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Abstract. In this paper, we give precise mathematical form to the idea of
a structure whose data and axioms are faithfully represented by a graphical
calculus; some prominent examples are operads, polycategories, properads,
and PROPs. Building on the established presentation of such structures
as algebras for monads on presheaf categories, we describe a characteristic
property of the associated monads—the shapeliness of the title—which says
that “any two operations of the same shape agree”.

An important part of this work is the study of analytic functors between
presheaf categories, which are a common generalisation of Joyal’s analytic
endofunctors on sets and of the parametric right adjoint functors on presheaf
categories introduced by Diers and studied by Carboni–Johnstone, Leinster
and Weber. Our shapely monads will be found among the analytic endo-
functors, and may be characterised as the submonads of a universal analytic
monad with “exactly one operation of each shape”.

In fact, shapeliness also gives a way to define the data and axioms of a
structure directly from its graphical calculus, by generating a free shapely
monad on the basic operations of the calculus. In this paper we do this for some
of the examples listed above; in future work, we intend to use this to obtain
canonical notions of denotational model for graphical calculi such as Milner’s
bigraphs, Lafont’s interaction nets, or Girard’s multiplicative proof nets.

1. Introduction

In mathematics and computer science, we often encounter structures which
are faithfully encoded by a graphical calculus of the following sort. The basic
data of the structure are depicted as certain diagrams; the basic operations of
the structure act by glueing together these diagrams along certain parts of their
boundaries; and the axioms of the structure are just those necessary to ensure
that “every two ways of glueing a compound diagram together agree”.

Commonly, such calculi depict structures wherein “functions”, “arrows” or
“processes” are wired together along input or output “ports”. For instance,
we have multicategories [21], whose arrows have many inputs but only one
output; polycategories [29], whose arrows have multiple inputs and outputs, with
composition subject to a linear wiring discipline; and coloured properads [31] and
props [24], which are like polycategories but allow for non-linear wirings.

Mathematical structures such as these are important in algebraic topology and
homological algebra—encoding, for example, operations arising on infinite loop
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spaces [26] or on Hochschild cochains [27]—but also in logic and computer science.
For example, polycategories encode the underlying semantics of a linear sequent
calculus [22], while props have recently been used as an algebraic foundation for
notions of computational network such as signal flow graphs [3] and Bayesian
networks [10]. Other kinds of graphical structures arising in computer science
include proof nets [11, §2], interaction nets [20] and bigraphs [14].

There is an established approach to describing structures of the above kind
using monads on presheaf categories. The presheaf category captures the essential
topology of the underlying graphical calculus, while the monad encodes both the
wiring operations of the structure and the axioms that they obey; the algebras
for the monad are the instances of the structure. One aspect which this approach
does not account for is that the axioms should be determined by the requirement
that “every two ways of wiring a compound diagram together agree”. The
first main contribution of this paper is to rectify this: we explain the observed
form of the axioms as a property of the associated monad—which we term
shapeliness—stating that “every two operations of the same shape coincide”.

In fact, shapeliness gives not just a way of characterising the monads encoding
graphical structures, but also a systematic way of generating them. For a given
graphical calculus, it is typically easy to find a presheaf category encoding the
basic diagram-shapes of the calculus, and an endofunctor thereon encoding the
basic wiring operations; we then obtain the desired monad as the free shapely
monad on the given endofunctor. The algebras for this monad can be seen as
denotational models of the graphical calculus in question; and though we do not
do this here, one can envisage this being used to attach workable denotational
semantics to, for example, interaction nets; the syntactic part of bigraphs; or
mll proof nets without units.

Formalising the notion of shapely monad turns out to be a delicate task. In
the end, we will define a monad on PC = [C op,Set] to be shapely just when it
is a submonad of a universal shapely monad U with “exactly one operation of
each shape”. We will find U by seeking a terminal object in a suitable monoidal
category of endofunctors of PC ; once found, terminality will automatically
endow this object with a monad structure, so giving the desired U.

This leaves the problem of choosing a suitable monoidal category of endo-
functors. An obvious but wrong choice would be the whole functor category
[PC ,PC ]: with this choice, U would be the monad constant at 1, and a general
monad would be shapely just when it took values in subobjects of 1. This is
manifestly not what we want; the problem is that terminality in the full functor
category encodes the property of having “exactly one operation of each shape”
for what are overly crude notions of “operation” and “operation shape”.

