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We prove a single category-theoretic result encapsulating the notions of ultrafilters, 
ultrapower, ultraproduct, tensor product of ultrafilters, the Rudin–Kiesler partial 
ordering on ultrafilters, and Blass’s category of ultrafilters UF. The result in its 
most basic form states that the category FC(Set, Set) of finite-coproduct-preserving 
endofunctors of Set is equivalent to the presheaf category [UF, Set]. Using this result, 
and some of its evident generalisations, we re-find in a natural manner the important 
model-theoretic realisation relation between n-types and n-tuples of model elements; 
and draw connections with Makkai and Lurie’s work on conceptual completeness 
for first-order logic via ultracategories.
As a further application of our main result, we use it to describe a first-order 
analogue of Jónsson and Tarski’s canonical extension. Canonical extension is an 
algebraic formulation of the link between Lindenbaum–Tarski and Kripke semantics 
for intuitionistic and modal logic, and extending it to first-order logic has precedent 
in the topos of types construction studied by Joyal, Reyes, Makkai, Pitts, Coumans 
and others. Here, we study the closely related, but distinct, construction of the 
locally connected classifying topos of a first-order theory. The existence of this is 
known from work of Funk, but the description is inexplicit; ours, by contrast, is 
quite concrete.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Ultrafilters are important in many areas of mathematics, from Ramsey theory, to topological dynamics, 
to universal algebra; see [7] for an overview. Around the notion of ultrafilter is a circle of associated concepts: 
the ultrapower of a set by an ultrafilter, or more generally, the ultraproduct of a family of sets [17]; the 
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tensor product of ultrafilters [30] and the more general indexed sum; and the Rudin–Keisler partial ordering 
on ultrafilters, first written down by Blass in [5] and immediately enhanced to a category of ultrafilters.

Of course, ultrafilters are particularly important in model theory. One aspect of this is that complete 
n-types of a first-order theory T are precisely ultrafilters on the Lindenbaum–Tarski algebra of T extended 
by n new constants; in particular, each n-tuple of elements of a T -model has an associated complete n-type, 
and this realisation relation between n-tuples and n-types is central to many questions in model theory.

Ultrafilters also provide the link between the semantics for modal logic valued in modal algebras (Boolean 
algebras with operators), and the Kripke semantics; indeed, the canonical Kripke model associated to 
a modal algebra B takes its frame of possible worlds to comprise exactly the ultrafilters on B. A similar 
relation holds between the Lindenbaum–Tarski and Kripke semantics for intuitionistic propositional logic [46, 
§2.6]; and these relations have been expressed algebraically via Jónsson and Tarski’s notion of canonical 
extension [27,21]. Canonical extension has been generalised from propositional to first-order logic via the 
topos of types construction studied by Joyal and Reyes [29], Makkai [38] and Pitts [44]—and again, ultrafilters 
play an important role.

Another key use of ultrafilters in model theory is via Łos’ theorem, namely that the models of a first-
order theory T are closed under ultraproducts. This is useful in its own right, for example in constructing 
saturated models, but has also been exploited more structurally by Makkai [40] and Lurie [35]: they prove a 
“conceptual completeness” theorem which can reconstruct a first-order theory T (or at least, its completion 
T eq under elimination of imaginaries) from the category of models and elementary embeddings, together 
with the ultraproduct structure on this category.

The objective of this paper is to describe a single category-theoretic result from which the notions of 
ultrafilter, ultrapower, tensor product of ultrafilters, and Blass’s category UF of ultrafilters, together with 
their interrelations, all flow naturally—and which, with only a little more effort, is able to speak towards 
the applications of ultrafilters in model theory described above. This result, which is Theorem 13 and 
Corollary 14 below, may be stated as follows:

Theorem. The category FC(Set, Set) of finite-coproduct-preserving endofunctors of Set is equivalent to the 
category [UF, Set] of functors on Blass’ category [5] of ultrafilters UF. Under this equivalence, the ultrapower 
functor (–)U corresponds to the representable functor at the ultrafilter U.

This builds on Börger’s characterisation [9] of the functor β : Set → Set, which sends a set X to its set of 
ultrafilters, as the terminal finite-coproduct-preserving endofunctor of Set. (Though it will not play any role 
here, we should also mention [32]’s different characterisation of β as the codensity monad of the inclusion 
functor FinSet ↪→ Set; see [34] for a modern account.)

One way of seeing our result is that once we know what a finite coproduct-preserving endofunctor of 
Set is, everything else is forced. The ultrapower endofunctors of Set arise as the projective indecomposable 
objects in FC(Set, Set), and the full subcategory they span is equivalent to UFop. Moreover, as we will see 
in Proposition 16, the composition monoidal structure on FC(Set, Set) restricts to this subcategory, and in 
this way recovers the tensor product of ultrafilters.

One thing this theorem does not capture is the notion of ultraproduct. For this, we require a generalisation 
of the theorem dealing with ultrafilters not on sets, but on objects of a category C which is extensive [12], 
meaning that it has well-behaved finite coproducts. In this context, an ultrafilter on X ∈ C can be defined 
as an ultrafilter on the Boolean algebra of coproduct summands of X, giving rise to a category UFC

generalising Blass’ UF. We now obtain the following natural generalisation of our main theorem, to be 
proved as Theorem 22:

Theorem. Let C be extensive. The category FC(C, Set) of finite-coproduct-preserving functors from C to Set
is equivalent to the functor category [UFC, Set].
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As we will see in Section 4.2, we may recapture ultraproducts from this theorem by taking C = SetX , 
yielding an equivalence [UFSetX , Set] � FC(SetX , Set); now the ultraproduct functors ΠU : SetX → Set
correspond under this equivalence to suitable representable functors in [UFSetX , Set].

A second application, described in Section 4.3, takes C to be the classifying Boolean pretopos of a theory T
of classical first-order logic, which plays the same role for a first-order theory as does the Lindenbaum–Tarski 
algebra of a propositional theory. In this case, ultrafilters on A ∈ C correspond to model-theoretic types 
in context A, and our result allows us to reconstruct a categorical treatment of these [38]. Indeed, by the 
classifying property of C, models of T correspond to pretopos morphisms C → Set. As pretopos morphisms 
preserve finite coproducts, the theorem thereby associates to each T -model M a functor UFC → Set—whose 
values pick out the sets of M -elements that realise each type.

Our main theorem can be generalised further by varying the codomain category as well as the do-
main category. Recall that a Grothendieck topos is the category of sheaves on a small site, and that a 
Grothendieck topos E is locally connected when the left adjoint Δ: Set → E of its global sections functor 
Γ = E(1, –) : E → Set has a further left adjoint π0 : E → Set. The second generalisation of our main theorem, 
to be proved as Theorem 26 below, is now:

Theorem. Let C be extensive and E a locally connected Grothendieck topos. The category FC(C, E) of finite-
coproduct-preserving functors from C to E is equivalent to the functor category [UFC, E].

One application of this theorem, described in Section 5.2, allows us to reconstruct the indexed sum of 
ultrafilters. For any sets X and Y , our theorem yields an equivalence FC(SetX , SetY ) � [UFSetX , SetY ], and 
we define a generalised ultraproduct functor SetX → SetY to be one that corresponds under this equivalence 
to a pointwise representable functor UFSetX → SetY . Such functors have a representation as ultraspans: 
that is, as diagrams

M
f (g,U)

X Y

(1.1)

with left leg a function f and right leg a function g endowed with an ultrafilter Uy on each fibre g−1y. 
Moreover, it turns out that generalised ultraproduct functors are closed under composition, so inducing a 
composition law on ultraspans (1.1) which encodes perfectly the indexed sum of ultrafilters.

Another potential application of the above theorem, sketched in Remark 32, is to Makkai’s ultra-
categories [40]. An ultracategory is a category C endowed with abstract ultraproduct functors ΠU : CX → C

together with interpretations for any “definable map between ultraproducts”—the ultramorphisms of [40]. 
The key example of an ultracategory is the category of models of a coherent theory T in intuitionistic 
first-order logic, and [40]’s main result shows that, to within Morita equivalence, T can be reconstructed 
from its ultracategory of models.

We expect to relate ultracategories to our main result via the machinery of enriched categories [31,47]. 
We have calculated far enough to convince ourselves that categories endowed with abstract ultraproduct 
functors can be identified with certain categories enriched over the bicategory FCSet of finite-coproduct-
preserving functors between powers of Set which admit certain copowers (a kind of enriched colimit). The 
key point is that, in proving this, we exploit the equivalences FC(SetX , SetY ) � [UFSetX , SetY ] established 
above. We will develop this line of thought further in future work.

Our final main result exploits the preceding theorems to construct the locally connected classifying topos
of a suitable pretopos C. This construction is similar to the toposes of types mentioned above [29,38,44], 
in that it provides a first-order analogue to the operation of canonical extension [27,21] on propositional 
theories. The existence of locally connected classifying toposes follows from [18]; however, the existence proof 
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given there is somewhat inexplicit. We will improve on this by showing that any small pretopos satisfying 
the De Morgan property (recalled in Definition 38 below) has a locally connected classifying topos given 
by the topos of sheaves on UFC for a certain Grothendieck topology, related to one found in [29]. Our final 
main result, proved as Theorem 42 below, is thus:

Theorem. Let C be a small De Morgan pretopos. The topos Sh(UFC) is a locally connected classifying topos 
for C, and is itself De Morgan.

While we discuss briefly the similarities and differences between this construction, and the various toposes 
of types in the literature, we will, once again, leave a more detailed comparison to future work.

2. Background

2.1. Ultrafilters, ultraproducts and ultrapowers

In this section, we recall the notions that our main theorem is designed to capture and their interrelations 
with each other. Before starting on this, we first establish some notational conventions for indexed families 
which will be used throughout the paper.

Definition 1. Let Y = (Y (x) | x ∈ X) be an X-indexed family of sets. We write (Σx ∈X)Y (x) or more 
briefly X.Y for the indexed sum of this family, that is, the set of pairs { (x, y) : x ∈ X, y ∈ Y (x) }. We write 
πY : X.Y → X for the first projection map, and call this map the display family associated to Y . We also 
write (Πx ∈X) Y (x) for the indexed product of the Y (x)’s: that is, the set of functions f : X → X.Y which 
are sections of πY : X.Y → X.

More generally, a display family over X is any function π : E → X, and the X-indexed family associated 
to π is the family of fibres (π−1(x) | x ∈ X). As is well known, the passage between X-indexed families and 
display families over X underlies an equivalence of categories

SetX � Set/X . (2.1)

This equivalence and its generalisations will play an important role in this paper.

Definition 2. An ultrafilter on a set X is a Boolean algebra homomorphism u : PX → 2. Most often, we 
describe u by specifying the subset U = u−1(�) of PX; so an ultrafilter is equally a collection U of subsets 
of X such that:

(i) X ∈ U, and U ∩ V ∈ U ⇐⇒ (U ∈ U and V ∈ U);
(ii) ⊥ /∈ U, and U ∪ V ∈ U ⇐⇒ (U ∈ U or V ∈ U).

Equivalently, we may replace condition (ii) with:

(ii)′ U ∈ U ⇐⇒ X \ U /∈ U.

We write βX for the set of ultrafilters on the set X.

The principal ultrafilter at x ∈ X is ↑x = {U ⊆ X : x ∈ U}. These are the only ultrafilters we can write 
down explicitly; indeed, the existence of non-principal ultrafilters is a choice principle, slightly weaker than 
the axiom of choice [23].
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It is often useful to view ultrafilters as generalised quantifiers. Given a predicate ϕ(x) depending on 
x ∈ X and an ultrafilter U on X, we write (∀Ux ∈X) ϕ(x) to indicate that {x ∈ X : ϕ(x)} ∈ U and say that 
“for U-almost all x, ϕ(x) holds”.

Definition 3. Let U ∈ βX. If Y is a set, then the ultrapower Y U is the set of =U-equivalence classes of 
partial functions X ⇀ Y defined on a set in U, where

f =U g iff (∀Ux∈X)f(x) ≡ g(x) . (2.2)

Here we write f(x) ≡ g(x) to mean “f and g are defined at x and are equal”.
More generally, if Y is an X-indexed family of sets, then the ultraproduct (ΠUx ∈X) Y (x) is the set of =U-

equivalence classes of partial sections, defined on a set in U, of πY : X.Y → X. Note that Y U = (ΠUx ∈X) Y .

