial point H0 , 0L, and can be parametrized respectively by

f1 : @0 , 2D Ø —2 : t # Ht , 0L , f2 : @0 , 2D Ø —2 : t # H2 , tL , f3 : @0 , 2D Ø —2 : t # H2 - t , 2L , f4 : @0 , 2D Ø —2 : t # H0 , 2 - tL .

We have

ŸC1
Hx „ y - y „ xL = ŸC1

HP , QL ÿ H1 , 0L „ t = Ÿ0
2 PHt , 0L „ t = Ÿ0

2 t2  „ t = 1ÅÅÅÅ3 @ t3D0
2

= 8ÅÅÅÅ3 ,

ŸC2
Hx „ y - y „ xL = ŸC2

HP , QL ÿ H0 , 1L „ t = Ÿ0
2 QH2 , tL „ t = Ÿ0

2 Ht2 - 4 tL „ t = @ 1ÅÅÅÅ3  t3 - 2 t2D0
2

= -5 1ÅÅÅÅ3 ,

ŸC3
Hx „ y - y „ xL = ŸC3

HP , QL ÿ H-1 , 0L „ t = -Ÿ0
2 PH2 - t , 2L „ t = -Ÿ0

2 H2 - tL H-6 - tL „ t = @12 t - 2 t2 - 1ÅÅÅÅ3 t3D0
2

= 13 1ÅÅÅÅ3 ,

ŸC4
Hx „ y - y „ xL = ŸC4

HP , QL ÿ H0 , -1 L „ t = -Ÿ0
2 QH0 , 2 - tL „ t = -Ÿ0

2 H2 - tL2  „ t = -@4 t - 2 t2 + 1ÅÅÅÅ3 t3D0
2

= - 8ÅÅÅÅ3 .

Hence   ŸC
HP „ x + Q „ yL = ŸC1

HP „ x + Q „ yL + ŸC2
HP „ x + Q „ yL + ŸC3

HP „ x + Q „ yL + ŸC4
HP „ x + Q „ yL = 8ÅÅÅÅ3 - 5 1ÅÅÅÅ3 + 13 1ÅÅÅÅ3 - 8ÅÅÅÅ3 = 8 . 

This calculation can be somewhat simplified by noting that „ x = 0 on C2  and C4 , while „ y = 0 on C1  and C3 , and that the parametrizations are 
linear on each of the sides of the square. Hence we can write down directly:

ŸC Hx „ y - y „ xL = Ÿ0
2 PHx , 0L „ x + Ÿ0

2 QH0, yL „ y - Ÿ0
2 PH2 - x , 0L „ x - Ÿ0

2 QH0 , yL „ y

= Ÿ0
2 x2  „ x + Ÿ0

2 Hy2 - 4 yL „ y - Ÿ0
2 Hx2 - 8 xL „ x - Ÿ0

2 y2  „ y = 8ÅÅÅÅ3 + H 8ÅÅÅÅ3 - 8L - H 8ÅÅÅÅ3 - 16L - 8ÅÅÅÅ3 = 8 .

On the other hand, we have

Ÿ ŸRI
QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy M „ x „ y = Ÿ ŸRH3 x y2 - 2 yL „ x „ y = Ÿ0

2IŸ0
2H3 x y2 - 2 yL „ xM „ y = Ÿ0

2II@ 3ÅÅÅÅ2  x2D 0
2M y2 - H@2 xD02L yM „ y

= Ÿ0
2H6 y2 - 4 yL „ y = @2 y3 - 2 y2D02 = 8 .

This verifies Green’s theorem.
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Example 12.1.4

Let PHx , yL = x y + y2  and QHx , yL = x2 , and let R denote the region bounded by the line y = x and the parabola y = x2 . 

The boundary curve is then C = C1 ‹ C2 , where C1  is part of a parabola from H0 , 0L to H1 , 1L and C2  is the part of the line from H1 , 1L to H0 , 0L. 
The curves C1  and C2  can be parametrized respectively by  f1 : @0 , 1D Ø —2 : t # Ht , t2L , f2 : @0 , 1D Ø —2 : t # H1 - t , 1 - tL.
 We have ŸC1

Hx „ y - y „ xL = ŸC1
HP , QL ÿ H1 , 2 tL „ t = Ÿ0

1 HHxHtL yHtL + yHtL2L + 2 tHxHtL2LL „ t = Ÿ0
1 H3 t3 + t4L „ t = @ 3ÅÅÅÅ4  t4 + 1ÅÅÅÅ5  t5D0

1
= 19ÅÅÅÅÅÅ20 ,

ŸC2
Hx „ y - y „ xL = ŸC2

HP , QL ÿ H-1 , -1L „ t = -Ÿ0
1 HxHtL yHtL + yHtL2 + xHtL2L „ t = -Ÿ0

1 3 t2  „ t = -@ t3D01 = -1 .

