MATH236 — Weeks 10-12
Integration Theorems

Chen notes, chapter 12

I 12.1 Green’s Theorem

Recall from Section 5.4 (studied in MATH235) that a region of the type:
() R={(x,y»<cR*:xe[A,B] and ¢;(x) <y < $r(0)},

where the functions ¢; : [A;, B;] > R and ¢, : [A; , B;] —» R are continuous in the interval [A; , B;] and where ¢;(x) < ¢,(x) for every
x € [Ay, B1], is called an elementary region of type 1.

A region of the type:
() R={(x,y» cR*:ye[A, B] and ¢1(y) < x < Yo (y)},

where the functions i, : [A;, B] » R and ¢, : [A;, B,] - R are continuous in the interval [A; , B,] and where ¥ (y) < y»(y) for every
y € [A;, By], is called an elementary region of type 2.

Furthermore, an elementary region of type 3 is one which is of both type 1 and type 2; in other words, one that can be described by both (1) and (2).

Green’s theorem relates a line integral along a simple closed curve C in R? to a double integral over the region R enclosed by the curve. We say
that C has positive orientation if the region R is on the left when we follow the curve C, and has negative orientation otherwise. For example, a
circle followed in the anticlockwise direction has positive orientation with respect to the region it encloses.

Theorem 12A: Green’s theorem

Suppose that R € R? is an elementary region of type 3, with boundary curve C followed with positive orientation. Suppose further that the func-
tions P: R —» R and Q: R — R are both continuously differentiable. Then

3 [.Pdx+0ay) = [[, (52 - &)axay.

Remarks

¢ | Consider the vector field F = (P(x, y), Q(x, y)) in R%. Then (3) can be written as fc F-ds= ff (%—g = g—{:)dx dy. Note that Z_g = g_;) is the
R

scalar curl of the vector field F = (P, Q).

- Consider a vector field F(x, y, z) = (P(x, y), Q(x, y), 0) in R3, and imagine the region R to be a surface S on the x y-plane, with boundary curve C. Then we
have

) fCF al’s—fC(P(x y),0x.y),0)-(dx,dy,dz) = ff 0 0, 6)( - )(o 0, dxdy= ff andy

On the other hand, we can parametrize the surface S by the function ®: R — R3: (x, Y) e (x,y,0). Then £, =(1,0,0) and ¢, = (0, 1, 0), so that
text,=(0,0,1).
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Hence
(®)] fq)(curlF) ds = ff 0 0, = 6x - )(0 0, l)dxdy—ff dxdy

If we take the oriented surface S to have normal vector in the positive z-direction, then

(6) [ (curl F)-dS = [ (curl F)-dS.

Combining (4),(5),(6), we conclude that fc F-ds= fs (curl F)-dS. This is known as Stokes’ theorem. We shall study this in Section 12.2.

& | Replacing Q by P and replacing P by —Q in (3), we obtain

ff arxd/y fC(PaYy Qdx).

Consider now a vector field F = (P(x,y), O(x, y)) in R2. Then

ff dxafy ff (divF)dxdy.

Next, suppose that ¢ is an orientation preserving parametrization of C. Then a tangent vector at a point (x(z) , y(¢)) is given by (x'(¢), ¥’ (¢)). Rotating this vector
in the clockwise direction by an angle ]7 7 gives an outward normal vector to C at the point (x(¢) , y(¢)). This outward normal vector is (y'(¢), —x’(#)), with unit

(0, =x'(1)
vector n = '@ O - It follows that

© J.(Pdy-Qdx)= [ .F-nds.

Combining (7),(8),(9), we obtain ffR divF)dxdy = fc F-nds. This is the 2-dimensional version of Gauss’ Divergence Theorem which we shall study in
Section 12.3.

Green’s theorem can be extended to regions R which are finite unions of essentially disjoint elementary regions of type 3. For example, consider the annulus
={(x,y) e R?:1<x*+y? <4}. We can cut R into four subregions of type 3 by the lines x =0 and y = 0.

The boundary curve is now the union of the two circles C; = {(x, y) € R?: x> +y> = 1} and C, = {(x, y) € R?: x* + y? = 4}, with C; followed in the clock-
wise direction and C, followed in the anticlockwise direction.