We can take a topological view on ultraproducts. Given an X-indexed family Y , we can view the projection 
(Σx ∈X) Y (x) → X as a local homeomorphism between discrete spaces. Pushing this forward along the 
embedding X → βX of X into its Stone–Cěch compactification yields a local homeomorphism over βX, 
whose fibre over an ultrafilter U ∈ βX is the ultraproduct (ΠUx ∈X) Y (x).

The explicit formula for pushforward of local homeomorphisms—in terms of germs of local sections—
yields the following reformulation of ultrapowers and ultraproducts in terms of colimits; herein, we view U
as a poset ordered by inclusion:

Y U = colimU∈U Y U

(ΠUx∈X)Y (x) = colimU∈U(Πx∈U)Y (x) .
(2.3)

This description makes it clear that ultraproduct and ultrapower are functors (–)U : Set → Set and 
ΠU : SetX → Set respectively.

2.2. The category of ultrafilters

Given ultrafilters U on X and V on Y , we say that f : X → Y is continuous if V ∈ V implies f−1(V ) ∈ U. 
By axiom (ii)′ and the fact that f−1 preserves complements, this is equally the condition that

V ∈ V ⇐⇒ f−1(V ) ∈ U . (2.4)

The continuous maps play an important role in two natural categories of ultrafilters, originally defined 
in [30,33] in the more general context of filters.

Definition 4. The category UE of ultrafilters has pairs (X ∈ Set, U ∈ βX) as objects, and as morphisms 
(X, U) → (Y, V) the continuous maps X → Y . The category UF of ultrafilters has the same objects, and as 
morphisms (X, U) → (Y, V) the =U-equivalence classes of partial continuous maps X ⇀ Y defined on a set 
in U.

Our naming reflects that UF is the “good” category of ultrafilters and UE just a preliminary step to get 
there; for indeed, UF arises by inverting the class M of continuous injections in UE. The proof of this fact 
given below mirrors that given in [6, Theorem 16] for the category of filters; in its statement, ι : UE → UF

is the identity-on-objects functor taking f to its =U-equivalence class.

Proposition 5. ι : UE → UF exhibits UF as UE[M−1].
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Proof. Each map in M factors as an isomorphism followed by a continuous subset inclusion; whence 
UE[M−1] = UE[I−1] where I is the class of all continuous subset inclusions in UE. It is easy to see that any 
map in I is of the form

mWY : (W, V|W ) ↪→ (Y,V) (2.5)

where W ∈ V and V|W = {U ⊆ W : U ∈ V}. Such maps are stable under composition and contain the 
identities. Moreover, given a map (2.5) and f : (X, U) → (Y, V) in UE, we have a commuting square (in fact 
a pullback) in UE of the form

(f−1(W ), U|f−1W )

mf−1W,X

(W, V|W )

mWY

(X,U)
f

(Y,V)

since f−1(W ) ∈ U by continuity of f . So I satisfies the first three of the four axioms for a calculus of right 
fractions [19], and satisfies the final one trivially since it is a class of monomorphisms. We may thus describe 
the localisation UE[I−1] as follows. Objects are those of UE, and maps (X, U) → (Y, V) are spans in UE as 
to the left below, with two such spans being identified if they can be completed to a commuting diagram 
as to the right.

(U, U|U )
mUX f

(X,U) (Y,V)

(U, U|U )
mUX f

(X,U) (W, U|W )

mWU

mWV

(Y,V)

(V, U|V )
mV X g

Clearly these maps correspond to =U-equivalence classes of partial continuous functions; moreover, under 
this identification, the identity-on-objects functor UE → UE[I−1] sends f to (1, f), whence UF ∼= UE[I−1]
under UE as desired. �
2.3. Tensor product and indexed sum of ultrafilters

The tensor product of ultrafilters is sometimes called the product. It is most easily expressed in terms of 
generalised quantifiers.

Definition 6. Let U and V be ultrafilters on X and Y . The tensor product U ⊗V is the unique ultrafilter on 
X × Y which for all predicates ϕ on X × Y satisfies:

(∀U⊗V(x, y)∈X × Y )ϕ(x, y) ⇐⇒ (∀Ux∈X)(∀Vy ∈Y )ϕ(x, y) . (2.6)

Instantiating ϕ at the characteristic predicates of subsets A ⊆ X×Y yields the following explicit formula, 
wherein we write x∗A for {y ∈ Y : (x, y) ∈ A}:

U⊗ V = {A ⊆ X × Y : {x ∈ X : x∗A ∈ V} ∈ U} .

Using this formula, we see that if we have f : (X, U) → (X ′, U′) and g : (Y, V) → (Y ′, V′) in UE, then we 
also have f × g : (X × Y, U ⊗ V) → (X ′ × Y ′, U′ ⊗ V′). So tensor product of ultrafilters gives a monoidal 
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structure on UE, with as unit the unique ultrafilter on the one-element set. Since maps in M are closed 
under the binary tensor, this monoidal structure descends along ι to one on UF.

The following result, which is a special case of [17, Theorem 1.10], describes the interaction of the tensor 
product with ultrapowers and ultraproducts.

Proposition 7. Given U ∈ βX and V ∈ βY and an X × Y -indexed family of sets Z, currying of functions 
induces an isomorphism of ultraproducts

(ΠU⊗V(x, y)∈X × Y )Z(x, y) ∼= (ΠUx∈X)(ΠVy ∈Y )Z(x, y) , (2.7)

giving, when Z is a constant family, isomorphisms ZU⊗V ∼= (ZV)U.

A more general construction on ultrafilters is that of indexed sum.

Definition 8. Let U be an ultrafilter on X and, for each x ∈ X, let V(x) be an ultrafilter on Y (x). The indexed 
sum (ΣUx ∈X)V(x) or U.V is the unique ultrafilter on (Σx ∈X) Y (x) = X.Y which for all predicates ϕ on 
X.Y satisfies

(∀U.V(x, y)∈X.Y )ϕ(x, y) ⇐⇒ (∀Ux∈X)(∀V(x)y ∈Y (x))ϕ(x, y) .

Note that when Y and V are constant families, we have (ΣUx ∈ X)V = U ⊗ V, so that indexed sum 
really does generalise tensor product. Like before, we can obtain an explicit formula for indexed sum by 
instantiating at the characteristic functions of predicates, and like before, we have a formula relating indexed 
sums with ultraproducts; this is now the general case of [17, Theorem 1.10].

Proposition 9. Given U ∈ βX and V ∈ (Πx ∈X) β(Y (x)) and an X.Y -indexed family of sets Z, currying of 
functions induces an isomorphism of ultraproducts

(ΠU.V(x, y)∈X.Y )Z(x, y) ∼= (ΠUx∈X)(ΠV(x) y ∈Y (x))Z(x, y) . (2.8)

3. The main theorem

In this section, we prove our main theorem. This makes essential use of Börger’s characterisation [9] of 
the ultrafilter endofunctor, so we begin by recalling this.

3.1. Börger’s theorem

If u : PX → 2 is a Boolean algebra homomorphism and f : X → Y , then u ◦ (f−1) : PY → PX → 2 is 
again a homomorphism, called the pushforward of u along f . Identifying u with the corresponding U ⊆ PX, 
its pushforward along f is given by:

f!(U) = {V ⊆ Y : f−1(V ) ∈ U} . (3.1)

Definition 10. The ultrafilter endofunctor β : Set → Set has action on objects X �→ βX and action on 
morphisms βf : βX → βY given by U �→ f!(U).

In [9] Börger characterises β as terminal in the category FC(Set, Set) of finite-coproduct-preserving end-
ofunctors of Set. In reproducing the proof, and subsequently, we will use the following lemma, whose proof 
is either an easy exercise for the reader, or a consequence of the more general Lemma 19 below. In the 
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statement, we call a natural transformation α : F ⇒ G : C → D monocartesian if the naturality square of α
at any monomorphism f : X � Y is a pullback.

Lemma 11. Let G : Set → Set preserve finite coproducts and let α : F ⇒ G.

(i) G preserves monomorphisms and pullbacks along monomorphisms;
(ii) F preserves finite coproducts if and only if α is monocartesian.

Theorem 12. [9, Theorem 2.1] β is terminal in FC(Set, Set).

Proof. For an injection f : X → Y , the map βf : βX → βY is also injective with

im βf = {V ∈ βY : f(X) ∈ V} . (3.2)

Indeed, since f is injective, f−1 : PY → PX is surjective and so βf = (–) ◦ (f−1) is injective. As for its 
image: each U ∈ βX contains X = f−1(f(X)), so by (3.1) each f!(U) contains f(X). Conversely, if V ∈ βY

contains f(X), then U = {U ⊆ X : f(U) ∈ V} is an ultrafilter on X with f!(U) = V.
We first use this to show β ∈ FC(Set, Set). Clearly β(∅) = ∅; while if we have a coproduct 

y1 : Y1 → Y ← Y2 : y2, then the maps βy1 : βY1 → βY ← βY2 : βy2 are each injective with as images the 
sets A = { U ∈ βY : im y1 ∈ U } and B = { U ∈ βY : im y2 ∈ U }. Since im y1 and im y2 partition Y , each 
U ∈ βY lies in exactly one of A or B whence (βy1, βy2) is again a coproduct cone.

We now show β is terminal in FC(Set, Set). Given T ∈ FC(Set, Set) and x ∈ TX, define the type of x as 
the ultrafilter on X given by:

τX(x) = {U ⊆ X : x is in the image of the monic TU � TX} .

Here, TU � TX is the T -image of the inclusion U ⊆ X, and so monic by Lemma 11. τX(x) satisfies axiom 
(i) for an ultrafilter since T preserves pullbacks of monics, and satisfies (ii)′ as TU � TX � T (X \ U) is 
the T -image of a coproduct diagram and so itself a coproduct.

So we have functions τX : TX → βX. To verify their naturality in X we must show for any x ∈ TX and 
f : X → Y that τY (Tf(x)) = f!(τX(x)). So for any V ⊆ Y , we must show Tf(x) ∈ TY is in the image of 
TV � TY if and only if x ∈ TX is in the image of T (f−1(V )) � TX; which is so because T preserves the 
pullback of V � Y along f : X → Y by Lemma 11. So we have τ : T ⇒ β.

Finally, we check uniqueness of τ . Any σ : T ⇒ β is monocartesian by Lemma 11; and so for each 
m : U ⊆ X the following square is a pullback:

TU
Tm

σV

TX

σX

βU
βm

βX .

Thus, x ∈ TX factors through Tm if and only if σX(x) factors through βm which by (3.2) happens just 
when U ∈ σX(x). So σX(x) = τX(x) as desired. �
3.2. The main theorem

We now exploit Börger’s theorem to prove our main Theorem 13. In doing so, we make use of the 
well-known generalisation of (2.1) stating that any slice of a presheaf category is equivalent to a presheaf 
category.
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Indeed, given X ∈ [A, Set], the category of elements elX has as objects, pairs (A ∈ A, x ∈ XA) and as 
morphisms (A, x) → (A′, x′), maps f : A → A′ in A such that x′ = Xf(x). The equivalence in question is 
now

[elX, Set] � [A, Set]/X , (3.3)

and is constructed by applying (2.1) componentwise as follows. Going from left to right, Y : elX → Set is 
sent to π :

∫
Y → X whose A-component is given by the first projection map (Σx ∈XA) Y (A, x) → XA, 

and where the action of 
∫
Y on maps is induced from those of X and Y . Going from right to left, p : E → X

in [A, Set]/X is sent to Ẽ in [elX, Set] with Ẽ(A, x) = p−1
A (x) ⊆ EA and action on maps inherited from E. 

For a detailed proof of the equivalence see, for example, [25, Proposition A1.1.7].

Theorem 13. The category FC(Set, Set) of finite coproduct-preserving endofunctors of Set is equivalent to 
[UF, Set].

Proof. Note that T ∈ [Set, Set] preserves finite coproducts if and only if it admits a monocartesian trans-
formation to β, which is then necessarily unique. The “if” direction of this claim follows from Lemma 11; 
whereupon the “only if” direction and the unicity follow from Theorem 12. So we have an isomorphism

FC(Set, Set) ∼= [Set, Set] /mc β (3.4)

where to the right we have the full subcategory [Set, Set] /mc β of [Set, Set]/β on the monocartesian arrows.
Now, the full slice category [Set, Set]/β is equivalent to [el β, Set]. Here, objects of the category elβ are 

pairs (X ∈ Set, U ∈ βX), while maps (X, U) → (Y, V) are functions f : X → Y such that f!(U) = V. 
Comparing (2.4) with (3.1), these are exactly the continuous maps, so that elβ ∼= UE and (3.3) becomes an 
equivalence:

[Set, Set]/β � [UE, Set] . (3.5)

An object τ : T ⇒ β to the left of this equivalence lies in the full replete subcategory [Set, Set] /mc β just 
when for each monic f : X � Y and U ∈ βX, the map on fibres τ−1

X (U) → τ−1
Y (f!(U)) is an isomorphism. 