Hence   ŸCHP „ x + Q „ yL = ŸC1
HP „ x + Q „ yL + ŸC2

HP „ x + Q „ yL = 19ÅÅÅÅÅÅ20 - 1 = - 1ÅÅÅÅÅÅ20 .

On the other hand, we have  Ÿ ŸRI
QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy M „ x „ y = Ÿ ŸRH2 x - H x + 2 yLL „ x „ y = Ÿ0

1IŸ x2
x Hx - 2 yL „ yM „ x = Ÿ0

1HH@ y D x2
x L x - H@ y2D x2

x LL „ x

= Ÿ0
1Hx2 - x3 - x2 + x4L „ x = @ 1ÅÅÅÅ5  x5 - 1ÅÅÅÅ4  x4D0

1
= - 1ÅÅÅÅÅÅ20 .

This verifies Green’s theorem.
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12.2 Stokes’ Theorem
Stokes’s theorem relates a line integral along a simple closed curve C  in —3  to a surface integral over a surface S with boundary curve C . 
A special case of it is Green’s theorem discussed in the last section. 

Clearly any relationship between the line integral and the surface integral requires a convention concerning the orientation of the curve C  with 
respect to the orientation of the surface S . We use the right-hand-thumb rule: extend the thumb on our right hand and close the fingers; if the 
thumb points in the direction of the chosen normal of S , then the curve C  is said to have positive orientation if it follows the direction of the fingers. 
In other words, if we follow the curve C  in positive orientation, then the surface S  is on the left.

Theorem 12B: (Stokes’ Theorem)

Suppose that S Õ —3  is an oriented surface, defined by an orientation preserving parametrization F : R Ø —3  for some elementary region R Œ —2  
of type 3, and with boundary curve C  followed with positive orientation. Suppose further that the vector field F is continuously differentiable 
in S . Then ŸC F ÿ „ s = Ÿ S Hcurl FL ÿ „ S.

We shall not give a rigorous proof here. Instead, we only very roughly give an outline of the main ideas, and show that the result may be deduced 
from Green’s theorem. In the sketch below, we often make extra assumptions which are not normally necessary. 

Heuristics of Theorem 12B

Write F = HF1 , F2 , F3L. Then 

(14) ŸC
F ÿ „ s = ŸC

HF1 , F2 , F3L ÿ „ s = ŸC
HF1 „ x + F2 „ y + F3 „ zL,  and

(15) Ÿ S  H“ µ FL ÿ „ S = Ÿ S H“ µ HF1 , 0 , 0LL ÿ „ S + Ÿ S H“ µ H0 , F2 , 0LL ÿ „ S + Ÿ S H“ µ H0 , 0 , F3LL ÿ „ S .

Suppose that a parametrization of S  is given by: F : R Ø S Õ —3   whereby  Hu , vL# HxHu , vL , yHu , vL , zHu , vLL .  

Let C£  denote the boundary of R, and consider the integral   ŸC
F1 „ x. Since  „ x = xÅÅÅÅÅÅÅu  „ u + xÅÅÅÅÅÅv  „ v  it follows from Green’s theorem that  

ŸC F1 „ x = ŸC£ I F1  xÅÅÅÅÅÅÅu  „ u + F1  xÅÅÅÅÅÅv  „ v M = Ÿ ŸR I ÅÅÅÅÅÅÅu  IF1  xÅÅÅÅÅÅv M - ÅÅÅÅÅÅv  IF1  xÅÅÅÅÅÅÅu MM „ u „ v

= Ÿ ŸR I F1ÅÅÅÅÅÅÅÅÅu  xÅÅÅÅÅÅv + F1  2xÅÅÅÅÅÅÅÅÅÅÅÅu v - F1ÅÅÅÅÅÅÅÅÅv  xÅÅÅÅÅÅÅu - F1  2 xÅÅÅÅÅÅÅÅÅÅÅÅv u M „ u „ v = Ÿ ŸR I F1ÅÅÅÅÅÅÅÅÅu  xÅÅÅÅÅÅv - F1ÅÅÅÅÅÅÅÅÅv  xÅÅÅÅÅÅÅu M „ u „ v .

Next note that  F1ÅÅÅÅÅÅÅÅÅu = F1ÅÅÅÅÅÅÅÅÅx  xÅÅÅÅÅÅÅu + F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅÅu + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅÅu and F1ÅÅÅÅÅÅÅÅÅv = F1ÅÅÅÅÅÅÅÅÅx  xÅÅÅÅÅÅv + F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅv + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅv   so that 
F1ÅÅÅÅÅÅÅÅÅu  xÅÅÅÅÅÅv - F1ÅÅÅÅÅÅÅÅÅv  xÅÅÅÅÅÅÅu = I F1ÅÅÅÅÅÅÅÅÅx  xÅÅÅÅÅÅÅu + F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅÅu + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅÅu M xÅÅÅÅÅÅv - I F1ÅÅÅÅÅÅÅÅÅx  xÅÅÅÅÅÅv + F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅv + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅv M xÅÅÅÅÅÅÅu