Refining these notions, as we shall do, means looking for a terminal object in
some smaller category of endofunctors of PC . Choosing this category turns out
to be an interesting design problem: some natural candidates have a terminal
object, but are not closed under composition, while others are closed under
composition, but fail to have a terminal object. Our eventual solution will
triangulate between these failures, but we make no claims to its definitiveness; in
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fact, we consider the value of our work to lie as much in the exploration of the
problem’s design space as in the particular solution we adopt.

The technical foundation of our approach will be a theory of analytic functors
between presheaf categories, and the second main contribution of this paper is to
develop this theory. Analytic endofunctors of Set were introduced by Joyal in [16]
as a categorical setting for constructions in enumerative combinatorics; their
importance for computer science has been recognised in work such as [1, 9, 12].
An endofunctor F of Set is analytic when it can be written in the form:

FX =
∑

i∈I X
αi
/Gi

for an I-indexed family of natural numbers αi and subgroups Gi 6 Sαi ; the
quotients are by the permutation actions of Gi on the factors of Xαi . Generalising
this, we will call a functor F : PD →PC analytic if it takes the form:

(1.1) FX(c) =
∑

i∈Ic PD(αi, X)/Gi

for some family of presheaves αi ∈ PD and subgroups Gi 6 Aut(αi) of the
automorphism group of each αi. Just as in the case studied in [16], these
generalised analytic functors have a strongly combinatorial flavour; moreover, all
of the monads derived from graphical calculi that we will consider turn out to
be analytic in this sense1. It is therefore reasonable that we should look for a
universal shapely monad among analytic endofunctors of a presheaf category. In
the end, we are able to produce such a universal monad only in certain special
cases; but along the way, we develop various results of independent interest, for
example:

(i) We give a combinatorial representation of the category of finitary analytic
functors and transformations PC →PD (Proposition 4.16) and show that
this category always has a terminal object (Proposition 4.20).

(ii) We show that analytic functors between presheaf categories need not be
closed under composition (Proposition 4.23); this is by contrast to analytic
endofunctors of Set, which are composition-closed.

(iii) We introduce a condition on analytic functors which we call cellularity, that
is sufficient to ensure that they do compose (Proposition 5.15).

(iv) We see that, unfortunately, the introduction of cellularity also destroys the
terminal object among finitary analytic endofunctors (Proposition 5.20).

We conclude this introduction with a brief overview of the rest of the paper.
We start in Section 2 by developing some motivating examples of structures
expressible by graphical calculi: we discuss the polycategories of [28] and the
richer structures of (coloured) properads [31] and props [24], and in each case
show how the structure at issue can be described as the algebras for a monad
on a presheaf category. In Section 3, we begin our pursuit of the notion of
universal shapely monad. We do not immediately consider the analytic functors
discussed above, but rather the narrower class of familially representable or

1This is why we do not make use of the various other generalisations of analyticity to presheaf
categories in [1, 9, 8]; none of these generalisations can express the monads associated to our
graphical examples.



4 R. GARNER AND T. HIRSCHOWITZ

familial functors; these were introduced by Diers [7] and studied by inter alia
Johnstone, Leinster and Weber [6, 33, 23], and are precisely the analytic functors
whose expression (1.1) involves only trivial groups Gi. We recall basic aspects of
the theory of familial functors, including closure under composition, but show
that there is usually no terminal object among familial endofunctors, and hence
no universal shapely monad among them.

In Section 4, we attempt to fix up the lack of a terminal object among familial
endofunctors by passing to the more general analytic functors. As is visible from
(i) and (ii) above, we succeed in doing this, but only at the cost of breaking
the composability of familial endofunctors. Section 5 attempts to fix this new
problem by introducing the more restricted class of cellular analytic functors; as
in (iii) and (iv) above, this does indeed resolve the problem of composability but
at the same time reintroduces the problem of the existence of a terminal object.

At this point, in Section 6, we declare ourselves unable to find a further refine-
ment of the notion of cellularity that, in full generality, fixes both composability
and existence of a terminal object. However, in the presheaf categories relevant
to the motivating examples of Section 2, we are able to impose an additional ad
hoc condition on top of cellularity which is sufficient to ensure that the cellular
functors in this class both compose and admit a terminal object: using this, we
finally obtain the desired notion of shapely monad, and are able to exhibit the
monads encoding the graphical structures of interest as free shapely monads on
the basic wiring operations of the structure.