This is equally the condition that the corresponding τ̄ ∈ [UE, Set] to the right lies in the full, replete 
subcategory of functors which send the class M of continuous injective functions to isomorphisms. By 
Proposition 5, this subcategory is isomorphic to [UF, Set] via restriction along ι : UE → UF. So (3.5) restricts 
to an equivalence [Set, Set] /mc β � [UF, Set], and combining this with (3.4) yields the desired equivalence 
FC(Set, Set) � [UF, Set]. �

Chasing through the above equivalences, we see that for each A ∈ FC(Set, Set), the corresponding 
Ã : UF → Set is defined on objects by

Ã(X,U) = {x ∈ AX : τX(x) = U } ∼=
⋂

U∈U imAU ⊆ AX . (3.6)

For its definition on morphisms, let the map (X, U) → (Y, V) of UF be represented by the partial continuous 
f : X ⇀ Y defined on U ∈ U. Then the induced function Ã(X, U) → Ã(Y, V) is defined by x �→ Af(x′), 
where x′ ∈ AU is the lifting of x through AU � AX guaranteed by the fact that U ∈ τX(x).

In the other direction, for B : UF → Set, the corresponding finite-coproduct-preserving 
∫
B : Set → Set

is defined by

(
∫
B)Y =

∑
B(Y,V) and (

∫
B)f : (V, a) �→ (f!(V), Af(a)) . (3.7)
V∈βY
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3.3. Relation to ultrapowers and tensor products

We now show that both ultrapowers and the tensor product of ultrafilters arise naturally from the 
preceding equivalence. We begin with ultrapowers.

Corollary 14. Under the equivalence of Theorem 13, the representable functor UF((X, U), –) : UF → Set
corresponds to the ultrapower functor (–)U : Set → Set.

Proof. Taking B to be y(X,U) = UF((X, U), –) in (3.7), we have that

(
∫
y(X,U))(X) =

∑
V∈βY UF((X,U), (Y,V)) .

An element of this set is a pair V ∈ βY together with an =U-equivalence class of continuous partial functions 
f : (X, U) ⇀ (Y, V) defined on a set in U. The continuity condition (2.4) forces V = f!(U) and so this is 
equally a =U-equivalence class of partial functions f : X ⇀ Y defined on a set in U; thus an element of the 
ultrapower Y U. This proves that 

∫
y(X,U) ∼= (–)U as desired. �

As remarked in the introduction, we can use this result to recover the category UF from FC(Set, Set). 
Recall that an object X of a category E is small-projective if the hom-functor E(X, –) : E → Set preserves 
all small colimits.

Corollary 15. The category UFop is equivalent to the full subcategory of FC(Set, Set) on the small-projectives.

Proof. For any locally small A, the small-projectives in [A, Set] are precisely the retracts of representable 
functors; see, for example, [8, Lemma 6.5.10]. So if representables are closed under retracts, then Aop is 
equivalent to the full subcategory of [A, Set] on the small-projectives.

It thus suffices to show that representables in [UF, Set] are closed under retracts. But if i : A � y(X,U)
and p : y(X,U) � A with pi = 1, then ip : y(X,U) → y(X,U) is the image under y of an idempotent on (X, U). 
Since by [5, Theorem 5], the only idempotents (indeed, the only endomorphisms) in UF are the identities, 
we thus have ip = 1 as well as pi = 1, so that A ∼= y(X,U) is again representable. �

We now turn to the tensor product of ultrafilters. The category FC(Set, Set) has a monoidal structure 
given by composition, and transporting this across the equivalence of Theorem 13 yields a monoidal structure 
(I, ⊗) on [UF, Set].

Proposition 16. The representables in [UF, Set] are closed under the monoidal structure, and the induced 
monoidal structure on UF is that given by tensor product of ultrafilters.

Proof. The identity functor Set → Set corresponds to the functor UF → Set represented by the unique 
ultrafilter on a one-element set, which is the unit for the monoidal structure on UF. On the other hand, if 
A, B ∈ [UF, Set] are represented by (X, U) and (Y, V) respectively, then by Theorem 13 we have 

∫
A ∼= (–)U

and 
∫
B ∼= (–)V, and so 

∫
A ◦

∫
B ∼= ((–)V)U ∼= (–)U⊗V by Proposition 7. It follows that A ⊗B is represented 

by (X × Y, U ⊗ V) = (X, U) ⊗ (Y, V) in UF. �
The monoidal structure on [UF, Set] is easy to write down explicitly. As already noted, the unit I is the 

functor representable at the unique ultrafilter on the one-element set, while the binary tensor can be given 
as A ⊗B =

∫
A ◦B, where 

∫
A is defined as in (3.7). This yields the formulae:
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I(X,U) =
{

1 if U is principal;
0 otherwise.

(A⊗B)(X,U) =
∑

V∈β(B(X,U)) A(B(X,U),V) .

We have an alternative description of the binary tensor product by exploiting the fact that, since the 
composition product on FC(Set, Set) preserves colimits in its first variable, so too does the tensor product 
⊗ on [UF, Set]:

(A⊗B)(X,U) ∼=
(
(
∫ (Y,V)∈UF

A(Y,V) × y(Y,V)) ⊗B
)

(X,U)

∼=
∫ (Y,V)∈UF

A(Y,V) × (y(Y,V) ⊗B)(X,U)

∼=
∫ (Y,V)∈UF

A(Y,V) ×B(X,U)V .

(3.8)

Compare this with the well-known substitution monoidal structure on [F, Set]—for F the category of 
functions between finite cardinals—defined by:

(A⊗B)(m) =
∫ n∈F

An×Bmn . (3.9)

Remark 17. Given a monoidal category V, one may consider categories enriched over V in the sense of [31]. 
A V-enriched category C involves a set of objects A, B, C, . . . as usual, but instead of hom-sets of morphisms, 
one has hom-objects C(A, B) in V. In the enriched context, one has a new kind of colimit available, namely 
the copower V ·A of an object A ∈ C by an object V ∈ V, characterised by natural isomorphisms C(V ·A, B) ∼=
[V, C(A, B)] in V.

In [20], the author considered categories enriched over [F, Set] with the substitution monoidal structure, 
and showed that such [F, Set]-categories admitting copowers by representables correspond to ordinary cate-
gories C admitting finite powers (–)n : C → C. The analogy between (3.8) and (3.9) suggests that something 
similar should be possible with [UF, Set] in place of [F, Set], and this is indeed so: categories enriched over 
[UF, Set] with copowers by representables correspond to ordinary categories C equipped with abstract ultra-
power functors (–)U : C → C. The details of this will be left for future work, but we discuss an extension to 
categories endowed with abstract ultraproduct functors in Remark 32 below.

4. First generalisation

In this section, we give our first generalisation of Theorem 13. This will show that, for any extensive 
category C, there is an equivalence FC(C, Set) � [UFC, Set] where UFC is a suitably defined category of 
ultrafilters on C-objects. We then describe how this result captures the notion of ultraproduct, and how it 
reconstructs the categorical treatment in [38] of types in model theory.

4.1. Generalising the domain category

We begin by recalling from [12] that a category C with finite coproducts is extensive if for every A, B ∈ C, 
the functor +: C/A × C/B → C/(A + B) is an equivalence of categories. Equally, by [12, Proposition 2.2], 
C is extensive just when it has pullbacks along coproduct coprojections, and, for every diagram

A′

a

i′

C ′

c

B′j′

b

A
i

C B
j

(4.1)
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in which the bottom row is a coproduct diagram, the top row is a coproduct diagram if and only if the two 
squares are pullbacks.

Note the “if” direction says that binary coproducts in C are pullback-stable. In fact, a category with finite 
coproducts and pullbacks along their coprojections is extensive just when binary coproducts are pullback-
stable and disjoint; see [12, Proposition 2.14]. Disjointness means that coproduct coprojections are monic, 
and the pullback of the two coprojections of a binary coproduct is initial.

This characterisation implies that any topos is extensive; see [25, Proposition A2.3.4 & Corollary A2.4.4]. 
In particular, Set is extensive, as is any presheaf category. Other examples of extensive categories include 
the categories of topological spaces, of small categories and of affine schemes.

Let us write SumC(X) for the poset of coproduct summands of X ∈ C: that is, the poset of isomorphism-
classes of coproduct coprojections with codomain X.

Proposition 18. If C is extensive, then for each X ∈ C the poset SumC(X) is a Boolean algebra, and for each 
f : X → Y , pullback along f defines a Boolean algebra homomorphism f−1 : SumC(Y ) → SumC(X).

Proof. Since binary coproducts in C are stable under pullback, so are coproduct coprojections; since they 
are also composition-closed, each SumC(X) has finite meets, and f−1 : SumC(Y ) → SumC(X) is well-defined 
and finite-meet-preserving. Now any Y1 � Y in SumC(X) is part of a coproduct Y1 � Y � Y2. Of course 
Y1 ∪ Y2 = �Y in SumC(Y ), and Y1 ∩ Y2 = ⊥Y by disjointness; so SumC(X) has complements and so is a 
Boolean algebra. Further, f−1 : SumC(Y ) → SumC(X) preserves these complements as binary coproducts 
are pullback-stable. �

A case worth noting is that where C is Boolean extensive, meaning that every monic in C is a coproduct 
coprojection; in this situation SumC(X) coincides with the full subobject lattice SubC(X), so that all 
subobject lattices in C are Boolean algebras—whence the nomenclature. In particular, the category of sets 
is Boolean extensive, so that the following result is a generalisation of Lemma 11 above. In the last part of 
the statement, a natural transformation α is called sum-cartesian if its naturality square at every coproduct 
coprojection is a pullback.

Lemma 19. Let C and D be extensive categories, let G : C → D be a finite-coproduct-preserving functor and 
let α : F ⇒ G : C → D.

(i) G preserves both coproduct coprojections and pullbacks along such;
(ii) F preserves finite coproducts just when α : F ⇒ G is sum-cartesian.

Proof. The first part of (i) is clear. For the second, any pullback along a coproduct coprojection in C is 
the left square of a diagram like (4.1) in which both rows are coproducts. Applying F , both rows remain 
coproducts and so by extensivity of D, both squares remain pullbacks. As for (ii), given a coproduct diagram 
i : A → C ← B : j in C, we consider the diagram

FA

αA

Fi
FC

αC

FB
Fj

αB

GA
Gi

GC GB
Gj

in D. The bottom row is a coproduct since G preserves such; so, by extensivity of D, the top row is 
a coproduct (i.e., F preserves finite coproducts) just when both squares are pullbacks (i.e., α is sum-
cartesian). �
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If C is extensive, then we define an ultrafilter on X ∈ C to be a Boolean algebra homomorphism 
SumC(X) → 2; equivalently, a subset U ⊆ SumC(X) satisfying the analogue of conditions (i) and (ii) 
or (i) and (ii)′ of Definition 2. Like before, we write βX for the set of ultrafilters on X ∈ C. Since each 
f−1 : SumC(Y ) → SumC(X) is a Boolean algebra homomorphism, precomposition with f−1 yields a function 
βf : βX → βY ; in this way, we define an ultrafilter functor β : C → Set.

Proposition 20. β : C → Set is terminal in FC(C, Set).

Proof. The proof in Theorem 12 adapts without difficulty to show that β : C → Set preserves finite coprod-
ucts. To show terminality in FC(C, Set), we suppose given T ∈ FC(C, Set). For any X ∈ C and x ∈ TX, we 
again define the type of x to be:

τX(x) = {U m
�−→ X ∈ SumC(X) : x factors through FU

Fm
�−→ FX} .

The same argument as before, but now exploiting Lemma 19 in place of Lemma 11, shows that this definition 
gives the values of a well-defined natural transformation τ : T ⇒ β : C → Set, and that this τ is unique. �

Like before, given objects X, Y ∈ C endowed with ultrafilters U and V, we call f : X → Y continuous
if for all V ∈ SumC(Y ) we have V ∈ V ⇔ f−1(V ) ∈ U. More generally, a map f : U → Y defined on the 
domain of some U � X in U is continuous if V � Y ∈ V just when f−1(V ) � U � X ∈ U. Two partial 
maps defined on U and U ′ are =U-equivalent if their restrictions to some W ⊆ U ∩ U ′ in U coincide.