= I F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅÅu + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅÅu M xÅÅÅÅÅÅv - I F1ÅÅÅÅÅÅÅÅÅy  yÅÅÅÅÅÅv + F1ÅÅÅÅÅÅÅÅÅz  zÅÅÅÅÅÅv M xÅÅÅÅÅÅÅu = F1ÅÅÅÅÅÅÅÅÅy  I yÅÅÅÅÅÅÅu  xÅÅÅÅÅÅv - yÅÅÅÅÅÅv  xÅÅÅÅÅÅÅu M + F1ÅÅÅÅÅÅÅÅÅz  I zÅÅÅÅÅÅÅu  xÅÅÅÅÅÅv - zÅÅÅÅÅÅv  xÅÅÅÅÅÅÅu M
= F1ÅÅÅÅÅÅÅÅÅz  Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL - F1ÅÅÅÅÅÅÅÅÅy  Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL .

Hence

(16) ŸC F1 „ x = Ÿ ŸR I F1ÅÅÅÅÅÅÅÅÅz  Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL - F1ÅÅÅÅÅÅÅÅÅy  Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v .

Now   

(17)  Ÿ S
H“ µ HF1 , 0 , 0LL ÿ „ S = Ÿ S

I0 , F1ÅÅÅÅÅÅÅÅÅz , - F1ÅÅÅÅÅÅÅÅÅy M ÿ „ S = Ÿ R
I0, F1ÅÅÅÅÅÅÅÅÅz , - F1ÅÅÅÅÅÅÅÅÅy M ÿ I Hy,zLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL , Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v = ŸR

I F1ÅÅÅÅÅÅÅÅÅz  Hz,xLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL - F1ÅÅÅÅÅÅÅÅÅy  Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅHu,vL M „ u „ v.

Combining (16) and (17) gives

(18) ŸC F1 „ x = Ÿ S H“ µ HF1 , 0 , 0LL ÿ „ S.

Similarly we get that

(19) ŸC F2 „ y = Ÿ S H“ µ H0 , F2 , 0LL ÿ „ S and ŸC F3 „ z = Ÿ S H“ µ H0 , 0 , F3LL ÿ „ S .

Thus Stokes’ theorem follows on combining (14), (15), (18) and (19).

Example 12.2.1 — spherical cap

Let S denote the upper hemispherical surface of the sphere x2 + y2 + z2 = 9, with outward-pointing normal.     
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Then the boundary curve C  is given by x2 + y2 = 9, followed in the anticlockwise direction. 

Consider the vector field FHx , y , zL = H2 y , 3 x , -z2L. Let us first of all evaluate the integral:    ŸC
F ÿ „ s.

By using the orientation-preserving parametrization  f : @0 , 2 pD Ø —3  whereby t # H3 cos t , 3 sin t , 0L, we have

 ŸC F ÿ „ s = Ÿ0
2 p FHfHtLL ÿf£HtL „ t = Ÿ0

2 pH6 sin t , 9 cos t , 0L ÿ H-3 sin t , 3 cos t , 0L „ t = 9 Ÿ0
2 pH3 cos2  t - 2 sin2 t L „ t

= 9 Ÿ0
2 p 1ÅÅÅÅ2  H1 - 3 cos  2 tL „ t = 9 p .

Next, let us evaluate the integral:     Ÿ S  H“ µ FL ÿ „ S.

Consider the parametrization F : R Ø —3  whereby  Hu , vL# H3 sin u cos v , 3 sin u sin v , 3 cos uL, where R = @0 , 1ÅÅÅÅ2  pDµ @0 , 2 pD.
We have    tu µ tv = H9 sin2 u cos v , 9 sin2 u sin v , 9 cos u sin uL = 3 sin u FHu , vL ,  so that F is an orientation-preserving parametrization of S . 

It is easy to see that  “ µ F = H0 , 0 , 3 - 2L = H0 , 0 , 1L, so 

 Ÿ S
 H“ µ FL ÿ „ S = Ÿ Ÿ R

H0 , 0 , 1L ÿ 3 sin u F Hu , vL „ u „ v = Ÿ Ÿ R
9 sin u cos u „ u „ v = 9 JŸ0

1ÅÅÅÅ2  psin u cos u „ uN IŸ0
2 p1 „ vM

= 9 p Ÿ0

1ÅÅÅÅ2  psin 2 u „ u = 9ÅÅÅÅ2  p Ÿ0
psin 2 u „ H2 uL = 9ÅÅÅÅ2  p IŸ0

psin q „ q M = 9ÅÅÅÅ2  p @-cos q D 0
p = 9 p .

This verifies Stokes’ theorem.

visualisation
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Example 12.2.2 — conical cap

Let S denote the surface of the cone z = 2 -
è!!!!!!!!!!!!!!x2 + y2  above the x y-plane, with inward-pointing normal.
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Then the boundary curve C  is give by x2 + y2 = 4, followed in the clockwise direction. 