Proof of Theorem 12A

Consider first of all the integral:
(10) J.Pdx.

Since R is an elementary region of type 3, it is also an elementary region of type 1, and so can be described in the form (1):

The boundary curve C of this region can be split into four parts. There are two straight line segments: from (A; , ¢2(A;)) to (A, ¢1(A;)) and from

(By, $1(By)) to (By , $2(By)). There are also two curves Cy = {(x, ¢1(x)): x € [A, B1]} and C; ={(x, ¢,(x)): x € [A,, B,]}, followed from
(A1, ¢1(A)) to (By , ¢1(B1)) and from (B , ¢»(By)) to (A;, ¢2(A;)) respectively.

The contribution from the two straight line segments to the integral (10) is zero, since dx = 0 on these two line segments. It follows that

JoPdx=[, Pdx+ [, Pdx =[PP, pi)dx + [ Plx, $>(0) dix = = [*(P(x, $2(x)) = P(x, $1 (1)) dx.
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On the other hand, it follows from Fubini’s theorem that [ [ R '?9—1; dxdy= /jl ( ﬂ? Z(: Z—I; dy)dx = f/:l (P(x, ¢2(x)) = P(x, ¢1(x))) dx, by the

Fundamental theorem of calculus. Hence

(n JpPdx=—[[ % axdy.

Similarly, it can be proved that

(12) [.ody=[[ %2 axdy.

The formula (3) now follows on combining (11) and (12).

Consider the special case when P(x, y) = -4 y and Q(x, y) = % x. Then (3) becomes 4 [.(xdy—ydx) = [ [ 1dxdy. This is equal to the
area of R.

Suppose now that R is the region bounded by the hypocycloid C of four cusps, given by the equation X7+ y% =1 and parametrized by
$:00,27] >R2: t - (cos’ 1, sin® 1). Then dx = —3 cos? ¢ sintdt and dy = 3sin® t costdt. Hence the area of the region bounded by the hypo-
cycloid is given by

2 . . 2 .
%fc(xcﬁy—ydx) = %foﬂ(3cos4t sin? t+ 3 cos? ¢ sin* ) dr = %fo "cos? t sin® tdt

2m . n
=3 [Tsi2rde = 3 [T L (1 -cos20)df = 3 [T L (1 -cos20)df= (0] = 3 7.

graphic

3 et ain2t = B in?
icostsmt = 8sm 2t

0
Let P(x, y) = x> ycosx +2xysinx —y* e* and Q(x, y) = x> sinx — 2 y ¢*. Then a—g =2xsinx+x’cosx—2ye" = g—l;

It follows from Green’s theorem that

(13) J.Pdx+0Qdy) =0
for the boundary curve C of any elementary region of type 3. Note that (13) holds if C is the boundary curve of any elementary region of type 3 in
which the equality 66—2 = 3—5 holds. In particular this holds when F = (P(x, y), Q(x, y)) is a vector field in R? such that F = V f, for some

continuously differentiable function f(x, y).

Let P(x,y)=x*-xy> and Q(x, y) = y> —2xy, and let R denote the square with vertices (0, 0), (2, 0), (2, 2) and (0, 2).
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The boundary curve is then C = C; J C; U C; U C4, where C, C;, C3, Cy are the four sides of R followed in the anticlockwise direction with
initial point (0, 0), and can be parametrized respectively by

$,:[0,2] >R%:t>(£,0), ¢,:[0,2]>R?:t>(2,1), ¢3:[0,2] >R?*:t>(2-1,2), ¢,:[0,2]15R*:t-(0,2-1).
We have

Jo dy-ydx) = [ (P, 0)-(1,0)dt = [ P, 0)dr = [ dr = L[F] ' = £,

Jo, xdy=ydx) = [ (P,0)-(0, Ddt = [[ 02, ndt= [} (*-4ndt=[+7F -2/ =-51,

Jo dy-ydx) = [ (P,0)-(-1,0)dt =—[PPQ-1,2d1=-[[@-0(-6-ndi=[121-27 - L] =131,

Jo, dy=ydx) = [ (P, Q)-0,~1)dr== [ QO,2-ndi=-[ Q-0 dt =-[41-27+ L 7] =

Hence fC(Paz“Qdy):fCl(PazHQdy)+fCZ(de+Qdy)+fC3(de+Qazy)+fC4(de+Qazy)= $-51+133-%=58.