2. Motivating examples

Before developing our general theory of shapeliness, we describe in detail some
of the examples we would like to capture, so that we can see as we go along
how they fit into the framework. Our main example will be the polycategories
of [28], though we also discuss properads [31] and props [24]. In describing these
examples, we first give an elementary presentation of the structure, and then
show how it can be encoded by a suitable monad on a presheaf category.

2.1. Polycategories. Polycategories were introduced in [28] as a semantic model
for a two-sided propositional sequent calculus; although originally used to model
the classical Genzten calculus, it later became clear [22] that they are precisely
the structure underlying the multiplicative fragment of linear logic.

Definition 2.1. A small (symmetric) polycategory C comprises a set ob(C ) of
objects; sets C ( ~A; ~B) of morphisms for each pair of lists ~A = (A1, . . . , An) and
~B = (B1, . . . , Bm) of objects; and the following further data:

• Identity morphisms idA ∈ C (A;A) for each object A.

• Composition operations giving for each f ∈ C ( ~A; ~B) and g ∈ C (~C; ~D) and
indices i, j with Bi = Cj , a morphism

g j◦i f ∈ C (~C<j, ~A, ~C>j; ~B<i, ~D, ~B>i) ,

here we use comma to denote concatenation of lists, and write ~C<j for the
list (C1, . . . , Cj−1), and so on.
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• Exchange operations giving for each f ∈ C ( ~A; ~B) and permutations ϕ ∈ Sn

and ψ ∈ Sm an element

ψ · f · ϕ ∈ C ( ~Aϕ; ~Bψ−1)

where ~Aϕ denotes the list (Aϕ(1), . . . , Aϕ(n)) and likewise for ~Bψ−1 .

These data are required to satisfy various axioms, which we give in detail mainly
to show how unpalatable they are when presented algebraically, and without any
serious expectation that the reader should work through the details.

• The unit axioms f i◦1 idAi = f = idBj 1◦j f for all f ∈ C ( ~A; ~B) and valid
indices i, j.

• The associativity axiom for all f ∈ C ( ~A; ~B), g ∈ C (~C; ~D) and h ∈ C ( ~E; ~F )
and indices i, j, k, ` with Bi = Cj and Dk = E`:

(h `◦k g) j+`−1◦i f = h `◦k+i−1 (g j◦i f) .

• The left interchange axiom for all f ∈ C ( ~A; ~B), g ∈ C (~C; ~D) and h ∈
C ( ~E; ~F ) and indices i, j and k1 < k2 such that Bi = Ek1 and Dj = Ek2 :

(h k2◦j g) k1◦i f = ψ · ((h k1◦i f) k2+n−1◦j g) .

Here, n is the length of the list ~A and ψ is the evident permutation for which
( ~B<i, ~D<j, ~F , ~D>j, ~B>i)ψ = ( ~D<j, ~B<i, ~F , ~B>i, ~D>j).

• The right interchange axiom for all f , g and h as above and indices i1 < i2
and j, k such that Bi1 = Cj and Bi2 = Ek:

g j◦i1 (h k◦i2 f) = (h k◦i2+m−1 (g j◦i1 f)) · ϕ .

This time, m is the length of the list ~D and ϕ is the evident permutation
for which ( ~E<k, ~C<j, ~A, ~C>j, ~E>k)ϕ = (~C<j, ~E<k, ~A, ~E>k, ~C>j).

• The usual action axioms for the exchange operation: idm · f · idn = f and
(ψ2ψ1) · f · (ϕ1ϕ2) = ψ2 · (ψ1 · f · ϕ1) · ϕ2.

• Compatibility of exchange and composition for all f ∈ C ( ~A; ~B), g ∈ C (~C; ~D),
and suitable permutations ϕ1, ϕ2, ψ1 and ψ2:

(ψ2 · g · ϕ2) j◦i (ψ1 · f · ϕ1) = ψ̄ · (g ϕ2(j)◦ψ−1
1 (i) f) · ϕ̄

where ϕ̄ is determined by (~C<ϕ2(j),
~A, ~C>ϕ2(j))ϕ̄ = ((~Cϕ2)<j, ~Aϕ1 , (

~Cϕ2)>j)
and ψ̄ by ( ~B<ψ−1

1 (i),
~D, ~B>ψ−1

1 (i))ψ̄−1 = (( ~Bψ−1
1

)<i, ~Dψ−1
2
, ( ~Bψ−1

1
)>i).