Consider the vector field FHx , y , zL = Hx - z , x3 + y z , -3 x y2L. Let us first of all evaluate the integral:    ŸC F ÿ „ s.

By using the orientation-reversing parametrization  f : @0 , 2 pD Ø —3  whereby t # H2 cos t , 2 sin t , 0L, we have

 ŸC F ÿ „ s = -Ÿ0
2 p FHfHtLL ÿf£HtL „ t = -Ÿ0

2 pH2 cos t , 8 cos3 t , * L ÿ H-2 sin t , 2 cos t , 0L „ t = -4 Ÿ0
2 pH4 cos4 t - cos t sin tL „ t

= -16 Ÿ0
2 p cos4 t „ t = -16 Ÿ0

2 p 1ÅÅÅÅ4  Hcos 2 t + 1L2  „ t = -8 p - 4 Ÿ0
2 pcos2 2 t „ t = -8 p - 4 Ÿ0

2 p 1ÅÅÅÅ2  Hcos 4 t + 1L „ t
= -12 p .

Next, let us evaluate the integral:     Ÿ S
 H“ µ FL ÿ „ S.

Consider the parametrization F : R Ø —3  whereby  Hu , vL# Hu cos v , u sin v , 2 - uL, where R = @0 , 2Dµ @0 , 2 pD. We have 

 tu µ tv = Hcos v , sin v , -1Lµ H-u sin v, u cos v , 0L = Hu cos v , u sin v, uL = HxHu , vL , yHu , vL , 2 - zHu , vLL
so that F is an orientation-reversing parametrization of S. 

Since “ µ F = H-6 x y - y , -1 + 3 y2, 3 x2L,  it follows that 

 H“ µ FL ÿ Htu µ tvL = H-6 x y - y , -1 + 3 y2, 3 x2L ÿ Hx , y , uL = 3 x2 u - y + 3 y3 - x y - 6 x2  y
= 3 u3  sin3  v + 3 u3  cos2  v H1 - 2 sin vL - u2  cos v sin v - u sin v .

Each term is separable in u and v, mostly giving 0 when integrated over @0 , 2 pD in the angle v, so the surface integral evaluates easily as:

Ÿ S
 H“ µ FL ÿ „ S = -ŸF

H“ µ FL ÿ „ S = -Ÿ ŸR
H“ µ FL ÿ Htu µ tvL „ u „ v = -Ÿ0

2IŸ0
2 p

 H“ µ FL ÿ Htu µ tvL „ vM „ u

= -Ÿ0
2IŸ0

2 p 3 u3  cos2  v „vM „ u = -3 IŸ0
2 u3  „ uM IŸ0

2 p cos2  v „ vM = -3 µ I 1ÅÅÅÅ4 @ u4D 0
2 Mµ p

= -12 p .

This verifies Stokes’s theorem.

visualisation
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Gradient fields

Suppose that F = “ f  is a gradient vector field in —3 . Then it follows from Theorem 9A that for any continuously differentiable path 
f : @A , BD Ø —3  such that the composition function FÎ f : @A , BD Ø —3  is continuous, we have  Ÿf F ÿ „ s = f HfHBLL - f HfHALL. In other words, the 
value of the integral depends only on the endpoints of the path f. With the help of Stokes’ theorem, we can characterize gradient vector fields.

Theorem 12C — characterization of gradient fields

Suppose that F : —3 Ø —3  is a continuously differentiable vector field. Then the following statements are equivalent: 

(a)  For any oriented simple closed curve C , we have  ŸC
F ÿ „ s = 0.

(b)  For any two oriented simple curves C1  and C2  with the same initial point and the same terminal point, we have  ŸC1
F ÿ „ s = ŸC2

F ÿ „ s.

(c)  There exists a function  f : —3 Ø — such that F = “ f  everywhere in —3 .

(d)  We have “ µ F = 0  everywhere in —3 .

Sketch of proof

We shall show that (a)fl(b)fl(c)fl(d)fl(a). 

To show that (a)fl(b), let C  be the curve C1  followed by C2
- ; then C  is closed.  If C  is simple, then  ŸC1

F ÿ „ s - ŸC2
F ÿ „ s = ŸC F ÿ „ s = 0. If C  is 

not simple, then an elaboration of this argument will give the same result.

To show that (b)fl(c), let C  be any oriented simple curve with initial point H0 , 0 , 0L and terminal point Hx , y , zL, and write f Hx , y , zL = ŸC F ÿ „ s. 
Since (b) holds, f Hx , y , zL is independent of the choice of C . In particular, we can take C  to be the line segment from H0 , 0 , 0L to Hx , 0 , 0L,       
followed by the line segment from Hx , 0 , 0L to Hx , y , 0L, followed by the line segment from  Hx , y , 0L to  Hx , y , zL.