This calculation can be somewhat simplified by noting that dx = 0 on C, and C4, while dy =0 on C; and Cs, and that the parametrizations are
linear on each of the sides of the square. Hence we can write down directly:

[ edy-ydx) = [P P(x.0)dx+ [ 0O, y)dy ~ [ PQ~x,0)dx~ [ 00, y)dy
= [Pdx+ [ P-4y dy- [ (2 -8xdx— [ Ydy=5+(E -8~ (2 -16)- L =8.

_8
5

On the other hand, we have
3

e L)dxdy= [[3xy* -2y dxdy = P(fGxy —2pdx)dy = [1(13 21,7)y - (21D ) dy
= [ 6y —4pndy=12y°-2y?]," =8.

This verifies Green’s theorem.
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with transparency

Let P(x,y)=xy+y* and Q(x, y) = x?, and let R denote the region bounded by the line y = x and the parabola y = x2.

The boundary curve is then C = C, |J C;, where C| is part of a parabola from (0, 0) to (1, 1) and C, is the part of the line from (1, 1) to (0, 0).
The curves C; and C, can be parametrized respectively by ¢, :[0, 1] >R?:t(t,1%), ¢,:[0, 1] >R>:t > (11, 1-1).

We have fc. (xdy-ydx) = fc. P,0)-(1,2ndt = fol () y(@®) + y(0)2) + 2 t(x(®)?)) dt = fol G +dr = % 4+ 1 1:5]01 =4

Jo, xdy=ydx) = [ (P,0Q)-(-1, - dt = ~ [ )y +yO? + 20 di =~ [ 3P dr = ~[£]) = -1.

Hence J(Pdx+Qdy) = fcl(de+Qdy)+fCZ(de+Qdy) =P -1=-4%.

On the other hand, we have [ fi(3% — 55 )dxdy= [ [@x=(re2y)dxdy = [[([i=2ndy)dx= [(y1)x= 1120 dx
=£1(x2—.x3—x2+x4)dx =[%x5—%x4](1)=_%

This verifies Green’s theorem.



MATH236 Week-10-print.nb

visualisation

T - "
S P TS v ¥
e - P v A

— e e e o e - A

0.8 o Py
- o - [ o X

0.6 C v . A
- - 2 ¢ < ‘« A

0.4t ~| = - « < 1A
R ‘ ]
- P ‘ VR

02 « |- « < 101 ‘o
i « 4 L

o7 T 1 b 4 11 —+

L VU S G U W pob

0.6 0.8 1

F-¢;

i

The magenta curve is from G, , the reverse of the green plot from C; , for easier comparison with the yellow plot from Cy .

with transparency



MATH236 Week-10-print.nb 7

| 12.2 Stokes’ Theorem

Stokes’s theorem relates a line integral along a simple closed curve C in R? to a surface integral over a surface S with boundary curve C.
A special case of it is Green’s theorem discussed in the last section.

Clearly any relationship between the line integral and the surface integral requires a convention concerning the orientation of the curve C with
respect to the orientation of the surface S. We use the right-hand-thumb rule: extend the thumb on our right hand and close the fingers; if the
thumb points in the direction of the chosen normal of S, then the curve C is said to have positive orientation if it follows the direction of the fingers.
In other words, if we follow the curve C in positive orientation, then the surface S is on the left.

Theorem 12B: (Stokes’ Theorem)

Suppose that S ¢ R? is an oriented surface, defined by an orientation preserving parametrization ® : R — R* for some elementary region R C R?
of type 3, and with boundary curve C followed with positive orientation. Suppose further that the vector field F is continuously differentiable
in S. Then J.F-ds= [ (curl F)-dS.

We shall not give a rigorous proof here. Instead, we only very roughly give an outline of the main ideas, and show that the result may be deduced
from Green’s theorem. In the sketch below, we often make extra assumptions which are not normally necessary.