We write Polycat for the category of small polycategories and the structure-
preserving maps between them.

The definition of polycategory is much more easily parsed by way of the
following graphical presentation: a morphism in C (A1, . . . , An;B1, . . . , Bm) is
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depicted as a box with n wires going into it and m going out:

(2.1)

A1 An

B1 Bm .

f

· · ·

· · ·
The actions by the symmetric groups are depicted by rearranging input or
output wires; for example, if f ∈ C (A1, A2, A3;B1, B2, B3, B4), then the element
(124) · f · (123) is depicted as left below. Now identities are depicted as bare
wires, and the composition g j◦i f as the plugging of the ith output of f into the
jth input of g, as on the right in:

(2.2)

A2 A3

B1 B3

f

A1

B2B4

A1 · · ·· · · · · ·

· · ·· · · · · ·

An

B1 Bm .

f

Bi−1 Bi+1

C1 Cj−1 Cj+1 Cp

D1 Dq

g

With this presentation, the axioms for a polycategory can be seen simply as
asserting that various ways of building up the same compound diagram coincide.
This has the advantage of allowing us to avoid the the careful index-tracking
needed to state the axioms in the algebraic formulation; however it is not yet
precise. As a first step in this direction, we show how the graphical presentation
allows us to derive a description of polycategories as the algebras for a monad on
a presheaf category.

Definition 2.2. Let P denote the category with objects {?} + N × N and with
non-identity maps σ1, . . . , σn and τ1, . . . , τm : ? → (n,m). A presheaf X ∈PP
is called a polygraph2; elements of X(?) are called vertices, elements of X(n,m)
are called edges, and we write s1, . . . , sn and t1, . . . , tm for X(σ1), . . . , X(σn) and
X(τ1), . . . , X(τm). The sources and targets of an edge e are its images under the
maps s1, . . . , sn, respectively t1, . . . , tm.

The functor U : Polycat →PP sending each polycategory to its underlying
polygraph is easily seen to be monadic, so that we may identify polycategories
with algebras for the induced monad on PP. To describe this monad explicitly,
we exploit the correspondence between the diagrams drawn above and presheaves
over P. For instance, the diagram (2.1) for a morphism with n inputs and m

2Our usage follows [2]; note that these polygraphs are completely unrelated to those of [4].
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outputs corresponds to the representable presheaf y(n,m) = P(–, (n,m)), while
the diagram (2.2) for a composite g j◦i f corresponds to a pushout

(2.3)

y?
yτi //

yσj

��

y(n,m)

u

��
y(p,q) v

// y(p,q) j•i y(n,m)

in PP. Writing A = y(p,q) j•i y(n,m), the further composite h `◦k+i−1 (g j◦i f) in
the associativity axiom corresponds to the pushout in PP as to the left in:

y?
yτk //

yσ`

��

y(p,q)
v // A

��

y(r,s)
// y(r,s) `•k+i−1 A

y?
yσ`

��
yτk ��

y?

yσj��

yτi

��
y(r,s) y(p,q) y(n,m) ,

which clearly coincides to within isomorphism with the polygraph representing
(h `◦k g) j+`−1◦i f , since both are colimits for the diagram above right. Iteratively
taking pushouts of this kind yields the following class of polygraphs describing
the compound wiring operations of a polycategory; eventually, in Section 6.3
below, we will be able to generate all of these shapes from those for the basic
wiring operations, but for the moment we give a more hands-on construction.