Assume first of all that x, y, z are all positive.  Then the three line segments can be parametrized respectively by 

f1 : @0 , xD Ø —3  whereby t # Ht , 0 , 0L  f2 : @0 , yD Ø —3  whereby t # Hx , t , 0L f3 : @0 , zD Ø —3  whereby t # Hx , y , tL,
so that writing F = HF1 , F2 , F3L, we have f Hx , y , zL = Ÿ0

xF1Ht , 0 , 0L „ t + Ÿ0
yF2Hx , t , 0L „ t + Ÿ0

zF3Hx , y , tL „ t .  With a little modification in the 
argument, this last formula can be shown to hold even if x, y, z are not all positive. 

By the Fundamental theorem of calculus, we clearly have  fÅÅÅÅÅÅÅÅz = F3 . By using different paths, it can be shown that   fÅÅÅÅÅÅÅÅx = F1  and   fÅÅÅÅÅÅÅÅy = F2 ,  so 
that  “ f = F. 

That (c)fl(d) is proved in Theorem 8G.

Finally, to prove that (d)fl(a), we simply apply Stokes’ theorem with any surface S  whose boundary is C . 

Remarks

Ï     In the statement of Theorem 12C, it is possible to assume that the vector field F  is continuously differentiable in —3 , except possibly at a finite number of 
points. The proof only needs minor modification.

Ï   There is a 2-dimensional version of Theorem 12C.  Recall that QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy  is the scalar curl of a vector field F = HP , QL in —2 . Thus there exists a function  

f : —2 Ø —  such that F = “ f  everywhere in —2  if and only if QÅÅÅÅÅÅÅÅx - PÅÅÅÅÅÅÅy = 0 everywhere in —2 . Here Green’s theorem plays the role of Stokes’ theorem in 
establishing the result.  However, we cannot allow exceptions to the condition that F  be continuously differentiable in —2 .

Ï   Theorem 12C is in some sense the converse of Theorem 8G. Recall now Theorem 8F, that for any twice continuously differentiable vector field F  in —3 , we 
have “ ÿ H“ µ FL = 0. One can prove (see Theorem12F below) that if G  is a vector field continuously differentiable everywhere in —3 with “ ÿ G = 0, then 
there exists a vector field F  in —3  such that G = “ µ F.
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12.3 Gauß’ (Divergence) Theorem

 symmetric elementry regions

Gauss’ theorem relates a surface integral over a closed surface S  in —3  to a volume integral over a region V  with boundary surface S .We shall be 
concerned with regions in —3  of the type 

(20) V = 8Hx , y , zL œ —3 : Hx , yL œ R and f1Hx , yL § z § f2Hx , yL<,
where R is an elementary region in —2 , and where the functions f1 : R Ø —2  and f2 : R Ø —2  are continuous, with f1Hx , yL § f2Hx , yL for every 
Hx , yL œ R. 

There are two other types, one with y bounded between continuous functions of Hx , zL in an elementary region, the other with x bounded between 
continuous functions of Hy , zL in an elementary region. 

A region in —3 which can be simultaneously described in all these three ways is called a symmetric elementary region in —3 .

Clearly we can evaluate triple integrals of continuous functions over such regions; see Section 5.7 (studied in MATH235).

Theorem 12D: Gauss’ Theorem

Suppose that V Œ —3  is a symmetric elementary region, with boundary surface S  oriented with outward normal.  Suppose further that a vector 
field F is continuously differentiable on V . Then  Ÿ S

F ÿ „ S = Ÿ Ÿ ŸV
Hdiv FL „ x „ y „ z .

Remarks

Ï   Sometimes, we write:     Ÿ S F ÿ „ S = Ÿ V Hdiv FL „ V .

Ï   Gauss’ theorem is in fact valid for any region V  which can be expressed as a union of finitely-many essentially disjoint symmetric elementary regions. 

Ï   We shall see that the proof of Gauss’ theorem is very similar to that of Green’s theorem.

Sketch of proof of Gauss' Theorem

Write F = HF1 , F2 , F3L. Then 

(21) Ÿ S F ÿ „ S = Ÿ S HF1 , F2 , F3L ÿ „ S = Ÿ S HHF1 , 0 , 0L + H0 , F2 , 0L + H0 , 0 , F3LL ÿ „ S
= Ÿ S

HF1 , 0 , 0L ÿ „ S + Ÿ S
H0 , F2 , 0L ÿ „ S + Ÿ S

H0 , 0 , F3 L ÿ „ S

and 

(22) Ÿ Ÿ ŸV Hdiv FL „ x „ y „ z = Ÿ Ÿ Ÿ V I F1ÅÅÅÅÅÅÅÅÅx + F2ÅÅÅÅÅÅÅÅÅy + F3ÅÅÅÅÅÅÅÅÅz M „ x „ y „ z

= Ÿ Ÿ ŸV
F1ÅÅÅÅÅÅÅÅÅx  „ x „ y „ z + Ÿ Ÿ ŸV

F2ÅÅÅÅÅÅÅÅÅy  „ x „ y „ z + Ÿ Ÿ ŸV
F3ÅÅÅÅÅÅÅÅÅz  „ x „ y „ z .