Heuristics of Theorem 12B

Write F = (F,, F,, F3). Then

(14) chw's:fC(F, ,F2,F3)-d’s=fc (Fydx+F, dy+F;dz), and

(15)  [((VXF)-dS= [((VX(F,0,0)-dS+ [((VX(O,F,,0)-dS + [(Vx(0,0, F3))-dS.
Suppose that a parametrization of S is given by: ®: R — S cR® whereby (u, v) - (x(u, v), y(u v), z(u,v)).

Let C’ denote the boundary of R, and consider the integral f Fidx. Smce dx= ﬁx du+ 5 d v it follows from Green’s theorem that
ox ox ox
chldx_f (Fl En du+F1 dv) ff(@u( 1 (9\/) (Fl 614))d/udv

OF, Ox 0x oF, ox _ OF 9x _ OF ox
= ff;e( g o TE ey o an 0vau)d”dv —ffR( u v v au)‘l”d"-
0F1 _ (’)Fl Ox aFl 3y (’)Fl dz 0F1 _ (’)Fl ox 0F1 a}’ 0F1 0z

Next note that T T o ow T oy o T e o M G =t ot e v S° that

oF, Ox IF; Ox =(3F1 Ox OF, dy IF, 6z)6x ([)Fl 3x+3F1 9y | OF, c’)z)i)x

x  ou dy Ou dz Ou ox dv ' by v 0z v/ ou

OF, Oy , OF\ 9zyox _(OF Oy  OF 0z)dx _ OF O 0z Ox 9z Ox

_(—B)T ou 9z Hu) av (6_\' v 9z BV) ou — Iy (5u v v (9u) 0z (Bu v av 5u)
IF;  d(z,x) oF; 0(x,y)

dz  d(u,v) ady  ouy) *

dy ox 9y ox

Hence

OF, 9z _ OF )
10 JoFrdx= [ (G Fay = 5 duay) dudv

Now
_ OF (9F OF OF Iy,z)  Ozx)  Axy) _ OF, 0(z,x) OF; 0(x,y)
a7 fS(VX(Fl’O’O))'dS_fs(O’ 6—z1’ 5 ) ds = f ’ Hzl ’_ﬁ—y])'(ﬁ(u,v)’ o(u,v) ﬁ(u,v))dudv_fR(a—zl ouy) (’)—yl ﬁ(u,v))dudv'

Combining (16) and (17) gives

(18) fCF. dx:fS(Vx(F.,O,O))-dS.

Similarly we get that

(19) JoFady= [((VX(O0,F,,0)-dS and [ Fidz= [ (Vx(0,0,F;))-dS.
Thus Stokes’ theorem follows on combining (14), (15), (18) and (19).

Example 12.2.1 — spherical cap

Let S denote the upper hemispherical surface of the sphere x? +y? + z> = 9, with outward-pointing normal.
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Then the boundary curve C is given by x* +y? =9, followed in the anticlockwise direction.
Consider the vector field F(x,y, z) = (2y, 3 x, —z%). Let us first of all evaluate the integral: f c F.ds.
By using the orientation-preserving parametrization ¢:[0, 2] - R3 whereby ¢+ (3cost, 3sint, 0), we have

[ F-ds=[""F@@) ¢ dt = [["6sint,9cost,0)-(~3sint, 3cost,0)dr=9 ["(Bcos® 1 — 2sin’ 1) d1

271
2

Next, let us evaluate the integral: f s (VXF)-dS.

=9 (1-3cos 28)dt = 9.
Consider the parametrization ®: R — R3 whereby (u, v) = (3sinu cosv, 3sinu sinv, 3 cosu), where R = [0, L n]x[0,2n].
We have f,xt, = (9sin® u cosv, 9sin’ u sinv, 9cosu sinu) = 3sinu D, v), so that @ is an orientation-preserving parametrization of S.
It is easy to see that VXF =(0,0,3-2)=(0,0, 1), so
[y (7 xF)-dS = [[0.0. 1)-3sinu ®w. v)dudv = [ [,9sinu cosududv =9([*"sinu cosudu)(f*"1 dv)
=97rj(;%”sin2u du= %nL”sinZu dQu) = %ﬂ(ﬂsin&d@): %ﬂ[—cosé?]{)r =9nx.

