
MATH236 — Weeks 1&2
Paths

Chen notes, chapter 7

7.1 Paths—Introduction
In this chapter we discuss paths in —n ; in particular we are interested in —2  and —3 , since these can be easily drawn or visualised. 

However, the ideas developed for these are easily extended to paths in —n , for n > 3. 

Before we give any formal definition, let us consider two examples.

Example 7.1.1 — tracing the unit circle in —2

Consider the unit circle C = 8Hx, yL œ —2 : x2 + y2 = 1< in —2 .

At time t = 0, a starting at H1, 0L starts to moves at constant speed along C  in the anticlockwise direction, and first returns to the initial 
position at time t = 2 p. 

Knowing some trigonometry, it is easy to see that at any time t œ @0, 2 pD the position of the particle is given by Hx, yL = Hcos t, sin tL.

The motion of the particle can be completely described by a function  f : @0, 2 pD Ø —2 : fHtL = Hcos t, sin tL. 
Note that  C = fH@0, 2 pDL =

def 8fHtL : t œ @0, 2 pD< is the range of the function. 
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Example 7.1.2 — along a ray in —3

Consider a particle moving away from the origin 0 = H0, 0, 0L at time t = 0 in the direction of the unit vector u œ —3  with constant accel-
eration a, and hence speed t a , at any given time t ¥ 0. 

In this case, the distance of the particle from the origin at time t  is given by 1ÅÅÅÅ2  a t2 , and so its position is given by fHtL = 1ÅÅÅÅ2 a t2  u.

Suppose that we trace the movement of this particle from t = 0 to t = T . Then we are interested in a function

 f : @0, TD Ø —3 : fHtL = 1ÅÅÅÅ2 a t2  u.

The range of this function is given by fH@0, TDL = 8 1ÅÅÅÅ2 a t2  u : t œ @0, TD<.  This is a line segment joining the origin 0 and the point 
1ÅÅÅÅ2  a T2  u.

 

Note that the functions in Examples 7.1.1 and 7.1.2 do not just trace out curves. They also give the position of the particles at any time 
within the stated time interval.

Definition: path

By a path in —n  we mean a function of the type  f : @A, BD Ø —n , where A, B œ —  with  A < B . 

The range   fH@A, BDL =
def

 8fHtL : t œ @A, BD< Œ —n  of the function f is called a curve,  with initial  point  fHAL, and terminal  point  fHBL. 
Suppose that for every  t œ @A, BD we have that  fHtL = Hf1 HtL, f2 HtL, …, fn HtLL, where f1 HtL, f2 HtL, …, fn HtL œ — . 

Then the functions fiHtL : @A, BD Ø —  are called the components of the path f.

Remarks

Ï   It is usual to write  fHtL = HxHtL, yHtLL and  fHtL = HxHtL, yHtL, zHtLL, in the cases n = 2 and n = 3, respectively.

Ï   Note the distinction between a path and a curve. 

  Quite often different paths can share the same curve; e.g.,

 f : @0, 2 pD Ø —2  with fHtL = Hcos t, sin tL
 y : @0, 1D Ø —2  with yHtL = HcosH2 p tL, sinH2 p tLL
 h : @0, 1D Ø —2  with hHtL = HcosH2 p t2L, sinH2 p t2LL.

  satisfy  fH@0, 2 pDL = yH@0, 1DL = hH@0, 1DL = C , the unit circle in —2 .

Ï     Often we refer to the path  fHtL without specifying the domain of definition of f. This is really an abuse of notation which nevertheless can be 
convenient.

Example 7.1.3 — cycloid

Consider a circular disc of radius r standing on a level surface. 

Let C  denote the centre of the disc, and let P denote a fixed point on the rim of the disc. 

Suppose that at time t = 0, the point P touches the surface, and is therefore directly below the point C . For convenience, let us assume 
that this point where the disc touches the surface at time t = 0 is the origin H0, 0L.

The disc now starts rolling to the right at constant speed v. We now wish to describe the path taken by the point P. 

Clearly the point C  is at position H0, rL at time t = 0. Its position at time t  is given by Ht v, rL .
Note next that the circumference of the disc is 2 p r , and so the disc will have completed one revolution at time t = 2 p r ê v.

It follows that the angular speed of the disc is v ê r. 

Now let yHtL denote the relative position of P with respect to C . Clearly P rotates around C  in a clockwise direction with angular speed 
v ê r,  so it follows that     yHtL = Hr cosH- v tÅÅÅÅÅÅr + qL , r sinH- v tÅÅÅÅÅÅr + qLL,    where q œ — is a constant. 