We shall show first of all that 

(23) Ÿ S H0 , 0 , F3 L ÿ „ S = Ÿ Ÿ ŸV
F3ÅÅÅÅÅÅÅÅÅz  „ x „ y „ z.

Since V  is a symmetric elementary region, it can be described in the form (20), so that 

(24) Ÿ Ÿ ŸV
F3ÅÅÅÅÅÅÅÅÅz  „ x „ y „ z = Ÿ Ÿ RIŸf1 Hx,yL

f2 Hx,yL F3ÅÅÅÅÅÅÅÅÅz  „ zM „ x „ y = Ÿ Ÿ RHF3  Hx, y, f2  Hx, yLL - F3  Hx, y, f1  Hx, yLLL „ x „ y .

On the other hand, the boundary surface S  can be partitioned into six surfaces, with:

bottom surface: S1 = 8Hx , y , zL œ —3 : Hx , yL œ R and z = f1Hx , yL<, 
top surface: S2 = 8Hx , y , zL œ —3 : Hx , yL œ R and z = f2Hx , yL<, 
and four side surfaces:  S3 , S4 , S5 , S6  corresponding to the four edges of the elementary region R.

The normal vectors to the surfaces S3 , S4 , S5 , S6  are all horizontal, with no component in the z-direction. Hence  
Ÿ S3

H0 , 0 , F3 L ÿ „ S = Ÿ S4
H0 , 0 , F3 L ÿ „ S = Ÿ S5

H0 , 0 , F3 L ÿ „ S = Ÿ S6
H0 , 0 , F3 L ÿ „ S = 0,  and so 

(25) Ÿ S
H0 , 0 , F3 L ÿ „ S = Ÿ S1

H0 , 0 , F3 L ÿ „ S + Ÿ S2
H0 , 0 , F3 L ÿ „ S.

The surface S1  can be parametrized by  F : R Ø S1 Õ —3   whereby  Hx , yL# Hx , y , f1Hx , yLL, with normal vector

 tx µ ty = I1 , 0 , f1ÅÅÅÅÅÅÅÅÅx Mµ I0 , 1 , f1ÅÅÅÅÅÅÅÅÅy M = I- f1ÅÅÅÅÅÅÅÅÅx , - f1ÅÅÅÅÅÅÅÅÅy , 1M .

Hence F is an orientation-reversing parametrization of S1 , and so 

(26) Ÿ S1
H0 , 0 , F3 L ÿ „ S = -Ÿ  ŸR

H0 , 0 , F3L ÿ I- f1ÅÅÅÅÅÅÅÅÅx , - f1ÅÅÅÅÅÅÅÅÅy , 1M „ x „ y = -Ÿ Ÿ R
F3  Hx , y , f1  Hx , yLL „ x „ y .
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The surface S2  can be parametrized by  Y : R Ø S2 Õ —3   whereby  Hx , yL# Hx , y , f2Hx , yLL, with normal vector

 tx µ ty = I1 , 0 , f2ÅÅÅÅÅÅÅÅÅx Mµ I0 , 1 , f2ÅÅÅÅÅÅÅÅÅy M = I- f2ÅÅÅÅÅÅÅÅÅx , - f2ÅÅÅÅÅÅÅÅÅy , 1M .

Hence Y is an orientation-preserving parametrization of S2 , and so 

(27) Ÿ S2
H0 , 0 , F3 L ÿ „ S = Ÿ  Ÿ R H0 , 0 , F3L ÿ I- f2ÅÅÅÅÅÅÅÅÅx , - f2ÅÅÅÅÅÅÅÅÅy , 1M „ x „ y = Ÿ Ÿ R F3  Hx , y , f2  Hx , yLL „ x „ y .

The formula (23) now follows on combining (24)‚ (25), (26) and (27).

Similarly, we have 

(28) Ÿ S HF1 , 0 , 0L ÿ „ S = Ÿ Ÿ ŸV
F1ÅÅÅÅÅÅÅÅÅx  „ x „ y „ z and Ÿ S H0 , F2 , 0L ÿ „ S = Ÿ Ÿ ŸV

F2ÅÅÅÅÅÅÅÅÅy  „ x „ y „ z .

Gauss’ theorem now follows on combining (21), (22), (23) and (28).

Example 12.3.1 — spherical volume

Let V  denote the unit ball x2 + y2 + z2 § 1 in —3 . Then the boundary surface S is given by x2 + y2 + z2 = 1. Consider the vector field 
FHx , y , zL = H2 x , y2, z2L. 
Let us first of all calculate the integral: Ÿ S F ÿ „ S.