Definition 21. The category UEC has pairs (X ∈ C, U ∈ βX) as objects, and as morphisms (X, U) → (Y, V)
the continuous maps X → Y . The category UFC has the same objects, and as morphisms (X, U) → (Y, V)
the =U-equivalence classes of partial continuous maps X ⇀ Y defined on the domain of some U � X in U.

Writing MΣ for the maps in UEC whose underlying map in C is a coproduct coprojection, we have as 
in Proposition 5, that UFC

∼= UEC[M−1
Σ ]. Now transcribing the proof of Theorem 13 and Corollary 14, but 

exploiting Proposition 20 and Lemma 19 in place of Theorem 12 and Lemma 11, gives the following.

Theorem 22. Let C be extensive. The category FC(C, Set) of finite coproduct-preserving functors C → Set is 
equivalent to [UFC, Set]. Under this equivalence, the representable presheaf at (X, U) ∈ UFC corresponds to 
the “ultrahom functor”

C(X, –)U = colimU∈UC(U, –) : C → Set .

The formulae for the two directions of the equivalence FC(C, Set) � [UFC, Set] are once again given 
by (3.6) and (3.7).

Example 23. The category Stone of Stone spaces is extensive and SumStone(X) is the Boolean algebra of 
clopen sets of X. It follows by Stone duality that ultrafilters on X ∈ Stone correspond exactly to points of 
X, so that UFStone has pointed Stone spaces (X, x) as objects, and as maps f : (X, x) → (Y, y), germs at 
x of point-preserving continuous functions X → Y . Under the equivalence [UFStone, Set] � FC(Stone, Set), 
the representable at (X, x) corresponds to the functor which sends a Stone space Y to the stalk at x of the 
sheaf of continuous functions X → Y .
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4.2. Relation to ultraproducts

We now explain how Theorem 22 allows us to reconstruct the notion of ultraproduct. Taking C = SetX

therein yields the equivalence [UFSetX , Set] � FC(SetX , Set), and we will obtain the ultraproduct functors 
as correlates to the right of suitable representable functors to the left.

Note first that, via (2.1), we have for any A ∈ SetX that

SumSetX (A) ∼= SumSet/X(πA : X.A → X) ∼= P(X.A) ,

so that ultrafilters on A ∈ SetX can be identified with ultrafilters on X.A in Set. Under this identification, 
the ultrafilter U on X.A corresponds to the ultrafilter Ũ = {Ũ : U ∈ U} on A composed of the subobjects 
Ũ � A obtained by passing the subobjects U � X.A → X of πA : X.A → X across the equivalence (2.1).

Proposition 24. Under the equivalence [UFSetX , Set] � FC(SetX , Set), the representable functor at the object 
(A ∈ SetX , U ∈ β(X.A)) corresponds to the composite

SetX SetπA

−−−−−−−→ SetX.A ΠU−−−−−→ Set . (4.2)

In particular, the representable at (1, U) corresponds to ΠU : SetX → Set.

Proof. From Theorem 22 and the above remarks, we know that y(A,U) corresponds to the ultrahom functor 
SetX(A, –)Ũ. We now calculate that:

SetX(A, Y )Ũ = colimŨ∈Ũ SetX(Ũ , Y )
∼= colimU∈U Set/X(U � X.A

πA−−→ X, X.Y
πY−−→ X )

∼= colimU∈U Set/X.A(U � X.A, π∗
A(X.Y ) πA

∗πY−−−−−→ X.A )
∼= colimU∈U(Πx∈U)Y (πA(x)) = (ΠUx∈X.A)Y (πA(x)) ,

so that y(A,U) corresponds to the composite (4.2) as desired. �
4.3. Relation to model theory

Finally in this section, we relate Theorem 22 to types in model theory. Recall that, if T is a (classical, 
single-sorted) first-order theory, and we write T [x1, . . . , xn] for the theory obtained by adjoining new con-
stants x1, . . . , xn to T , then a complete n-type of T is a complete theory extending T [x1, . . . , xn]; equally, 
it is an ultrafilter on the Lindenbaum–Tarski algebra BT [x1,...,xn] of sentences in T [x1, . . . , xn] identified up 
to provable equivalence.

Each n-tuple of elements �a = a1, . . . , an in a T -model A yields a complete n-type τ(�a), namely the set of 
all sentences ϕ(x1, . . . , xn) of T [x1, . . . , xn] such that A � ϕ(a1, . . . , an); we say that the n-tuple �a realises
the type τ(�a). Many important questions in model theory revolve around the existence, or otherwise, of 
tuples of elements which realise a given type. As we now show, we can obtain the realisation relation between 
n-types of T and n-tuples in a T -model by applying Theorem 22 with C taken to be the classifying Boolean 
pretopos of T .

The classifying Boolean pretopos of a first-order theory has a characterising property analogous to that 
of the Lindenbaum–Tarski algebra BP of a (classical) propositional theory P . Indeed, there is a standard 
notion of model of a propositional theory P in a Boolean algebra C, and the Lindenbaum–Tarski algebra BP

of all P -sentences modulo P -provable equality, is the universal Boolean algebra which models P . By this, 
we mean that models of P in a Boolean algebra C are in bijection with Boolean homomorphisms BP → C.
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The classifying Boolean pretopos of a first-order theory T has a similar property: it is the universal 
Boolean pretopos which models T . We now make this precise. First, a pretopos is a category which is 
finitely complete, extensive and also Barr-exact [1], meaning that it has well-behaved quotients of equiv-
alence relations; while a pretopos is Boolean if it is so qua extensive category. If C and D are pretoposes, 
then a pretopos morphism F : C → D is a functor preserving finite limits, finite coproducts and regular epi-
morphisms; we write Pretop(C, D) for the category of pretopos morphisms and all natural transformations.

There is a standard notion of model of a first-order theory T in a Boolean pretopos C—see, for example [26, 
§D1.2]—and these comprise the objects of a category T -Mode(C) whose maps are elementary embeddings. 
If C and D are Boolean pretoposes, then any pretopos morphism F : C → D preserves T -models and so 
induces a functor F∗ : T -Mode(C) → T -Mode(D).

Definition 25. A classifying Boolean pretopos for a first-order theory T is a Boolean pretopos Cl(T ) endowed 
with a T -model G ∈ T -Mode(Cl(T )) such that, for any Boolean pretopos D, the following functor is an 
equivalence:

Pretop(Cl(T ),D) → T -Mode(D)

F �→ F∗(G) .
(4.3)

To construct the classifying Boolean pretopos of a first-order theory T , we first form its first-order 
syntactic category Cfo

T whose objects are “formal T -definable sets” {�x : ϕ(�x)} (i.e., first-order formulae-
in-context) and whose maps are T -provable equivalence classes of T -provably functional relations from 
{�x : ϕ(�x)} to {�y : ψ(�y)}; see, for example [26, §D1.4]. The classifying Boolean pretopos Cl(T ) is now 
obtained by freely adjoining finite coproducts and coequalisers of equivalence relations to Cfo

T while preserving 
its existing finite unions and image factorisations—see [25, Proposition A1.4.5 & Corollary A3.3.10] for the 
necessary constructions. Alternatively, we can obtain Cl(T ) as the first-order syntactic category of T eq, 
where (–)eq is Shelah’s elimination of imaginaries; this observation is due to Makkai and Reyes [42], and is 
explained in detail in [24].

We will not describe the generic T -model G in Cl(T ) explicitly; however, part of its genericity is the 
fact that SumCl(T)(G) is the Lindenbaum–Tarski algebra BT [x]. More generally SubCl(T)(Gn) is the corre-
sponding Lindenbaum–Tarski algebra BT [x1,...,xn]. It follows that an ultrafilter on Gn ∈ Cl(T ) is exactly a 
complete n-type of T . Now, since D = Set is a Boolean pretopos, we obtain from (4.3) and Theorem 22 a 
string of functors

T -Mode(Set) �−→ Pretop(Cl(T ), Set) ⊆−→ FC(Cl(T ), Set) �−→ [UFCl(T), Set]

assigning to each (ordinary) T -model M both a functor M : Cl(T ) → Set and a functor M̃ : UFCl(T) → Set. 
In this context, the passage from M to M̃ was described by Makkai in [38], who also observed its model-
theoretic import: it encodes the types realised by tuples of elements of the model M.

Indeed, the pretopos morphism M : Cl(T ) → Set corresponding to the model M sends G to the underlying 
set |M| of the model, sends Gn to |M|n and sends ϕ ∈ SumCl(T)(Gn) to the set { �m ∈ |M|n : M � ϕ(�m) }. 
Thus, by (3.6), the value of the corresponding M̃ ∈ [UFCl(T), Set] at a complete n-type U is given by the 
set of n-tuples of elements of M which realise the type U:

M̃(Xn,U) = {�m ∈ |M|n : ϕ ∈ U ⇐⇒ M � ϕ(�m)} .

5. Second generalisation

In this section, we give our second generalisation of Theorem 13, which extends the first one to an equiv-
alence FC(C, E) � [UFC, E], where C is extensive as before, and now E is any locally connected Grothendieck 
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topos. We then use this result to reconstruct the indexed sum of ultrafilters, and in the process of doing so 
construct interesting and natural bicategories of ultramatrices and ultraspans. Finally, we describe how this 
relates to the ultracategories of [40].

5.1. Generalising the codomain category

A locally small category E is a Grothendieck topos if it is equivalent to the category of sheaves on a 
small site; see, for example, [36, Chapter III]. Equivalently, by Giraud’s theorem (cf. [36, Appendix]), E
is a Grothendieck topos just when it is finitely complete, Barr-exact and infinitary extensive with a small 
generating set.

In any Grothendieck topos E, the functor Γ = E(1, –) : E → Set has a left adjoint Δ: Set → E which sends 
a set X to the coproduct Σx∈X1. We say that E is locally connected (or molecular [3]) if Δ has a further 
left adjoint π0 : E → Set. For example, by [14, p. 414, Ex. 7.6], the topos of sheaves on a space X is locally 
connected just when X is locally connected in the usual sense; in this case, π0 : Sh(X) → Set sends a sheaf 
to the set of connected components of the corresponding étale space over X.

Theorem 26. Let C be extensive and E a locally connected Grothendieck topos. The category FC(C, E) is 
equivalent to [UFC, E] via an equivalence whose two directions are given by the formulae (3.6) and (3.7).

In proving this, we require a straightforward generalisation of the equivalence [elX, Set] � [A, Set]/X
of (3.3) to an equivalence

[elX,E] � [A,E]/ΔX (5.1)

for any Grothendieck topos E. The generalisation makes use of the fact that E is infinitary extensive; this 
means that it has all small coproducts, and that for any set X, the coproduct functor Σ:

∏
x∈X(E/Ax) →

E/(Σi∈XAx) is an equivalence of categories. Taking each Ax to be terminal and using E/1 ∼= E, we deduce 
that

Σ: EX → E/ΔX

is an equivalence for any set X, with pseudoinverse given (necessarily) by pullback along the coproduct 
coprojections. By using this equivalence in place of (2.1), we may generalise (3.3) to the desired equiva-
lence (5.1). Much as before, Y ∈ [elX, E] is sent to π :

∫
Y → ΔX whose component πA : (

∫
Y )A → ΔXA is 

the coproduct of the family of maps (Y (A, x) → 1)x∈XA; while conversely, p : E → X in [A, E]/ΔX is sent 
to Ẽ ∈ [elX, E] wherein Ẽ(A, x) is the pullback of pA : EA → ΔXA along Δx : Δ1 → ΔXA.

Proof of Theorem 26. Since π0 � Δ � Γ: E → Set, both π0 and Δ preserve finite coproducts, so inducing 
an adjunction π0 ◦ (–) � Δ ◦ (–) : FC(C, Set) → FC(C, E), whose right adjoint must send the terminal 
object β ∈ [C, Set] to a terminal object Δβ ∈ FC(C, E). As C and E are extensive, it follows from this 
and Lemma 19 that FC(C, E) ∼= [C, E] /sc Δβ where to the right we have the full subcategory of the slice 
category on the sum-cartesian transformations; recall that sum-cartesian means that the naturality squares 
at coproduct coprojections are pullbacks.

Using (5.1) we have, like before, an equivalence [C, E]/Δβ � [el β, E] ∼= [UEC, E]; and, like before, an 
object p : E → Δβ to the left is sum-cartesian just when the corresponding Ẽ ∈ [UEC, E] inverts the class 
MΣ of continuous coproduct coprojections. Thus FC(C, E) ∼= [C, E] /sc Δβ � [UFC, E] as desired.