Clearly yH0L = H0, -rL, so that cos q = 0 and sin q = -1, whence q = - 1ÅÅÅÅ2  p. Hence 

yHtL = Hr cosH- v tÅÅÅÅÅÅr - 1ÅÅÅÅ2  pL , r sinH- v tÅÅÅÅÅÅr - 1ÅÅÅÅ2  pLL = H-r sin v tÅÅÅÅÅÅr , -r cos v tÅÅÅÅÅÅr L .

It follows that the actual position of P at time t  is given by:

fHtL = Ht v, rL + yHtL = Ht v - r sin v tÅÅÅÅÅÅr , r - r cos v tÅÅÅÅÅÅr L.
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Now let yHtL denote the relative position of P with respect to C . Clearly P rotates around C  in a clockwise direction with angular speed 
v ê r,  so it follows that     yHtL = Hr cosH- v tÅÅÅÅÅÅr + qL , r sinH- v tÅÅÅÅÅÅr + qLL,    where q œ — is a constant. 

Clearly yH0L = H0, -rL, so that cos q = 0 and sin q = -1, whence q = - 1ÅÅÅÅ2  p. Hence 

yHtL = Hr cosH- v tÅÅÅÅÅÅr - 1ÅÅÅÅ2  pL , r sinH- v tÅÅÅÅÅÅr - 1ÅÅÅÅ2  pLL = H-r sin v tÅÅÅÅÅÅr , -r cos v tÅÅÅÅÅÅr L .

It follows that the actual position of P at time t  is given by:

fHtL = Ht v, rL + yHtL = Ht v - r sin v tÅÅÅÅÅÅr , r - r cos v tÅÅÅÅÅÅr L.
Suppose that v = r = 1. Then fHtL = Ht - sin  t , 1 - cos tL.
Clearly the point P touches the surface when t = 2 k p, where k  is any non-negative integer. 

The image curve of the path f : @A, BD Ø —2 : fHtL = Ht - sin  t , 1 - cos tL    is called a cycloid.

Note that we have not specified the range for t  in our discussion. 

We can consider any interval @A, BD Œ — , although to get a full picture, the interval should have length at least 2 p.
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demos

Ï  Animated Cycloid demo at the Wolfram demonstrations site

Ï  local copy of the Cycloid demo.

7.2 Differentiable Paths

Definition: differentiable path

We say that a path  f : @A, BD Ø —n  is differentiable if the limit    lim
hØ0

fHt+hL-fHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh  exists for every t œ @A, BD, with the obvious restriction 

to one-sided limits at the endpoints of the interval @A, BD.  In this case, the vector

 f£HtL = dÅÅÅÅÅÅd t  fHtL = lim
hØ0

fHt+hL-fHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh

is called the velocity vector of the path f, and the quantity »» f£HtL »»  is called the speed of the path f.

Remarks

Ï   Note that we have borrowed some terminology from physics. This is entirely natural, as this area of mathematics is, to a large extent, motivated by the 
study of various problems in physics. 
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Ï   Note that if the path is given by fHtL = Hf1HtL, f2HtL, . . . , fnHtLL, then the velocity vector is given by    f£HtL = Hf1
£HtL, f2

£HtL, . . . , fn
£HtLL 

  and the speed is given by: »» f£HtL »» = H » f1
£HtL »2 + » f2

£HtL »2 + . . . + » fn
£HtL »2L 1ÅÅÅÅ2 .

Ï   Note the special notation in the cases n = 2 and n = 3; e.g., »» f£HtL »» = H » x£HtL »2 + » y£HtL »2 + » z£HtL »2L 1ÅÅÅÅ2     for a path in —3 .

Ï   The velocity vector f£HtL  is a vector tangent to the path fHtL  at time t . If C  is the curve of the path fHtL and f£HtL  0,  then f£HtL  is a vector tangent 
to the curve C  at the point fHtL œ C .

Example 7.2.1 — cycloid

For the cycloid  fHtL = Ht - sin t , 1 - cos tL described in Example 7.1.3, the velocity vector is given by  f£HtL = H1 - cos t , sin tL. 
Note that 1 - cos t = 0 implies that sin t = 0, so the velocity is never vertical. 

The speed of the path is »» f£HtL »» = HH1 - cos tL2 + sin2  tL 1ÅÅÅÅ2 = H2 - 2 cos tL 1ÅÅÅÅ2 . 

This is minimum and zero when cos t = 1, at which the point P touches the surface.  The speed is maximum when cos t = -1, at which 
the point P is at the maximum height. 