The surface S  can be parametrized by  F : R Ø —3   whereby  Hu , vL# Hsin u cos v , sin u sin v , cos uL, where R = @0 , pD µ @0 , 2 pD, and where   
tu µ tv = Hsin2 u cos v , sin2 u sin v , sin u cos uL = Hsin uL FHu , vL. This is an orientation-preserving parametrization, hence

Ÿ S
F ÿ „ S = Ÿ Ÿ R

FHsin u cos v, sin u sin v, cos uL ÿ Hsin2 u cos v , sin2 u sin v , sin u cos uL „ u „ v

= Ÿ Ÿ R H2 sin u cos v, sin2 u sin2 v, cos2 uL ÿ Hsin2 u cos v , sin2 u sin v , sin u cos uL „ u „ v

= Ÿ Ÿ R
H2 sin3 u cos2 v + sin4 u sin3 v + sin u cos3 uL „ u „ v

= 2 IŸ0
p sin3 u „ uM I Ÿ0

2 pcos2 v „ vM + IŸ0
p sin4 u „ uM I Ÿ0

2 psin3 v „ vM + IŸ0
p sin u cos3 u „ uM I Ÿ0

2 p1 „ vM
= 2 p Ÿ0

p H1 - cos2  uL sin u „ u + 0 + 2 p Ÿ-1
1 h3 „ h = 2 p @ 1 - 1ÅÅÅÅ3  h3D

-1
+1

+ 0 + 0
= 2 p µ 2 µ 2ÅÅÅÅ3 = 8ÅÅÅÅ3  p .

Next, note that   Ÿ Ÿ ŸV Hdiv FL „ x „ y „ z = Ÿ Ÿ ŸV H2 + 2 y + 2 zL „ x „ y „ z = 2 Ÿ Ÿ Ÿ V H1 + y + zL „ x „ y „ z = 2 Ÿ Ÿ ŸV 1 „ x „ y „ z + 0 + 0
= 2 µ 4ÅÅÅÅ3  p = 8ÅÅÅÅ3  p ,

since the volume of the unit sphere is equal to 4ÅÅÅÅ3  p.  This verifies Gauss’ theorem.

Here we have used that  Ÿ Ÿ ŸV
y „ x „ y „ z = Ÿ Ÿ ŸV

z „ x „ y „ z = Ÿ Ÿ ŸV
x „ x „ y „ z = 0 , which can be seen in various ways.  (e.g., by symmetry 

—there is as much contributing negatively for y < 0, as positively  for y > 0. That is, we are integrating an odd function over a symmetric domain.)

Alternatively, write  V = 9Hx , y , zL œ —3 : x2 + z2 § 1 and -
è!!!!!!!!!!!!!!!!!!!!!1 - x2 - z2 § y §

è!!!!!!!!!!!!!!!!!!!!!1 - x2 - z2 =, so that 

Ÿ Ÿ ŸV y „ x „ y „ z = ‡ ‡
x2 +z2 §1

JŸ-
è!!!!!!!!!!!!!!!!!!1-x2 -z2

+
è!!!!!!!!!!!!!!!!!!1-x2 -z2

y „ yN „ x „ z = ‡ ‡
x2 +z2§1

J 1ÅÅÅÅ2 @ y2D
-
è!!!!!!!!!!!!!!!!!!1-x2 -z2

+
è!!!!!!!!!!!!!!!!!!1-x2 -z2 N „ x „ z = 0 .

visualisation
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Example 12.3.2 — cubical volume

Let V  be the cube with vertices H1 , 1 , 1L, with boundary surface S. Consider the vector field FHx , y , zL = Hx , y , zL.  We have shown in 
Example 11.4.6 that   Ÿ S

F ÿ „ S = 24 .  Now  Ÿ Ÿ ŸV
Hdiv FL „ x „ y „ z = 3 Ÿ Ÿ Ÿ V

„ x „ y „ z = 8 µ 3 = 24 . This verifies Gauss’ theorem.

In fact, we can generalize this observation. Suppose that S  is the boundary surface of any region V  in —3  for which Gauss’ theorem holds. Then 

  Ÿ S r ÿ „ S = 3 Ÿ Ÿ ŸV „ x „ y „ z = 3 volHVL,  where r = Hx , y , zL denotes the vector to points on S .
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We conclude this chapter by proving the following famous result.

Theorem 12E:  (Gauß’ Law)

Suppose that V Œ —3  is a symmetric elementary region, with boundary surface S  oriented with outward normal. Suppose further that 

H0 , 0 , 0L – S . Then   Ÿ S
rÅÅÅÅÅÅr3 ÿ „ S = 9 4 p if H0 , 0 , 0L œ V

0 if H0 , 0 , 0L – V , =where r = Hx , y , zL denotes the vector to points on S , and r = »» r »» = Hx2 + y2 + z2L 1ÅÅÅÅ2 .