It remains to show that the two directions of the equivalence are given as in (3.6) and (3.7). In the 
latter case this is clear from the construction using (5.1). In the other direction, if A ∈ FC(C, E), then the 
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corresponding Ã ∈ [UEC, E] has its value at (X, U) given by the pullback to the left in:

Ã(X,U) AX

τX

Δ1 ΔU ΔβX

AU
Am

τU

AX

τX

ΔβU
Δβm

ΔβX ,

where τ : A → Δβ is induced by terminality of Δβ in FC(C, E). Note, however, that U : 1 → βX in Set is 
the meet of the subobjects (βU � βX)U∈U. Since Δ is a right adjoint, it preserves meets, as does pullback 
along τX ; consequently, Ã(X, U) is the meet of the subobjects (τ−1

X (ΔβU) � AX)U∈U. But since τ is sum-
cartesian by Lemma 19, the square right above is a pullback for any m : U � X in U, and so we conclude 
that Ã is given as in (3.6) by

Ã(X,U) ∼=
⋂
U∈U

AU ⊆ AX . �

5.2. Ultramatrices, ultraspans and the relation to indexed sums

We now wish to describe how this result recaptures the indexed sum of ultrafilters. In fact, we will do 
something slightly more general to draw as perfect an analogy as possible with Proposition 16. The first 
step there was to transport the strict monoidal structure on the category FC(Set, Set) to obtain a monoidal 
structure on the equivalent [UF, Set]. The analogue here is to transport the compositional structure of a 
2-category of finite-coproduct-preserving functors along equivalences of each of its hom-categories to obtain 
an equivalent bicategory [4].

Definition 27.

(i) The 2-category FCSet has sets X, Y, Z, . . . as objects; hom-categories given by FCSet(X, Y ) =
FC(SetX , SetY ); and composition given by the usual composition of functors and natural transfor-
mations.

(ii) The bicategory UEsp of ultrafilter species has sets as objects; hom-categories UEsp(X, Y ) = [UFSetX ,

SetY ]; and composition obtained from that of FCSet by transporting across the equivalences FC(SetX ,

SetY ) � [UFSetX , SetY ].

The nomenclature “ultrafilter species” echoes Joyal’s notion of a species of structures (espéces de struc-
tures [28]), and its generalisation in [16] to a bicategory Esp of generalised species of structures. We will not 
labour the comparison, but suffice it to say that in both bicategories, composition is given by a substitu-
tion formula, which in the case of Esp is given by equation (9) of [16], and for UEsp is given by a suitable 
generalisation of (3.8).

In Proposition 16, we reconstructed the tensor product of ultrafilters by showing the representa-
bles in [UF, Set] to be closed under the tensor product. To reconstruct the indexed sum of ultrafilters, 
we will similarly show that pointwise representable 1-cells in UEsp are closed under composition. Here, 
F ∈ UEsp(X, Y ) = [UFSetX , SetY ] is pointwise representable if each functor F (–)(y) : UFSetX → Set is 
representable. The subcategory of pointwise representable functors is equivalent (via pointwise Yoneda) to 
the category (UFSetX )Y , and so a typical pointwise representable 1-cell is presented by a Y -indexed family 
of pairs (My ∈ SetX , Uy ∈ β(X.My)). In fact, we prefer to think of these data in either one of the following 
two alternative ways.
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Definition 28. Let X and Y be sets.

(i) An ultramatrix from X to Y is a pair (M, U) composed of a matrix of sets M ∈ SetX×Y together with 
a Y -indexed family of ultrafilters Uy on each column sum My := (Σx ∈X) M(x, y).

(ii) An ultrafamily (g, U) : M � Y is a function g : M → Y together with an ultrafilter Uy on each fibre 
g−1(y). An ultraspan from X to Y is a span with left leg a function and right leg an ultrafamily:

M
f (g,U)

X Y .

(5.2)

It is easy to see using (2.1) that both ultramatrices and ultraspans from X to Y correspond to pointwise 
representables in UEsp(X, Y ), and so to certain finite-coproduct-preserving functors SetX → SetY . As in 
the introduction, we may call these generalised ultraproduct functors. Using Proposition 24, we see that, 
one the one hand, the generalised ultraproduct functor SetX → SetY encoded by the ultramatrix (M, U) is 
given by:

(H(x) | x ∈ X ) �→
(
(ΠUy

(x,m)∈My)H(x) | y ∈ Y
)

. (5.3)

On the other hand, the ultraspan (f, (g, U)) : X → Y encodes the functor

SetX Setf−−−→ SetM
Π(g,U)−−−−→ SetY

where Π(g,U) is given by “ultraproduct on each fibre”; i.e., its y-component is given by composing the 

restriction functor SetM → Setg
−1y with the ultraproduct functor ΠUy

: Setg
−1y → Set.

The next two definitions are intended to describe how pointwise representable 1-cells in UEsp compose 
in terms of the representing ultramatrices or ultraspans.

Definition 29. If (M, U) and (N, V) are ultramatrices from X to Y and from Y to Z, then their composition is 
the ultramatrix (N ·M, V ·U) from X to Z whose first component is given by the usual matrix multiplication:

(N ·M)(x, z) = (Σy ∈Y )(N(y, z) ×M(x, y)) .

As for the second component, note that for each z ∈ Z we have an isomorphism

(Σ(y, n)∈Nz)My
∼= (N ·M)z (5.4)

sending (y, n, x, m) to (x, y, n, m). We can therefore define the ultrafilter (V · U)z on (N · M)z to be the 
transport across (5.4) of the ultrafilter on (Σ(y, n) ∈Nz) My given by the indexed sum (ΣVz

(y, n) ∈Nz) Uy.

Definition 30. Given ultraspans (f, (g, U)) : X → Y and (h, (k, V)) : Y → Z, their composition is the ultra-
span whose legs are given by the outer composites in:

M ×Y N
p (q,W)

M
f (g,U)

N

h

(k,V)

X Y Z .
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Here, firstly, p and q constitute a pullback of g and h in Set. Next, to the top right, the pullback ultrafamily 
(q, W) : M ×Y N � N has Wn given by the transport of Uhn across the isomorphism g−1(hn) ∼= q−1(n). 
Finally, the composite (kq, VW) of the ultrafamilies (q, W) and (k, V) has (VW)z given by the transport of 
(ΣVz

n ∈k−1z) Wn across the isomorphism (Σn ∈k−1z) q−1n ∼= (kq)−1z.

The validity of these descriptions is confirmed by:

Proposition 31. The pointwise representable 1-cells in UEsp are closed under composition, with the induced 
composition on ultramatrices and ultraspans given as in Definition 29 and Definition 30 respectively.

Proof. The identity 1-cells in UEsp are easily seen to be pointwise representable. As for binary composition, 
the composition laws in Definitions 29 and 30 correspond under (2.1), so that it suffices to check the claim 
on ultramatrices. So let F ∈ UEsp(X, Y ) and G ∈ UEsp(Y, Z) be represented by the respective ultramatrices 
(M, U) and (N, V). By (5.3), the corresponding generalised ultraproduct functors 

∫
F ∈ FC(SetX , SetY ) and ∫

G ∈ FC(SetY , SetZ) have respective actions on objects

(
∫
F )(H)(y) = (ΠUy

(x,m)∈My)H(x) and (
∫
G)(K)(z) = (ΠVz

(y, n)∈Nz)K(y) .

Therefore 
∫
GF ∼=

∫
G ◦

∫
F : SetX → SetZ satisfies

(
∫
GF )(H)(z) ∼= (ΠVz

(y, n)∈Nz)(ΠUy
(x,m)∈My)H(x)

∼= (Π(ΣVz (y,n)∈Nz)Uy
(y, n, x,m)∈ (Σ(y, n)∈Nz)My)H(x)

∼= (Π(V·U)z(x, y, n,m)∈ (N ·M)z)H(x) ,

using Proposition 9 and the definition of (V · U)z. Thus, by (5.3) again, the pointwise representability of 
GF is witnessed by the ultramatrix (N ·M, V · U). �

It follows from this result that there are bicategories UMtx (resp., US) in which objects are sets; 1-cells 
are ultramatrices (resp., ultraspans) composing as in Definition 29 (resp., Definition 30); and 2-cells are 
determined by the requirement that each bicategory be biequivalent to the locally full sub-bicategory of 
UEsp on the pointwise representable 1-cells.

It remains to show that the composition laws in UMtx and US allow us to reconstruct the indexed sum 
of ultrafilters, so fulfilling the objective of this section. This is easiest to see in the case of US. Suppose that 
we are given a set X equipped with an ultrafilter U and an X-indexed family of sets Y (x) each equipped 
with an ultrafilter V(x). We can represent these data as a pair of composable ultraspans as to the left in:

X.Y
1 (πY ,V)

X

1

(!,U)

X.Y X 1

X.Y
1 (!,U.V)

X.Y 1 ,

whose composite encodes the indexed sum U.V as right above.

Remark 32. In Remark 17 above, we explained how categories enriched over the monoidal category [UF, Set]
can be thought of as ordinary categories endowed with abstract ultrapower functors. It is possible to extend 
this so as to capture categories endowed with abstract ultraproduct functors by using the theory of categories 
enriched in a bicategory as in [47].

Rather than [UF, Set]-enriched categories with copowers by representables, we consider UEsp-enriched 
categories with copowers by pointwise representable 1-cells. We might guess that such enriched categories 
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correspond to ordinary categories C admitting abstract ultraproduct functors ΠU : CX → C. The reality is 
slightly more subtle; while some details still require sorting out, it appears that the UEsp-enriched categories 
with copowers as above correspond to Set-indexed prestacks—i.e., pseudo-functors C : Setop → CAT satisfy-
ing a descent condition—equipped with suitably coherent abstract ultrapower functors Π(f,U) : CX → CY

for each ultrafamily (f, U) : X � Y .
While the details must await a further paper, these observations draw an interesting link to Makkai’s ultra-

categories [40,41]. As in the introduction, an ultracategory is a category endowed with abstract ultraproduct 
structure, as well as interpretations for any ultramorphism, i.e., “definable map between ultraproducts”. 
Makkai’s main result is that the ultracategory structure on the category of models of a coherent theory T
in either intuitionistic or classical first-order logic is sufficient to reconstruct T to within Morita equivalence; 
more precisely, it suffices to reconstruct the classifying pretopos of T .

These results of Makkai were given new proofs by Lurie in [35], with a significantly simplified definition 
of what it means for an ultracategory to admit interpretations of any ultramorphism; and although we have 
not yet completed the analysis, it seems that this additional structure is exactly what UEsp-enrichment 
provides besides the existence of abstract ultraproduct functors. In future work we hope to investigate this 
further with a view to giving a purely enriched-categorical proof of Makkai’s reconstruction result.

6. Locally connected classifying toposes

In Section 4.3, we discussed the algebraic semantics for classical propositional theories in Boolean 
algebras, and for first-order theories in Boolean pretoposes. There are similar semantics for certain frag-
ments of intuitionistic logic: in particular, the coherent fragment, which allows only the logical connectives 
∃, ∨, ∧, �, ⊥, has an algebraic semantics in distributive lattices (for the propositional case) and in pretoposes 
(for the first-order case); see, for example [42].

Now for classical propositional theories, there is a restricted semantics valued not in Boolean algebras 
but complete atomic Boolean algebras. Rather than the Lindenbaum–Tarski algebra BP , the appropriate 
universal model in this context is the power-set algebra P(TP ) on the set TP of complete theories extending 
P , with the universal valuation of P in P(TP ) sending each primitive proposition ϕ to the set of complete 
extensions which validate it. Since TP is equally the set β(BP ) of ultrafilters on BP , the passage from BP

to P(TP ) can be understood in terms of the lattice-theoretic construction of canonical extension [27]: in 
general, for a Boolean algebra B, its canonical extension is the power-set algebra Bδ := P(βB).

Similarly, for coherent intuitionistic propositional theories, the semantics in distributive lattices restricts 
to one valued in completely distributive algebraic lattices; these are equally well the down-set lattices of 
posets, and posets are the same thing as symmetric, transitive Kripke frames, so this is really another view 
on the Kripke semantics of intuitionistic logic [46, §2.5]. In this context, the classifying distributive lattice 
DP of a theory P is replaced by its canonical extension Dδ

P , constructible as in [21] as the downset-lattice 
of the poset of prime filters in DP (ordered by reverse inclusion); this is an algebraic reformulation of the 
construction of the canonical Kripke model [46, Definition 2.6.4] of an intuitionistic propositional theory.