This verifies Stokes’ theorem.

visualisation
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Let S denote the surface of the cone z =2 — vV x? + y2 above the x y-plane, with inward-pointing normal.
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Then the boundary curve C is give by x? +y*> = 4, followed in the clockwise direction.
Consider the vector field F(x, y, z) = (x—z, x> + yz, =3 xy?). Let us first of all evaluate the integral: fc F-ds.
By using the orientation-reversing parametrization ¢ :[0, 2 7] - R? whereby ¢+ (2cos ¢, 2sint, 0), we have
[.F-ds= —fOZ”F(¢(t))-¢’(z)dz = —foz”(Z cost,8cos’ 1, x)-(=2sint, 2cost, 0)dr = -4 foz”(4 cos* 1 — costsin 1) dt

=16 ["cos* tdt = ~16 [ L (cos21+ 1P di= ~81~4 [["cos’ 2rdr=-8n~4 [" L (cosd1+ 1) dr
=-12nr.

Next, let us evaluate the integral: f ‘ (VXF)-dS.

Consider the parametrization ®: R — R> whereby (u, v) - (u cosv, u sinv, 2 —u), where R = [0, 2] x [0, 2 7]. We have
t,xt, =(cosv,sinv, —1)X(-usinv, ucosv, 0) = (ucosv, usinv, u) = (x(u,v), yu,v),2—zu,v))

so that @ is an orientation-reversing parametrization of S.

Since VX F = (—6xy—y, —1+3y%, 3x%), it follows that

(VxXF)-(t,xt,)=(=6xy—y,-1+3y>,3x)-(x,y,u)=3x2u-y+3y’  —xy-6x%y
=3’ sin’® v+ 34’ cos? v(1 —2sinv) —u? cosvsiny —usinv.

Each term is separable in # and v, mostly giving O when integrated over [0, 2 7] in the angle v, so the surface integral evaluates easily as:
2/ M2n
fs (VxF)-dS = -fq)(v xF)-dS = -ffR(V xF)-(t,xt,)dudv = -fo (fo (VXF)-(t,xt,)dv)du

= —foz(ﬁKSuS coszvaiv)aiu =-3 (foz u? d14)(f027rcos2 vdv) = —3><(7i—[u4](2))><71
=-12r.

This verifies Stokes’s theorem.

visualisation
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Gradient fields
Suppose that F =V f is a gradient vector field in R3. Then it follows from Theorem 9A that for any continuously differentiable path

¢ :[A, B] » R3 such that the composition function Fo ¢:[A, B] - R? is continuous, we have f¢ F-ds = f(¢(B)) — f(¢(A)). In other words, the
value of the integral depends only on the endpoints of the path ¢. With the help of Stokes’ theorem, we can characterize gradient vector fields.

Theorem 12C — characterization of gradient fields

Suppose that F :R* - R? is a continuously differentiable vector field. Then the following statements are equivalent:

(a) For any oriented simple closed curve C, we have f F -ds=0.
(b) For any two oriented simple curves C, and C, with the same initial point and the same terminal point, we have f @ F-ds= f @ F.ds.
1 2

(c) There exists a function f:R> — R such that F = V f everywhere in R3.

(d) Wehave Vx F =0 everywhere inR3.

Sketch of proof

We shall show that (a)=(b)=(c)=(d)=(a).

To show that (a)=(b), let C be the curve C; followed by C,™; then C is closed. If C is simple, then fc F-ds— fc F-ds= fc F-ds=0.IfCis
1 2
not simple, then an elaboration of this argument will give the same result.

To show that (b)=(c), let C be any oriented simple curve with initial point (0, 0, 0) and terminal point (x, y, z), and write f(x, y, z) = fc F-ds.
Since (b) holds, f(x, y, z) is independent of the choice of C. In particular, we can take C to be the line segment from (0, 0, 0) to (x, 0, 0),
followed by the line segment from (x, 0, 0) to (x, y, 0), followed by the line segment from (x, y,0)to (x, y, 2).