Sketch of proof

Suppose first of all that H0 , 0 , 0L – V . Then the vector field rÅÅÅÅÅÅr3  is continuously differentiable on V , and so it follows from Gauss’ theorem that

 Ÿ S
rÅÅÅÅÅÅr3 ÿ „ S = Ÿ Ÿ ŸV divH rÅÅÅÅÅÅr3 L „ x „ y „ z. It is easy to check that divH rÅÅÅÅÅÅr3 L = 0 whenever r  0. The desired conclusion therefore holds in this case.

Suppose now that H0 , 0 , 0L œ V . Since H0 , 0 , 0L – S , it follows that there exists e > 0 such that the open ball BHeL, with centre H0 , 0 , 0L and 
radius e > 0, satisfies BHeL Õ V . Now let W = V îBHeL, the region V  with the open ball BHeL removed. Clearly this region has boundary surface 
S ‹ T , where T  is the boundary surface of BHeL with normal pointing towards H0 , 0 , 0L. Applying Gauss’s theorem to this region W (note that W is 
not an elementary region), we have  Ÿ S

rÅÅÅÅÅÅr3 ÿ „ S + Ÿ T
rÅÅÅÅÅÅr3 ÿ „ S = Ÿ Ÿ ŸV

divH rÅÅÅÅÅÅr3 L „ x „ y „ z = 0,  so that Ÿ S
rÅÅÅÅÅÅr3 ÿ „ S = -Ÿ T

rÅÅÅÅÅÅr3 ÿ „ S.

The boundary surface T  can be parametrized by F : R Ø —3   whereby  Hu , vL# e Hsin u cos v , sin u sin v , cos uL, where R = @0 , pD µ @0 , 2 pD, 
and where  tu µ tv = e2Hsin2 u cos v , sin2 u sin v , sin u cos uL = e Hsin uL FHu , vL . This is an orientation-reversing parametrization, hence

-Ÿ T
rÅÅÅÅÅÅr3 ÿ „ S = Ÿ Ÿ R

FHu ,vLÅÅÅÅÅÅÅÅÅÅÅÅÅÅe3 ÿ e Hsin uL FHu , vL „ u „ v = 1ÅÅÅÅÅÅe2  Ÿ ŸR
Hsin uL F Hu , vL ÿ F Hu , vL „ u „ v = Ÿ Ÿ R

sin u „ u „ v = 2 p Ÿ0
psin u „ u = 4 p .

This gives the desired conclusion.

visualisation
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 The image at right uses color-coding  and a non-linear  (monotonic)  scaling of vector  lengths,  with the vectors distributed  radially via an angular distribution,  
 whereas  that on the left shows vectors anchored  to a cubical grid.
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 Another Theorem

Theorem 12F:

Suppose that F is a vector field, defined and continuously differentiable everywhere in —3 , satisfying “ ÿ F = 0. Then there exists a continu-
ously differentiable vector field G such that “ µ G = F.

Sketch of proof

Write  F = HF1 , F2 , F3L and define  G = HG1 , G2 , G3L by:  G1Hx , y , zL = Ÿ0
z F2Hx , y , tL „ t - Ÿ0

y F3Hx , t , 0L „ t , G2Hx , y , zL = -Ÿ0
z F1Hx , y , tL „ t , 

G3Hx , y , zL = 0. Then  
G3ÅÅÅÅÅÅÅÅÅÅ y - G2ÅÅÅÅÅÅÅÅÅÅ z = 0 + ÅÅÅÅÅÅÅ z  IŸ0

z F1Hx , y , tL „ tM = F1Hx , y , zL ;

  G1ÅÅÅÅÅÅÅÅÅÅ z -  G3ÅÅÅÅÅÅÅÅÅÅ x = ÅÅÅÅÅÅÅ z  IŸ0
z F2Hx , y , tL „ tM - 0 = F2Hx , y , zL ;

  G2ÅÅÅÅÅÅÅÅÅÅ x -  G1ÅÅÅÅÅÅÅÅÅÅ y = -Ÿ0
zI  F1ÅÅÅÅÅÅÅÅÅÅ x +  F2ÅÅÅÅÅÅÅÅÅÅ y M „ t + ÅÅÅÅÅÅÅ y  IŸ0

y F3Hx , t , 0L „ tM = Ÿ0
z  F3ÅÅÅÅÅÅÅÅÅÅ z  Hx, y, tL „ t + F3Hx , y , 0L = F3Hx , y , zL .

Hence we have that  “ µ G »Hx,y,zL = HF1 , F2 , F3L »Hx,y,zL = FHx , y , zL, as required.

Remarks

Ï    Whereas in Theorem12C it is possible to assume that the vector field F is continuously differentiable in —3 except possibly at a finite number of points, this 
extension is not applicable here. The vector field F  must be continuously differentiable everywhere in —3 .

Ï    Theorem 12F is in some sense the converse of Theorem 8F, which says that for any twice continuously differentiable vector field G  in —3 , we have 
“ ÿ H“ µ GL = 0. Here we have proved that if F  is a continuously differentiable vector field in —3 with “ ÿ F = 0, then there exists a vector field G in —3  such 
that F = “ µ G .
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