An obvious question is whether the alternate semantics detailed above lift from propositional to first-
order logic. A variety of positive answers has been given to this question. One positive answer is given in [39]; 
there, Makkai introduces the notion of a prime-generated topos, as a Grothendieck topos whose subobject 
lattices are completely distributive algebraic.1 He then considers semantics for a coherent intuitionistic 
first-order theory T valued in prime-generated toposes, and constructs the universal such model in what 
he calls the topos of types of T . This is obtained from the classifying pretopos C = Cl(T ) of T by a 
“categorified canonical extension”, obtained by first forming a category PFC of prime filters in C, defined 
similarly to our UFC, and then taking a suitable sheaf subcategory τ(Cl(T )) of [PFop

C , Set]. The name “topos 

1 This is not the original definition of prime-generation from [38], but an equivalent one from [2, §3].
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of types” for τ(Cl(T )) derives from the fact that, as Makkai puts it, it gives “a reasonable codification of 
the ‘discrete’ (non topological) syntactical structure of types of the theory” [38, p. 196]. The idea that the 
passage Cl(T ) �→ τ(Cl(T )) should be seen as a kind of canonical extension was made precise by Coumans 
in [13].

In this section, we take a slightly different view on lifting canonical extension to the first-order coherent 
context. In Makkai’s approach, the distributive subobject lattices of Cl(T ) are completed via canonical 
extension to the completely distributive algebraic subobject lattices of τ(Cl(T )). For us, the focus will 
instead be on the Boolean algebras of coproduct summands in Cl(T )—corresponding logically to decidable 
predicates in T—which will be completed via canonical extension to complete atomic Boolean algebras of 
coproduct-summands. The property of having complete atomic Boolean algebras of coproduct-summands 
is, by [3, Theorem 15], characteristic of locally connected Grothendieck toposes, and so what we aim to 
describe in the locally connected classifying topos of a given pretopos C. The existence of this follows from 
results of [18], but the description there is rather inexplicit; we aim to give a concrete construction in terms 
of sheaves on the category of ultrafilters, and to compare this to the toposes of types of Makkai and others.

6.1. The lextensive case

In this section, as a warm-up to our main result, we construct the locally connected classifying topos of 
a small lextensive category—that is, a category which is both finitely complete and extensive.

We first make precise what we mean by this. Recall that a geometric morphism f : E → F between toposes 
is an adjoint pair of functors f∗ � f∗ : E → F such that f∗ (the inverse image functor) preserves finite limits. 
We write LCGTop for the 2-category of locally connected Grothendieck toposes, geometric morphisms and 
natural transformations f∗ ⇒ g∗, and write Lext for the 2-category of lextensive categories, lextensive 
functors (i.e., ones preserving finite limits and finite coproducts) and arbitrary natural transformations. As 
every locally connected Grothendieck topos and every inverse image functor between such is lextensive, we 
have a forgetful 2-functor LCGTopop → Lext.

Definition 33. A locally connected classifying topos for an extensive category C is a left biadjoint at C for 
the forgetful 2-functor LCGTopop → Lext.

Here, and in what follows, when we speak of a left biadjoint at X for a 2-functor U : A → B, we mean 
a birepresentation (in the sense of [45]) for the 2-functor B(X, U–) : A → CAT. More concretely, then, a 
locally connected classifying topos for the lextensive C comprises a locally connected Grothendieck topos 
Lc(C) and a lextensive functor η : C → Lc(C) which is universal in the sense that, for each locally connected 
Grothendieck topos E, we have an equivalence:

LCGTop(E,Lc(C)) � Lext(C,E) (6.1)

induced by the assignment f �→ f∗ ◦ η.
Our goal is to give an explicit construction of a locally connected classifying topos for any small lextensive 

category C. For this, we require the result sometimes known as Diaconescu’s theorem; it can be found proved 
in, for example, [36, Theorem VII.7.2].

Proposition 34. If A is a small category, then the presheaf topos [Aop, Set] classifies flat functors out of 
A. More precisely, for each Grothendieck topos E, the assignment f �→ f∗ ◦ y induces an equivalence of 
categories

GTop(E, [Aop, Set]) � Flat(A,E) . (6.2)
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Here, we define Flat(A, E) as the full subcategory of [A, E] on the flat functors, but for this we should 
clarify what “flat” means. One definition is that F : A → E is flat just when LanyF : [Aop, Set] → E, its left 
Kan extension along the Yoneda embedding of [Aop, Set], preserves finite limits; this is a general categorical 
definition which makes sense for any small A and cocomplete E. On the other hand, when E is a Grothendieck 
topos as above, a more explicit characterisation is possible which generalises a well-known characterisation 
when E = Set.

Given F ∈ [A, E], we write elF for the category of elements of F : the internal category in E with 
underlying graph

∑
a,b∈A

∑
f∈A(a,b) Da

s

t

∑
a∈A Da

where s maps the (a, b, f)-summand to the a-summand via 1Da, and where t maps the (a, b, f)-summand 
to the b-summand via Df . There is a standard notion—see, for example [25, Definition B2.6.2]—of what it 
means for an internal category C in a topos to be cofiltered; in the internal language of the topos, it says 
that “every finite diagram in C has a cocone under it”. The key result we will need is the following; for a 
proof, see [25, Theorem B3.2.7].

Proposition 35. If A is a small category and E is a Grothendieck topos, then F : A → E is flat if and only 
if the internal category elF in E is cofiltered.

With these preliminaries in place, we can now give:

Proposition 36. If C is small and lextensive, then [UFC
op, Set] is a locally connected classifying topos for C.

Proof. Like any presheaf topos, [UFC
op, Set] is locally connected. For the classifying property, we must 

exhibit equivalences LCGTop(E, [UFC
op, Set]) � Lext(C, E), pseudonaturally in E, which we will do by com-

posing pseudonatural equivalences:

LCGTop(E, [UFC
op, Set]) �−→ Flat(UFC,E) �−→ Lext(C,E) . (6.3)

The first of these is (6.2). As for the second, we have by Theorem 26 that

[UFC,E] � FC(C,E) (6.4)

for any locally connected Grothendieck topos E, and by considering the explicit formula (3.7) for the 
rightward direction, we see that these equivalences are pseudonatural in inverse image functors. We will 
thus have the desired pseudonatural equivalence if we can show that, in (6.4), the flat functors on the 
left-hand side correspond to the finite-limit-preserving ones on the right.

Towards this goal, we recall from Definition 21 the category UEC of which UFC is a localisation, and 
consider the span π : C ← UEC → UFC : ι whose two legs are the forgetful functor and the localisation 
functor respectively. It is easy to see from the formula (3.7) that the left-to-right direction of (6.4) sends 
B : UFC → E to its image under the composite functor

[UFC,E] ι∗−−→ [UEC,E] Lanπ−−−−→ [C,E] .

It therefore suffices to prove that:
(i) B : UFC → E is flat if and only if Bι : UEC → E is flat. We saw above that UFC

∼= UEC[M−1
Σ ], the 

localisation at the class of continuous coproduct coprojections. Since MΣ is a pullback-stable, composition-
closed class of arrows, there is (for example by [26, Proposition C2.1.9]) a Grothendieck topology J on UEC
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whose covering sieves are those which contain any map in MΣ. The condition for a functor F : UEop
C → Set to 

be a J-sheaf is now precisely the condition that it inverts each m ∈ MΣ, and so we may identify [UFC
op, Set]

with Sh(UEC), and the sheafification adjunction with the adjunction Lanι � ι∗ : [UFC
op, Set] → [UEC

op, Set]; 
so in particular, Lanι preserves finite limits. We now use this to prove the claim. Note that Lany(Bι) ∼=
(LanyB) ◦ Lanι, so that if B is flat, then so too is Bι. On the other hand, since Lanι ◦ ι∗ ∼= 1, we have that 
LanyB ∼= Lany(Bι) ◦ ι∗ so that if Bι is flat then so too is B.

(ii) F : UEC → E is flat if and only if LanπF : C → E preserves finite limits. Since the value at X of 
LanπF : C → E is 

∑
U∈βX F (X, U), it is an easy calculation to see that the internal categories elF and 

el(LanπF ) are isomorphic. So F is flat if and only if LanπF is flat. But since C admits all finite limits, 
LanπF is flat if and only if it is finite-limit-preserving; see, for example [25, Lemma B3.2.5]. �

By tracing the identity geometric morphism on [UFC
op, Set] through this proof, we see that the 

universal lextensive functor η : C → [UFC
op, Set] is the image under (3.7) of the Yoneda embedding 

UFC → [UFC
op, Set], and so given by:

η(X) =
∑

U∈βX y(X,U) .

6.2. The pretopos case

Let us now write Pretop for the 2-category of pretoposes, pretopos morphisms and all natural transfor-
mations. Like before, every locally connected Grothendieck topos is a pretopos and every inverse image 
functor is a pretopos morphism, so that we have a forgetful 2-functor LCGTopop → Pretop.

Definition 37. A locally connected classifying topos for a pretopos C is a left biadjoint at C for the forgetful 
2-functor LCGTopop → Pretop.

It is known that every small pretopos C has a locally connected classifying topos. To see this, we factor 
the forgetful 2-functor of the preceding definition as the composite of the two forgetful 2-functors

LCGTopop → GTopop → Pretop

viewing a locally connected Grothendieck topos as a Grothendieck topos, and a Grothendieck topos as a 
pretopos. The second factor is well-known to have a left biadjoint at every small pretopos C, given by the 
topos of sheaves Sh(C) for the topology of finite jointly epimorphic families. On the other hand, the first 
factor is known to have a left biadjoint given by the locally connected coclosure of [18]. It follows that the 
composite has a left biadjoint at every small pretopos.

One difficulty with the preceding argument is that the construction of the locally connected coclosure 
in [18] is inexplicit, relying at a crucial point on the adjoint functor theorem. Our objective in this section 
is to give a concrete description of the locally connected classifying topos of any small De Morgan pretopos. 
The notion of De Morgan pretopos is an obvious generalisation of the notion of De Morgan topos described, 
for example in [26, §D4.6]. In giving the definition, we recall a pseudocomplement of an element a in a 
distributive lattice is an element ¬a which is disjoint from a, and is moreover the maximal such element; 
i.e., such that a ∧ b = ⊥ if and only if b � ¬a.

Definition 38. A distributive lattice A is a Stone algebra [22] if it admits all pseudocomplements and satisfies 
¬a ∨¬¬a = � for all a ∈ A. A pretopos C is De Morgan if each subobject lattice SubC(X) is a Stone algebra.

An equivalent characterisation of a De Morgan pretopos is as one in which each inclusion of meet semi-
lattices SumC(X) → SubC(X) has a left adjoint sending A to ¬¬A. The relevance of the condition to our 
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investigations is isolated in the following result, whose significance will become clear shortly. In its proof, 
we use the operation ∃f : SubC(X) → SubC(Y ) of direct image along a map f : X → Y of a pretopos C. 
This operation is left adjoint to pullback f−1 : SubC(Y ) → SubC(X) and satisfies the Beck–Chevalley and 
Frobenius conditions; see [25, §A1.3].

Proposition 39. If C is a De Morgan pretopos, then UFC satisfies the right Ore condition: that is, each 
cospan in UFC as in the solid part of the following diagram can be completed to a commuting square as 
shown:

(Z,W)
[g2]

[g1]

(X2,U2)

[f2]

(X1,U1)
[f1]

(Y,V) .

(6.5)

Proof. Since every map in UFC factors as an isomorphism followed by the equivalence class of a total map, 
we lose no generality in assuming that the fi’s in (6.5) are total. We can therefore form their pullback 
g1 : X1 ← Z → X2 : g2 in C, and consider the subset F ⊆ SumC(Z) given as the upward closure of

{g−1
1 (U1) ∩ g−1

2 (U2) : U1 ∈ U1, U2 ∈ U2} . (6.6)

This subset is easily a filter on SumC(Z), and we claim it is a proper filter; thus, for any U1 ∈ U1 and 
U2 ∈ U2 we must show that g−1

1 (U1) ∩ g−1
2 (U2) �= ⊥. Now, by Frobenius, Beck–Chevalley, and Frobenius we 

have

∃f1g1(g−1
1 (U1) ∩ g−1

2 (U2)) = ∃f1(U1 ∩ ∃g1(g−1
2 (U2)))

= ∃f1(U1 ∩ f−1
1 (∃f2(U2)))

= ∃f1(U1) ∩ ∃f2(U2) ,

and so, since direct image preserves and reflects ⊥, we must equally show that ∃f1(U1) ∩ ∃f2(U2) �= ⊥. If 
we set Vi = ¬¬∃fi(Ui) then, by standard properties of pseudocomplementation, this is in turn equivalent 
to showing that V1 ∩ V2 �= ⊥. Since C is De Morgan, we have Vi ∈ SumC(Y ); moreover, Ui ∈ Ui and 
Ui ⊆ f−1

i (∃fi(Ui)) ⊆ f−1
i (Vi) implies f−1

i (Vi) ∈ Ui, and so Vi ∈ V since (fi)!(Ui) = V. Since V is an 
ultrafilter, we conclude that V1 ∩ V2 �= ⊥ as desired.