Example 7.2.2 — helix

To study the path  fHtL = Hcos t , sin t, tL in —3 , we first of all consider just the first two components by studying the path  
yHtL = Hcos t , sin tL in —2 . This path describes a circle on the plane, followed in the anticlockwise direction.

The third component t  describes an increase in height with time if we think of the third component as being the vertical component. 

It follows that if we consider the cylinder x2 + y2 = 1 in —3 , then the path fHtL wraps around this cylinder in an anticlockwise direction, 
with the third component increasing.  The curve of the path fHtL is called a helix.

The path has velocity vector f£HtL = H-sin t, cos t , 1L and speed »» f£HtL »» = Hsin2  t + cos2 t + 12L 1ÅÅÅÅ2 =
è!!!2 , so the path has constant speed.
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Suppose that fHtL is a differentiable path. We have already indicated that if f£HtL  0, then it is a vector tangent to the path at the point 
fHtL.  We have ...
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Theorem 7A

Suppose that fHtL is a differentiable path in —n . Then the tangent line to the path at the point fHt0 L is given by LHlL = fHt0 L + l f£Ht0 L, pro-
vided that  f£HtL  0.

Example 7.2.3 — tangent to the helix

The equation of the tangent line to the helix fHtL = Hcos t , sin t, tL at the point  fHt0L is given by

LHlL = fHt0L + l f£Ht0L = Hcos  t0 , sin t0, t0L + l H-sin t0, cos  t0 , 1L.
Suppose that t0 = 2 p. Then  fH2 pL = H1, 0 , 2 pL, and the tangent line becomes 

LHlL = fH2 pL + l f£H2 pL = H1 , 0, 2 pL + l H0 , 1, 1L .
Writing  LHlL = Hx , y, zL, we have x = 1, y = l and z = 2 p + l .

It follows that the tangent line to the helix at the point H1, 0, 2 pL is given by: x = 1 and  z = y + 2 p. 

Try to visualize this from the pictures in Example 7.2.2.

Example 7.2.4 — tangent to the cycloid

The equation of the tangent line to the cycloid  fHtL = Ht - sin t , 1 - cos tL  at the point  fHt0L is given by  
LHlL = fHt0L + l f£Ht0L = Ht0 - sin t0 , 1 - cos t0L + l H1 - cos t0, sin t0L.
Suppose that t0 = 2 p. Then  fH2 pL = H2 p, 0L and LHlL = H2 p, 0L + l H0 , 0L = H2 p, 0L,   clearly not the equation of a line.

Observe that since f£HtL = H0, 0L, then Theorem 7A does not apply in this case.

Example 7.2.5 — escape from the helix

Let us return to the helix discussed in Examples 7.2.2 and 7.2.3. 

Suppose that a particle follows the helix from t = 0 to t = 2 p and then flies off at constant velocity on a tangent at t = 2 p. 

We wish to determine the position of the particle at t = 4 p.  Note that the particle is at position  fH2 pL = H1, 0, 2 pL when t = 2 p, with 
tangential velocity  f£H2 pL = H0, 1, 1L.  It follows that its position at t = 4 p must be given by 

 fH2 pL + H4 p - 2 pLf£H2 pL = H1, 0, 2 pL + 2 pH0, 1, 1L = H1, 2 p, 4 pL.

Example 7.2.6 — hypocycloid of 4 cusps

Consider the hypocycloid of four cusps   f : @0, 2 pD Ø —2  with  fHtL = Hcos3  t, sin3  tL.

This path has velocity vector  f£HtL = H-3 cos2  t sin t, 3 sin2  t cos tL  and speed  

»» f£HtL »» = H9 cos4  t sin2 t + 9 sin4  t cos2 tL 1ÅÅÅÅ2 = 3 » cos t sin t ».
Note that while the hypocycloid is a differentiable path, its curve has cusps. However, the velocity and speed are zero at these cusps. 
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more general hypocycloids — spirograph

In[683]:= cusps = 7 ê 3; cycles = 3;
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We state without proof the following two theorems. The proofs are not diffcult, and follow by applying the usual differentiation rules to 
the components. 

Theorem 7B — derivatives of paths, chain rule, etc.

Suppose that fHtL and yHtL are differentiable paths in —n .  Suppose further that aHtL and bHtL are differentiable  real-valued functions. 

Then (a)  HfHtL +yHtLL£ = f£HtL +y£HtL; 
(b)  HaHtL fHtLL£ = a£HtL fHtL +aHtL f£HtL;
(c)  HfHtL ÿyHtLL£ = f£HtL ÿyHtL +fHtL ÿy£HtL; and

(d)  fHaHtLL£ = a£HtL f£HaHtLL.
The above represent the sum rule, scalar multiplication rule, dot product rule and chain rule respectively. 