Assume first of all that x, y, z are all positive. Then the three line segments can be parametrized respectively by
é,:[0, x] > R3 whereby ¢ (t,0,0) &, :[0, y] > R3 whereby ¢ (x, ¢, 0) @,:10, z] > R3 whereby - (x, y, 1),

so that writing F = (Fy , F,, F3), we have f(x,y,2) = ["Fi(t,0,0)dt+ ["Fy(x,1,0)dt + [*F3(x, y, 1)dt. With alittle modification in the
argument, this last formula can be shown to hold even if x, y, z are not all positive.

By the Fundamental theorem of calculus, we clearly have % = F3. By using different paths, it can be shown that % =F; and % =F,, so
that Vf=F.
That (c)=(d) is proved in Theorem 8G.
Finally, to prove that (d)=(a), we simply apply Stokes’ theorem with any surface S whose boundary is C.
Remarks
* In the statement of Theorem 12C, it is possible to assume that the vector field F is continuously differentiable in R, except possibly at a finite number of
points. The proof only needs minor modification.
& | There is a 2-dimensional version of Theorem 12C. Recall that g—g - 3—5 is the scalar curl of a vector field F = (P, Q) in R2. Thus there exists a function

f:R? 5 R such that F = V f everywhere in R? if and only if Z—g - (?9_5 =0 everywhere in R?. Here Green’s theorem plays the role of Stokes’ theorem in

establishing the result. However, we cannot allow exceptions to the condition that F be continuously differentiable in R .

¢ | Theorem 12C is in some sense the converse of Theorem 8G. Recall now Theorem 8F, that for any twice continuously differentiable vector field F in R*, we
have V - (V x F) = 0. One can prove (see Theorem12F below) that if G is a vector field continuously differentiable everywhere in R3with V -G = 0, then
there exists a vector field F in R® such that G =V x F.
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I 12.3 GauB’ (Divergence) Theorem

symmetric elementry regions

Gauss’ theorem relates a surface integral over a closed surface S in R* to a volume integral over a region V with boundary surface S.We shall be
concerned with regions in R? of the type

20) V={x,y,9€R’:(x,y) €R and ¢i(x,y) <z=d(x, )},

where R is an elementary region in R?, and where the functions ¢; : R — R? and ¢, : R — R? are continuous, with ¢, (x, y) < ¢»(x, y) for every
(x,y)€R.

There are two other types, one with y bounded between continuous functions of (x, z) in an elementary region, the other with x bounded between
continuous functions of (y, z) in an elementary region.

A region in R3which can be simultaneously described in all these three ways is called a symmetric elementary region in R3.

Clearly we can evaluate triple integrals of continuous functions over such regions; see Section 5.7 (studied in MATH235).

Theorem 12D: Gauss’ Theorem

Suppose that V € R? is a symmetric elementary region, with boundary surface S oriented with outward normal. Suppose further that a vector
field F is continuously differentiable on V. Then f 5 F-dS = f f f v (divF)dxdydz .

Remarks

& | Sometimes, we write: fs F-dS= fv (divF)dV.

& | Gauss’ theorem is in fact valid for any region V which can be expressed as a union of finitely-many essentially disjoint symmetric elementary regions.

& | We shall see that the proof of Gauss’ theorem is very similar to that of Green’s theorem.

Sketch of proof of Gauss' Theorem

Write F = (F, , F», F3). Then

QD) [(F-dS= [((FI,F,,F3)-dS= [ (F\,0,0) +(0, F,0)+(0,0, F3))-dS
= [((F1,0,0)-dS+ [ (0,F,,0)-dS+ [ (0,0, F3)-dS

and

2 [[f,divFdxdydz = [[[, (G5 + 5 + 5> )dxdydz
_fffv 9k, dxdydz +fffv 65? dxdydz +fffv aa—?dxdydz.

‘We shall show first of all that

(23) [, 0.0.F3)-ds = [[[, % axdyd:.

Since V is a symmetric elementary region, it can be described in the form (20), so that

@) [[[f, B dxdydz = [[ ([, 5 dz)dxdy = [[(Fs (5, y, ¢ (6, 3) ~ Fs (v, y, 61 (x, ) dxdy.