This proves that (6.6) generates a proper filter F. By the Boolean prime ideal theorem, we can extend this 
to an ultrafilter W ∈ βZ, which by construction satisfies Ui ⊆ (gi)!(W) for i = 1, 2, and so Ui = (gi)!(W)
(since both sides are ultrafilters). We have thus completed (6.6) to a commuting square as desired. �

The key to constructing the locally connected classifying topos of a small De Morgan pretopos is 
the following standard result on geometric morphisms into sheaf toposes proved, for example, in [36, 
Lemma VII.7.3]. In the statement, we write CovFlat(A, E) for the category of flat functors A → E which are 
also cover-preserving, in the sense of sending covers to jointly epimorphic families.

Proposition 40. Let A be a small site and i : Sh(A) → [Aop, Set] the associated inclusion of toposes. Under 
the equivalence (6.2), a geometric morphism E → [Aop, Set] factors through i just when the corresponding 
flat functor A → E is cover-preserving. Consequently, (6.2) restricts back to an equivalence

GTop(E, Sh(A)) � CovFlat(A,E) . (6.7)
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The locally connected classifying topos of the small De Morgan pretopos C will be obtained as a topos 
of sheaves on UFC for a suitable Grothendieck topology, and its universal property verified via a chain of 
pseudonatural equivalences LCGTop(E, Sh(UFC)) � CovFlat(UFC, E) � Pretop(C, E), each of whose terms is 
a restriction of the corresponding term in (6.3).

Since a pretopos morphism out of C is a lextensive functor which also preserves regular epimorphisms, 
the topology on UFC must be chosen so that, under the equivalence Flat(UFC, E) � Lext(C, E) of (6.3), the 
cover-preserving functors to the left correspond to the regular-epimorphism-preserving ones to the right.

We now describe such a topology, specifying it in terms of a coverage [26, Definition C2.1.1]; this involves 
assigning to each object X a set of covering families (fi : Xi → X | i ∈ I) satisfying the stability property:

(C) For any cover (fi : Xi → X | i ∈ I) and any map g : Y → X in A, there is a cover (hj : Yj → Y | j ∈ J)
such that each ghj factors through some fi.

Proposition 41. Let C be a pretopos. There is a coverage on UFC for which a typical cover of the object 
(Y, V) ∈ UFC is of the form

〈f,V〉 :=
(
[f ] : (X,U) → (Y,V) | U ∈ βX, f!(U) = V

)
(6.8)

for any f : X → Y whose image im f � Y is (a coproduct injection and) in V.

Proof. We must verify condition (C). So consider 〈f,V〉 as above and a map [g] : (Y ′, V′) → (Y, V) in UFC

defined on some m : V ′ � Y ′ in V′. We first pull back f along g in C as in the left-hand square below, and 
now define f ′ = mq : X ′ → Y ′. By assumption, im f ∈ V; since g is continuous and image factorisations 
are pullback-stable, it follows that im f ′ ∈ V′. Moreover, for each [f ′] : (X ′, U′) → (Y ′, V′) in 〈f ′,V′〉, the 
composite [gf ′] factorises through a map in 〈f,V〉 as to the right in:

X ′ p

q

X

f

(X ′,U′)
[p]

[f ′]

(X, p!U
′)

[f ]

V ′ g
Y (Y ′,V′)

[g]
(Y,V) .

This proves that the covers do indeed satisfy condition (C). �
We write Sh(UFC) for the topos of sheaves on UFC for this coverage.

Theorem 42. Let C be a small De Morgan pretopos. The topos Sh(UFC) is a locally connected classifying 
topos for C, and is itself De Morgan.

Proof. We begin by showing that Sh(UFC) is locally connected and De Morgan. Since C is De Morgan, we 
know by Proposition 39 that UFC satisfies the right Ore condition, and so by [26, Examples C3.3.11(a)]
and [11, Corollary 2.8], the sheaf topos Sh(UFC) will be both locally connected and De Morgan so long 
as every covering family 〈f,V〉 as in (6.8) is non-empty. Thus, given V ∈ βY and f : X → Y in C with 
im f ∈ V, we must show that there exists an ultrafilter U ∈ βX with f!(U) = V. Much as in Proposition 39, 
we consider the subset F ⊆ SumC(X) given as the upwards-closure of

{f−1(V ) : V ∈ V} . (6.9)

Like there, F is a filter which we claim is moreover proper. Indeed, if ⊥ = f−1(V ) for some V ∈ SumC(Y ), 
then also ⊥ = ∃f (f−1(V ) ∩ �) = V ∩ im f by Frobenius; whence V /∈ V since im f ∈ V. Like before, we 
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can now use the Boolean prime ideal theorem to find an ultrafilter U ⊆ SumC(X) extending F which, by 
construction, will satisfy V ⊆ f!(U) and hence (since both are ultrafilters) V = f!(U).

So Sh(UFC) is locally connected and De Morgan; it remains to verify the classifying property, for which 
we must exhibit equivalences LCGTop(E, Sh(UFC), Set]) � Pretop(C, E), pseudonaturally in E. As discussed 
above, these will be obtained by composing pseudonatural equivalences:

LCGTop(E, Sh(UFC)) �−→ CovFlat(UFC,E) �−→ Pretop(C,E) (6.10)

of which the first is (6.7), and the second is obtained by restricting the right-hand equivalence Flat(UFC, E) �
Lext(C, E) of (6.3). The only point to check is that the cover-preserving functors to the left of this latter 
equivalence correspond to the regular-epimorphism-preserving ones to the right.

So suppose given a covering family 〈f,V〉 as in (6.8). We may form the image factorisation of f as 
f = me : X � im f � Y , and since by assumption im f ∈ V, we conclude that

〈f,V〉 =
(
(X,U) [e]−−→ (im f, V|im f ) [m]−−→ (Y,V)

)
U∈βX,e!(U)=V|im f

.

Since [m] is invertible in UFC, this family will be sent to a jointly epimorphic one just when 〈e, V|im f 〉 is; 
whence a functor A : UFC → E preserves all covers just when it preserves ones 〈f,V〉 as in (6.8) with f a 
regular epimorphism. This is equally to say that, for each f : X � Y and each V ∈ βY , the map to the left 
in:

∑
U∈βX

f!(U)=V

A(X,U) → A(Y,V)
∑

U∈βX

A(X,U) →
∑

V∈βX

A(Y,V)

obtained by copairing the maps A([f ]) : A(X, U) → A(Y, V) is an epimorphism in E. Summing these left-
hand maps over all V ∈ βY and using infinite extensivity of E, this is equally the condition that, for each 
f : X � Y in C, the map right above is an epimorphism. Since this map is the value at f of the functor ∫
A : C → E corresponding to A under (3.7), this completes the proof. �

Remark 43. As before, chasing the identity geometric morphism Sh(UFC) → Sh(UFC) through this 
proof shows that the universal pretopos map η : C → Sh(UFC) is the image under (3.7) of the compos-
ite ay : UFC → Sh(UFC) of the Yoneda embedding and the sheafification functor. As such it is given by:

η(X) =
∑

U∈βX ay(X,U) .

Now, each object ay(X,U) is connected in Sh(UFC), in the sense of having no non-trivial coproduct decom-
position; and so it follows that SumUFC

(ηX) = P(βX) is the canonical extension of the Boolean algebra 
SumC(X). This justifies our claim in the introduction to this section linking locally connected classifying 
toposes to canonical extension for Boolean algebras.

Remark 44. We remarked above that the 2-functor GTopop → Pretop has a left biadjoint at every small 
pretopos given by the topos Sh(C) of sheaves on C for the topology of finite jointly epimorphic families. The 
toposes arising in this way are commonly known as coherent toposes; moreover, by [11, Theorem 3.11], the 
coherent topos associated to a small De Morgan pretopos is itself De Morgan. Given this, another way of 
seeing Theorem 42 is as giving an explicit construction of the locally connected coclosure [18] of any coherent 
De Morgan topos.

One may reasonably ask if we have a similar explicit construction upon dropping the qualifier “coherent”. 
The answer is yes, so long as we assume that every cardinal is smaller than some strongly compact cardinal. 
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In this case, for any De Morgan Grothendieck topos E, we can find a strongly compact cardinal κ such 
that E is the free completion of a small De Morgan κ-ary pretopos—that is, a pretopos with pullback-stable 
κ-small coproducts. We can thus reduce the problem to constructing the locally connected classifying topos 
of a small κ-ary De Morgan pretopos; and we can do this by tracing through the definitions and results 
of this paper replacing everywhere finite coproducts by κ-small coproducts. The main change, as in [9], is 
that we must replace ultrafilters by κ-complete ultrafilters—ones closed under κ-small intersections. The 
assumption of strong compactness of κ is needed in the proofs of Proposition 39 and Theorem 42, where we 
are now required to extend the κ-complete filters (6.6) and (6.9) to κ-complete ultrafilters.

6.3. Relation to toposes of types

In the introduction to this section, we have already discussed the analogies between our construction of a 
locally connected classifying topos, and Makkai’s topos of types from [38]. We now provide a more detailed 
technical comparison between these constructions and other similar constructions in the literature.

The earliest “topos of types” in fact predates Makkai, appearing in Joyal and Reyes’ [29]. Given a pretopos 
C, a prime filter on X ∈ C is a prime filter in the distributive lattice SubC(X); these comprise the objects 
of a category PFC of prime filters in C defined similarly to UFC. Endowing PFC with the obvious analogy 
of the topology of Proposition 41 yields [29]’s topos of existential types. No universal property is described, 
but the formula (3.6) appears on p. 11 of [29].

Makkai’s topos of types from [38] is a topos of sheaves on the same category PFC, but for a different 
topology, and he exhibits it as the “classifying prime-generated topos for p-models of C”. As we have already 
said, a Grothendieck topos E is prime-generated if each subobject lattice is completely distributive algebraic, 
while a pretopos morphism F : C → E into a prime-generated topos is said to be a p-model if for every prime 
filter p on SubC(X) and every f : X → Y we have ∃f (

⋂
A∈p

FA) =
⋂

A∈p
F (∃fA) in SubE(FY ). The 

classifying property of the topos of types τ(C) is given by equivalences

PGTop(E, τ(C)) � pPretop(C,E) (6.11)

where to the left we have the category of geometric morphisms between prime-generated toposes whose 
inverse image functors preserve all intersections, and to the right we have the category of p-models. In 
establishing this equivalence, the formula (3.6) again appears; see the bottom of p. 164 of [38]. In model-
theoretic terms, the condition of being a p-model is a saturation condition; Makkai states this already in [38], 
and the point is followed up in [10], and exploited in, among other places, [43,15].

The other main “topos of types” in the literature is Pitts’ topos of filters Φ(C) of a pretopos C. Introduced 
in [44], this is the topos of sheaves on the category FC of all—not necessarily prime—filters of subobjects, 
for the topology whose covers are the finite jointly epimorphic families. The universal property of Φ(C) was 
given in [37] by analogy with τ(C): it is the “classifying completely distributive topos for f-models of C”. 
Here, a completely distributive topos is one whose subobject lattices are completely distributive, and an 
f-model is like a p-model, but with arbitrary filters replacing prime ones.

We conclude this discussion by comparing the universal characterisation (6.11) of Makkai’s topos of types 
and our Theorem 42. To the left of the equivalence, our theorem replaces “prime-generated” by “locally 
connected” and moreover relaxes the condition of intersection-preservation on morphisms. What permits 
this relaxation is the fact that we only care about intersections of coproduct summands, and any inverse 
image functor between locally connected toposes preserves these. To the right of the equivalence, we drop 
the p-model condition. This is to do with the fact that our choice of topology is analogous to Joyal and 
Reyes’ [29] rather than Makkai’s [38]. If one modifies Makkai’s topos of types to use Joyal and Reyes’ 
topology, then one can also drop the p-model condition; however, the result is then no longer a prime-
generated topos, and so it is unclear what an appropriate universal property would be. The final difference 
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we note is that Makkai’s equivalence works for arbitrary pretoposes C, while ours works only for De Morgan
pretoposes; this extra condition seems to be necessary to ensure that the topos of sheaves we form is indeed 
locally connected.