Definition 2.3. A finite polygraph is one with finitely many vertices and edges. An
(n,m)-labelling of a finite polygraph is given by choices of vertices `1, . . . , `n and
r1, . . . , rm, called the leaves and roots respectively. An isomorphism of labelled
polygraphs is one respecting the labellings. Let L (n,m) be a set of isomorphism-
class representatives of (n,m)-labelled finite polygraphs; we write |X| for the
underlying polygraph of X ∈ L (n,m) and `X and rX for the labellings. Now:

(a) Let id ∈ L (1, 1) be y? labelled in the unique possible way;

(b) Given X ∈ L (n,m), Y ∈ L (p, q) and indices 1 6 i 6 m and 1 6 j 6 p,
let Y j•i X ∈ L (n + p − 1,m + q − 1) be such that there is a pushout of
underlying polygraphs

(2.4)

y?
rXi //

`Yj
��

|X|
u
��

|Y | v
// |Y j•i X|

with the labelling of the leaves and roots given respectively by:

v`Y1 , . . . , v`
Y
j−1, u`

X
1 , . . . , u`

X
n , v`

Y
j+1, . . . , v`

Y
p

and urX1 , . . . , ur
X
i−1, vr

Y
1 , . . . , vr

Y
q , ur

X
i+1, . . . , ur

X
m .

(c) For any X ∈ L (n,m), ϕ ∈ Sn and ψ ∈ Sm, let ψ ·X · ϕ ∈ L (n,m) be |X|
labelled by `ϕ(1), . . . , `ϕ(n) and rψ−1(1), . . . , rψ−1(m).

(d) For each n,m ∈ N, let 〈n,m〉 ∈ L (n,m) be y(n,m) labelled by yσ1 , . . . , yσn
and yτ1 , . . . , yτm .
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Now let T (n,m) ⊂ L (n,m) be the subsets obtained by closing the elements
〈n,m〉 in (d) under the operations in (a)–(c).3

As noted above, the labelled polygraphs in the sets T (n,m) represent the com-
pound wiring operations of a polycategory; following [18, 19], we may characterise
them in a direct combinatorial manner.

Definition 2.4. For any polygraph X, we write GX for the undirected multigraph
obtained as follows: the nodes are the disjoint union of the sets of edges and
of vertices of X, and there is an arc v _ e for each way that v is a source or a
target of e. A polygraph X is called a polygraphic tree if it has finitely many
edges and vertices, and moreover:

• Each vertex of X is a source of at most one edge;
• Each vertex of X is a target of at most one edge;
• GX is acyclic (in particular without multiple edges) and connected (in

particular non-empty).

A labelled polygraphic tree is a polygraphic tree equipped with an (n,m)-labelling
for which `1, . . . , `n enumerate the vertices which are not the targets of any edge,
and r1, . . . , rm enumerate the vertices which are not the source of any edge.

Lemma 2.5. T (n,m) is the set of isomorphism-class representatives of (n,m)-
labelled polygraphic trees.

Proof. It is easy to see that each 〈n,m〉 is a labelled polygraphic tree, and that
the labelled polygraphic trees are closed under (a)–(c) above. Conversely, we may
show that any labelled polygraphic tree T is in T (n,m) by an easy induction on
the number of edges in T . �

The labelled polygraphic trees may now be used to give a concrete description
of the left adjoint FP to U : Polycat→PP. Given Lemma 2.5, the proof of the
following result is straightforward, if tedious; the reader may reconstruct it by
suitably adapting [25, Proposition 1.9.2] or [18, §2.2.7].

Proposition 2.6. The free polycategory FPX on a polygraph X ∈PP has object
set X(?) and morphism sets (FPX)(v1, . . . , vn;w1, . . . , wm) given by∑

T∈T (n,m)

{ f : |T | → X in PP : f(`Ti ) = vi and f(rTj ) = wj} .

The identity morphism in (FPX)(v; v) is the pair (id ∈ T (1, 1), v : y? → X); the
composite (S, f) j◦i (T, g) is given by (S j•i T, f j•i g), where f j•i g is the unique
map out of the pushout (2.4) induced by f and g; and the exchange operation is
defined by ψ · (T, f) · ϕ = (ψ · T · ϕ, f).

There is another way of presenting polycategories as the algebras for a monad
on a presheaf category. Though it is further away from the graphical intution,
it is quite a common approach in mathematical practice, and still fits into the

3Note that implicit in these definitions are the assumptions that the elements id and 〈n,m〉
of (a) and (d) are the chosen representatives of their isomorphism-classes, and that relabelling
a representative X ∈ L (n,m) as in (c) yields another such; we are clearly at liberty to make
these assumptions.
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general framework we will develop; it therefore seems to be worth describing here.
The idea is to incorporate the exchange operations into the underlying presheaf:

Definition 2.7. Let Ps be the category obtained from P by adjoining arrows
ξϕ,ψ : (n,m)→ (n,m) for each ϕ ∈ Sn and ψ ∈ Sm, subject to the equations:

ξidn,idm = id(n,m) ξϕ1,ψ1 ◦ ξϕ2,ψ2 = ξϕ1ϕ2,ψ2ψ1

ξϕ,ψ ◦ σi = σϕ(i) ξϕ,ψ ◦ τψ(j) = τj .