On the other hand, the boundary surface S can be partitioned into six surfaces, with:

bottom surface: §; = {(x,y,2) €R3:(x,y) € R and z = ¢, (x, y)},
top surface: S, ={(x,y,20€R3:(x,y)eR and z = ¢»(x, y)},

and four side surfaces: S3, S, Ss, S¢ corresponding to the four edges of the elementary region R.

The normal vectors to the surfaces S3, Sy, S5, S¢ are all horizontal, with no component in the z-direction. Hence
Js, 0.0, F5)-dS = [( (0,0,F3)-dS = [ (0,0,F;)-dS = (0,0,F;)-dS =0, andso
25)  [((0,0,F5)-dS = [ (0,0,F;)-dS+ [ (0,0,F;)-dS.
The surface S; can be parametrized by ®:R - S§; C R3 whereby (x,y) — (x,y, ¢1(x, y)), with normal vector
_ [ 0dy \ _ ¢ [
toxty = (1,0, Fr)x(0. 1. F) = (=G .~ 1)

Hence @ is an orientation-reversing parametrization of S;, and so

(26) [, 0,0, F5)-dS ==[ [ (0,0, F5)-(- 5L, - 1)dxdy == [[ Fs(x,y, ¢ (x, y) dxdy.
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The surface S, can be parametrized by ¥:R - S, c R® whereby (x, y) - (x, y, ¢»(x, y)), with normal vector
_ 99 o\ _( O i
texty=(1,0, )% (0.1, F2) = (-5 . -5 1).
Hence ¥ is an orientation-preserving parametrization of S,, and so
2] 0
@7 [ ©,0,F)-dS = [ [, 0,0, F)-(- 5%, — 52 1)dxdy = [[ Fs(x,y, 6> (x, ) dxdy.
The formula (23) now follows on combining (24), (25), (26) and (27).

Similarly, we have
(28) [ (F1,0,0)-dS = [[[, FLdxdydz and [ (0,F>,0)-dS = [[[, 4> dxdydz.
Gauss’ theorem now follows on combining (21), (22), (23) and (28).

Example 12.3.1 — spherical volume

Let V denote the unit ball x> + y> + z> < 1 inR*. Then the boundary surface S is given by x> + y* + z> = 1. Consider the vector field
F(x,y,2=Q2x,y%, 7).

Let us first of all calculate the integral: f ;F-ds.

The surface S can be parametrized by ®:R — R3 whereby (u, v) = (sinu cosv, sinu sinv, cosu), where R = [0, ] x [0, 2], and where
t,Xt, = (sin® u cos v, sin® u sinv, sinu cos u) = (sin u) ®(u, v). This is an orientation-preserving parametrization, hence

2usinv, sinu cosu)dudv
2

fs F-dS = ffRF(sinu cos v, sinu sinv, cos u) - (sin® u cos v, sin

2

= ffR (2sinu cosv, sin® u sin’ v, cos® u) -(sin2 u cosv, sin“u sinv, sinu cosu)dudv

= ffR (2sin® u cos? v + sin* u sin® v + sinu cos® u) dudv
=2(L7r sin® udu) ( 02”c0s2vclv)+(f07r sin4uclu)(f()2ﬂsin3vdv)+(£” sin u cos3udu)(£2”lclv)
=27 ["(1-cos wysinudu+0+2x [ Wdh=2x[1-+ K] +0+0
=27TX2>(% = %n.
Next, note that [ [ [ (divF)dxdydz = [[[ Q2+2y+22)dxdydz =2 [[[ (1+y+2dxdydz =2 [[[, 1 dxdydz +0+0

=2><%7r=%7r,

since the volume of the unit sphere is equal to % n. This verifies Gauss’ theorem.

Here we have used that fffv ydxdydz = fffv zdxdydz= fffv x dxdydz =0, which can be seen in various ways. (e.g., by symmetry
—there is as much contributing negatively for y < 0, as positively for y > 0. That is, we are integrating an odd function over a symmetric domain.)

Alternatively, write V={(x,y,20eR*:x>+z2<land —V1-22-22 <y<V1-x2-2 }, sothat

Ve 2 Ve Z
[ff,ydxdydz =ffx2+zzg(f_*¢ﬁ vdy)dxdz =fL+ZZS](%[y2]:/I_iT;)dxdz=0.

visualisation
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Let V be the cube with vertices (+1, =1, +1), with boundary surface S. Consider the vector field F(x, y, z) = (x, y, z). We have shown in
Example 11.4.6 that [ F-dS=24. Now [[[ (divF)dxdydz=3 [[[ dxdydz=8x3=24. This verifies Gauss’ theorem.