Asides from these technical distinctions, we would raise one further point. In this paper, we have striven 
to make the constructions we give as unavoidable as possible. The category UFC is forced upon us once we 
are interested in finite-coproduct-preserving functors out of C; adding finite-limit-preservation leads us to 
consider also flatness; and finally, once we add regular-epimorphism-preservation, we are led inevitably to 
the given topology on UFC. Everything else is a matter of making the details match up.2 In future work, 
we intend to see whether our main results can be adapted to the prime filter setting, and if, on doing so, 
they provide a treatment of Makkai’s topos of types in the same spirit.

Declaration of competing interest

There are no competing interests.

References

[1] M. Barr, Exact categories, in: Exact Categories and Categories of Sheaves, in: Lecture Notes in Mathematics, vol. 236, 
Springer, 1971, pp. 1–120.

[2] M. Barr, M. Makkai, On representations of Grothendieck toposes, Can. J. Math. (Journal Canadien de Mathématiques) 
39 (1987) 168–221.

[3] M. Barr, R. Paré, Molecular toposes, J. Pure Appl. Algebra 17 (1980) 127–152.
[4] J. Bénabou, Introduction to bicategories, in: Reports of the Midwest Category Seminar, in: Lecture Notes in Mathematics, 

vol. 47, Springer, 1967, pp. 1–77.
[5] A. Blass, Orderings of Ultrafilters, PhD thesis, Harvard University, 1970.
[6] A. Blass, Two closed categories of filters, Fundam. Math. 94 (1977) 129–143.
[7] A. Blass, Ultrafilters: where topological dynamics = algebra = combinatorics, Topol. Proc. 18 (1993) 33–56.
[8] F. Borceux, Handbook of Categorical Algebra 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge 

University Press, 1994.
[9] R. Börger, A Characterization of the Ultrafilter Monad, Seminarberichte, vol. 6, Fernuniversität Hagen, 1980.

[10] C. Butz, Saturated models of intuitionistic theories, Ann. Pure Appl. Log. 129 (2004) 245–275.
[11] O. Caramello, De Morgan classifying toposes, Adv. Math. 222 (2009) 2117–2144.
[12] A. Carboni, S. Lack, R.F.C. Walters, Introduction to extensive and distributive categories, J. Pure Appl. Algebra 84 (1993) 

145–158.
[13] D. Coumans, Generalising canonical extension to the categorical setting, Ann. Pure Appl. Log. 163 (2012) 1940–1961.
[14] P. Deligne, Theorie des topos et cohomologie étale des schemas (SGA 4), Lecture Notes in Mathematics, vol. 269, Springer, 

1972.
[15] J. Eliasson, Ultrasheaves, PhD thesis, University of Uppsala, 2003.
[16] M. Fiore, N. Gambino, M. Hyland, G. Winskel, The cartesian closed bicategory of generalised species of structures, J. 

Lond. Math. Soc. 77 (2008) 203–220.
[17] T. Frayne, A.C. Morel, D.S. Scott, Reduced direct products, Fundam. Math. 51 (1962/1963) 195–228.
[18] J. Funk, The locally connected coclosure of a Grothendieck topos, J. Pure Appl. Algebra 137 (1999) 17–27.
[19] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 

vol. 35, Springer, 1967.
[20] R. Garner, Lawvere theories, finitary monads and Cauchy-completion, J. Pure Appl. Algebra 218 (2014) 1973–1988.
[21] M. Gehrke, B. Jónsson, Bounded distributive lattices with operators, Math. Jpn. 40 (2) (1994) 207–215.
[22] G. Grätzer, E.T. Schmidt, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hung. 8 (1957) 455–460.
[23] J.D. Halpern, A. Lévy, The Boolean prime ideal theorem does not imply the axiom of choice, in: Axiomatic Set Theory, 

Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967, Amer. Math. Soc., Providence, 
RI, 1971, pp. 83–134.

[24] V. Harnik, Model theory vs. categorical logic: two approaches to pretopos completion (a.k.a. T eq), in: Models, Logics, and 
Higher-Dimensional Categories, in: CRM Proc. Lecture Notes, vol. 53, Amer. Math. Soc., Providence, RI, 2011, pp. 79–106.

[25] P.T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Vol. 1, Oxford Logic Guides, vol. 43, Oxford 
University Press, 2002.

[26] P.T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Vol. 2, Oxford Logic Guides, vol. 44, Oxford 
University Press, 2002.

[27] B. Jónsson, A. Tarski, Boolean algebras with operators. I, Am. J. Math. 73 (1951) 891–939.

2 Though at this stage we have no satisfactory explanation for the requirement of De Morganness.

http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF8D786A774405FDFB7F7D5BB0C45078Cs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF8D786A774405FDFB7F7D5BB0C45078Cs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibFDD19D5F132327B9DABAE159FB795ED2s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibFDD19D5F132327B9DABAE159FB795ED2s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib52CC09D79A0AFC464B5FD901DD3758CDs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibABF7ADF984285B769006AFCF35D5405Ds1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibABF7ADF984285B769006AFCF35D5405Ds1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib1302A1163A58BBB1561F64586A6EC988s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib3259CF04A02DD5CE254CD0950CDE9DD1s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibE395E02B07271B4CC7FD3A4892CE2305s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF544B14F354970D51E491D2A8D8CB02Es1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF544B14F354970D51E491D2A8D8CB02Es1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib49C96B0D78BA2F5C3673A5D4B8580166s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib52708410FD5F0172DA31BBAC6340FE59s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib8555F4519887A020D889EFD48EDC4614s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF482A68F5E75F069BD5E3B79DB9F52A3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF482A68F5E75F069BD5E3B79DB9F52A3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib20CBFB877C175807C8B825A56BCBB630s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibCB39C4B351BF367E9164C0C1AC28C15Bs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibCB39C4B351BF367E9164C0C1AC28C15Bs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibD2856AB1773C7E137367640F67DCDA3Fs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib6890658C72B561D454BFE6AECD81FCA3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib6890658C72B561D454BFE6AECD81FCA3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib80DC5B3510D38CFDCDC06B74D0E0B462s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib0110BDE37E0467ADD48CD36127E7A740s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib02773318E315ED313D49FA01E3895E82s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib02773318E315ED313D49FA01E3895E82s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibEE8990F6BB25755DF7A026F98B9DC911s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib7DF7E2C56FBC84C6B22AA9017341FF9Ds1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib665F5A1D46534EFE5B4A02DA67385083s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib7AACF68158953ADF6A447FF79F9AA8F3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib7AACF68158953ADF6A447FF79F9AA8F3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib7AACF68158953ADF6A447FF79F9AA8F3s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibDE4872A147AD7B9B1B016C77733EDBECs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibDE4872A147AD7B9B1B016C77733EDBECs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibDA8570B80F59BCCCA12D9525177B74FCs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibDA8570B80F59BCCCA12D9525177B74FCs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib274FAADFFA9AEADBB17445E07242353As1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib274FAADFFA9AEADBB17445E07242353As1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibBA8B6756B9CD20C0BFA31EBE13BE78B1s1


R. Garner / Annals of Pure and Applied Logic 171 (2020) 102831 29
[28] A. Joyal, Foncteurs analytiques et espèces de structures, in: Combinatoire énumérative, Montreal, 1985, in: Lecture Notes 
in Mathematics, vol. 1234, Springer, 1986, pp. 126–159.

[29] A. Joyal, G.E. Reyes, Forcing and generic models in categorical logic, unpublished preprint, 1978.
[30] M. Katětov, Products of filters, Comment. Math. Univ. Carol. 9 (1968) 173–189.
[31] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Note Series, vol. 64, 

Cambridge University Press, 1982; Republished as: Reprints in Theory and Applications of Categories, vol. 10, 2005.
[32] J.F. Kennison, D. Gildenhuys, Equational completion, model induced triples and pro-objects, J. Pure Appl. Algebra 1 

(1971) 317–346.
[33] V. Koubek, J. Reiterman, On the category of filters, Comment. Math. Univ. Carol. 11 (1970) 19–29.
[34] T. Leinster, Codensity and the ultrafilter monad, Theory Appl. Categ. 28 (2013) 332–370.
[35] J. Lurie, Ultracategories, preprint, available at https://www .math .ias .edu /~lurie /papers /Conceptual .pdf, 2019.
[36] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Universitext, Springer, 1992.
[37] F. Magnan, Le topos des types et le topos des filtres en logique categorique, Thesis (Ph.D.)–Universite de Montreal 

(Canada), ProQuest LLC, Ann Arbor, MI, 2000.
[38] M. Makkai, The topos of types, in: Logic Year 1979–80, Proc. Semin. Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 

1979/80, in: Lecture Notes in Math., vol. 859, Springer, 1981, pp. 157–201.
[39] M. Makkai, Full continuous embeddings of toposes, Trans. Am. Math. Soc. 269 (1982) 167–196.
[40] M. Makkai, Stone duality for first order logic, Adv. Math. 65 (1987) 97–170.
[41] M. Makkai, Duality and Definability in First Order Logic, Memoirs of the American Mathematical Society, vol. 105, 1993.
[42] M. Makkai, G.E. Reyes, First Order Categorical Logic, Lecture Notes in Mathematics, vol. 611, Springer, 1977.
[43] I. Moerdijk, A model for intuitionistic non-standard arithmetic, Ann. Pure Appl. Log. 73 (1995) 37–51.
[44] A.M. Pitts, An application of open maps to categorical logic, J. Pure Appl. Algebra 29 (1983) 313–326.
[45] R. Street, Fibrations in bicategories, Cah. Topol. Géom. Différ. Catég. 21 (1980) 111–160.
[46] A.S. Troelstra, D. van Dalen, Constructivism in Mathematics. Vol. I: An Introduction, Studies in Logic and the Foundations 

of Mathematics, vol. 121, North-Holland Publishing Co., Amsterdam, 1988.
[47] R.F.C. Walters, Sheaves and Cauchy-complete categories, Cah. Topol. Géom. Différ. Catég. 22 (1981) 283–286.

http://refhub.elsevier.com/S0168-0072(20)30055-5/bib5DAFF2250C921023545CE4468BFD9E80s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib5DAFF2250C921023545CE4468BFD9E80s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib8F2AF65C92059AD3A0797B9C86D6B60Ds1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib4351F6C3893008F552A6C37F7EA11BF9s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib4351F6C3893008F552A6C37F7EA11BF9s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib30BD0FF29069402CDC972317DAA34A0Cs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib30BD0FF29069402CDC972317DAA34A0Cs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibEAFB6B657FE5AA5A91148CDAF9584882s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib0B4CEF7A1CFBFE5AD84CD78293BC1625s1
https://www.math.ias.edu/~lurie/papers/Conceptual.pdf
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib3A4D2866F2DF81A45BE02F750924A591s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibEBD58B81D24A452A5A8DAE7BA7A064B8s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibEBD58B81D24A452A5A8DAE7BA7A064B8s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibB352DB3808BCED69F5C0A0B23B0D082Fs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibB352DB3808BCED69F5C0A0B23B0D082Fs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibB346989279FB5B819E4818AF2EF88A72s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibD2AC5306543D6C3047D83DD153C9C5E0s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibBCF46A02B43EB219C09AB231857FF413s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib8E3B5A67ADC2BB0E1B2206ED466D99E7s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib7DD79DD11A93D43DED4C876ABE274F2Cs1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib3B1738A2092C358E8F3F8EB40F8C6481s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibF73178F8A0556CFC067D4315D7759117s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib19444026BCFF4D618D4F19B57BE1B3D0s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bib19444026BCFF4D618D4F19B57BE1B3D0s1
http://refhub.elsevier.com/S0168-0072(20)30055-5/bibB0E0A51CEB068290716771FDCD7109C1s1

	Ultrafilters, finite coproducts and locally connected classifying toposes
	1 Introduction
	2 Background
	2.1 Ultrafilters, ultraproducts and ultrapowers
	2.2 The category of ultrafilters
	2.3 Tensor product and indexed sum of ultrafilters

	3 The main theorem
	3.1 Börger’s theorem
	3.2 The main theorem
	3.3 Relation to ultrapowers and tensor products

	4 First generalisation
	4.1 Generalising the domain category
	4.2 Relation to ultraproducts
	4.3 Relation to model theory

	5 Second generalisation
	5.1 Generalising the codomain category
	5.2 Ultramatrices, ultraspans and the relation to indexed sums

	6 Locally connected classifying toposes
	6.1 The lextensive case
	6.2 The pretopos case
	6.3 Relation to toposes of types

	References