Note also the vector product rule below which is valid only in —3 :

Theorem 7C — cross-product rule

Suppose that fHtL and yHtL are differentiable paths in  —3 .  Then HfHtLµyHtLL£ = f£HtLµyHtL +fHtLµy£HtL.
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7.3 Arc Length
In this section, we are interested in calculating the length of the curve followed by a path. To motivate this, note that the speed »» f£HtL »» of 
a path fHtL is the rate of change of distance with respect to time.

Definition: velocity & arc-length differentials

Suppose that f : @A, BD Ø —n  is a differentiable path.  The velocity differential is given by

„ s = f£HtL „ t = Hf1
£HtL , f2

£  HtL , . . . , fn
£ HtLL „ t .

The corresponding arc-length differential is given by 

„ s = »» f£HtL »» „ t = H » f1
£HtL »2 + » f2

£  HtL »2  + . . . + » fn
£  HtL »2 L 1ÅÅÅÅ2  „ t .

Remarks

Ï   The velocity differential describes an infinitesimal displacement of a particle following the path f . The arc-length differential describes the magnitude 
of this infinitesimal displacement.

Ï   In —2  and —3 , we have velocity differentials    „ s = J d xÅÅÅÅÅÅÅd t , d yÅÅÅÅÅÅÅd t N „ t   and  „ s = J d xÅÅÅÅÅÅÅd t , d yÅÅÅÅÅÅÅd t , d zÅÅÅÅÅÅÅd t N „ t

and arc-length differentials „ s =
i
k
jjjI d xÅÅÅÅÅÅÅd t M2 + J d yÅÅÅÅÅÅÅd t N

2y
{
zzz

1ÅÅÅÅ2

 „ t     and „ s =
i
k
jjjI d xÅÅÅÅÅÅÅd t M2 + J d yÅÅÅÅÅÅÅd t N

2
+ I d zÅÅÅÅÅÅÅd t M

2y
{
zzz

1ÅÅÅÅ2

 „ t   respectively.

Definition: arc-length

Suppose that f : @A, BD Ø —n  is a continuously differentiable path. Then the quantity     Ÿ t=A
t=B1 „s = ŸA

B
 »» f£HtL »» „ t

is called the arc length of the path f .

Remark

Ï   Note that if  fHtL = Hf1 HtL, f2HtL, . . . , fnHtLL, then  ŸA
B

 »» f£HtL »» „ t = ‡
A

B
H » f1

£HtL »2 +. . . + » fn
£  HtL »2L 1ÅÅÅÅ2  „ t .

Example 7.3.1 — arc length of the cycloid

The cycloid f : @0, 2 pD Ø —2 : fHtL = Ht - sin  t , 1 - cos tL  has arc length:

 Ÿ0
2 p

 »» f£HtL »» „ t = Ÿ0
2 pH2 - 2 cos tL 1ÅÅÅÅ2  „ t = 2 ‡

0

p

H2 - 2 H1 - 2 sin2H 1ÅÅÅÅ2  tLLL 1ÅÅÅÅ2  „ H 1ÅÅÅÅ2  tL = 2 Ÿ0
p 2 sin H 1ÅÅÅÅ2  tL „ H 1ÅÅÅÅ2  tL

= 4 @-cos qD 0
p = 8 .

Example 7.3.2 — arc length of the helix

The helix  f : @0, 2 pD Ø —3 : fHtL = Hcos t, sin  t , tL  has arc length  

Ÿ0
2 p

 »» f£HtL »» „ t = ‡
0

2 p

H1 + H-sin tL2 + cos2 tL 1ÅÅÅÅ2  „ t = Ÿ0
2 pè!!!2  „ t

= 2 
è!!!2  p º 8.8857658763 ...

Example 7.3.3 — arc length of the hypocycloid

The hypocycloid of four cusps f : @0, 2 pD Ø —2 : fHtL = Hcos3  t , sin3 tL has arc length:

 Ÿ0
2 p

 »» f£HtL »» „ t = ‡
0

2 p

3 Hcos4 t sin2 t + cos2 t sin4 tL 1ÅÅÅÅ2  „ t = 3 ‡
0

2 p

Hcos2 t sin2 tL 1ÅÅÅÅ2  „ t

= 12 Ÿ0

1ÅÅÅÅ2  p cos t sin t „ t = 3 Ÿ0
p sin H2 tL „ H2 tL

= 3 @-cos qD 0
p = 6 .
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