In fact, we can generalize this observation. Suppose that S is the boundary surface of any region V in R? for which Gauss’ theorem holds. Then

fsrdS =3 fffv dxdydz=3vol(V), where r = (x, y, z) denotes the vector to points on S.

visualisation
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We conclude this chapter by proving the following famous result.

Theorem 12E: (GauB’ Law)

Suppose that V € R3 is a symmetric elementary region, with boundary surface S oriented with outward normal. Suppose further that

47 if (0,0,0)€V
0,0,0)¢S. Then [, %.as={"7 1 ODe

1
0 if(0.0.0)¢V. where r = (x, y, z) denotes the vector to pointson S, and r = || r|| = (x> + y*> +72)2.

Sketch of proof

Suppose first of all that (0, 0, 0) ¢ V. Then the vector field ,Ls is continuously differentiable on V, and so it follows from Gauss’ theorem that

fs rL} -dS = fffv div( r%) dxdydz. Itis easy to check that div(-3) = 0 whenever r # 0. The desired conclusion therefore holds in this case.

Suppose now that (0,0, 0) € V. Since (0, 0, 0) ¢ S, it follows that there exists € > 0 such that the open ball B(e), with centre (0, 0, 0) and
radius € > 0, satisfies B(e) c V. Now let Q2 = V\ B(e), the region V with the open ball B(€) removed. Clearly this region has boundary surface
SUT, where T is the boundary surface of B(€) with normal pointing towards (0, 0, 0). Applying Gauss’s theorem to this region ) (note that £ is
not an elementary region), we have fs r% -dS + fT r% -dS = fffv div(r%)dxdyafz =0, so that fs r% -dS = —fT r% -dS.

The boundary surface 7' can be parametrized by ®: R — R3 whereby (u#,v) — e(sinu cosv, sinu sinv, cosu), where R =[0, 7] X [0, 2 7],
and where ¢, x¢, = €2(sin® u cosv, sin® u sinv, sinu cos u) = € (sinu) ®(u, v) . This is an orientation-reversing parametrization, hence

—fT r% -dS:ffR %-e(sinuﬁb(u, Vdudv = ELZ ffR(sinu)<1>(u, v)-®(u, v)dudv:ffk sinu dudv :27rf0"sinudu =4r.
This gives the desired conclusion.
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I Another Theorem

Theorem 12F:

Suppose that F is a vector field, defined and continuously differentiable everywhere in R3, satisfying V - F = 0. Then there exists a continu-
ously differentiable vector field G such that V X G = F.

Sketch of proof

Write F = (Fy, Fy, F3) and define G=(G1, G2, G3) by: Gix,y, 9 = [ Falx,y, 0di~ ['Fy(x,1,0)d1, Go(x, v, 2) = = [[ Fix, y, d1,
G3(x,y,z)=0. Then

0G 4G Z

G~ B =0+ 4 ([ Ry, ndi) = Fi(x, v, 9);
G, _9Gy _ 4§ ((*

T = s = o= ([ Falx, vy, D) = 0= Fa(x,y,2);

0G G 2 OF, OF y 2 O F
5~ =L (G a;)dHaiy(foy&(x,r,owt):fo 7= (v, y, 0di + F3(x,y,0) = F3(x,,2).

Hence we have that VX G |z = (Fi, F2, F3) |ey = F(x, y, 2), as required.

Remarks

& | Whereas in Theorem 12C it is possible to assume that the vector field F is continuously differentiable in R3except possibly at a finite number of points, this
extension is not applicable here. The vector field F must be continuously differentiable everywhere in R?.

& | Theorem 12F is in some sense the converse of Theorem 8F, which says that for any twice continuously differentiable vector field G in R®, we have
V -(V xG) = 0. Here we have proved that if F is a continuously differentiable vector field in R3with V - F = 0, then there exists a vector field G in R® such
that F =V xG.
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