A presheaf X ∈PPs is called a symmetric polygraph.

Like before, the forgetful U : Polycat→PPs is monadic, and its left adjoint
can now be described using labelled symmetric polygraphic trees. Let Ls(n,m)
and Ts(n,m) be defined exactly like L (n,m) and T (n,m) in Definition 2.3 but
working over the category PPs of symmetric polygraphs. Since each symmetric
polygraph y(n,m) has free action by Sn × Sop

m , the same will be true of the
underlying symmetric polygraph of any T ∈ Ts(n,m); in fact, it is easy to see
that these T ’s are precisely the images4 of the non-symmetric trees in T (n,m)
under the free functor PP → PPs. The key difference is that a symmetric
labelled tree T ∈ Ts(n,m) may admit a non-trivial group ST of label-preserving
automorphisms; the construction of the free polycategory must now quotient out
by the action of these automorphisms.

Proposition 2.8. The free polycategory FPsX on X ∈ PPs has object set X(?)
and morphism sets (FPsX)(v1, . . . , vn;w1, . . . , wm) given by∑

T∈Ts(n,m)

{ f : |T | → X in PPs : f(`Ti ) = vi, f(rTj ) = wj}/ST

with remaining structure defined analogously to Proposition 2.6 above.

2.2. Properads and PROPs. Though polycategories will serve as our main run-
ning example, it is worth saying a few words about some variations on the same
theme. A (coloured) properad [31] specialises a polycategory by allowing the
plugging of several outputs of a morphism f ∈ C ( ~A; ~B) into a corresponding
number of inputs of g ∈ C (~C; ~D). This means that, for any non-empty sequences
of indices I = {i, . . . , i + k} and J = {j, . . . , j + k} such that Bi+` = Cj+` for
each 0 6 ` 6 k, there is a composite morphism

(2.5) g J◦I f ∈ C (~C<j , ~A, ~C>j+k; ~B<i, ~D, ~B>i+k) .

While it would be possible to state the axioms for a properad in an algebraic
manner paralleling Definition 2.1 above, it is simpler to proceed directly to a
description of them as the algebras for a monad on PP. For this, we first
generate the class of labelled properadic trees: we do so as in Definition 2.3 but

4Though note that non-isomorphic elements of T (n,m) may become isomorphic in Ts(n,m).
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with clause (b) modified so as to allow for pushouts of the form

y? + · · ·+ y?
〈rXi ,...,rXi+k〉

//

〈`Xj ,...,`Xj+k〉
��

|X|

u

��

|Y | v
// |Y J•I X| .

The monad for properads on PP may now be defined as in Proposition 2.6 but
with reference to the larger class of properadic trees. As in the polycategorical
case, we can also view properads as monadic over symmetric polygraphs; a
description of the free properad monad in this case is in [19].

Finally, the props of [24] can be seen as a further specialisation of properads,
in which morphisms may also be composed together along an empty set of wires;
so we augment the data of a properad with composition operations assigning to
each f ∈ C ( ~A; ~B) and g ∈ C (~C; ~D) a morphism

(2.6) g ∅◦∅ f ∈ C ( ~A, ~C; ~B, ~D)

which, graphically, encodes the operation of placing two string diagrams next to
each other; and a chosen element 0 ∈ C ( ; ), corresponding to the empty string
diagram. From here we may proceed exactly as before to view props as algebras
for monads on both PP and PPs.

3. Familial functors and shapeliness

Now that we have described various “graphically specified” structures as
algebras for monads on presheaf categories, we begin our attempts to obtain
these monads via a notion of shapeliness. As in the introduction, our approach
will be to seek on the appropriate presheaf category a universal shapely monad U
with “exactly one operation of each shape”, and to generate the monad encoding
the given structure as a suitable submonad of U. In this section, we look for
U as a terminal object among familially representable, or more shortly familial,
endofunctors—ones which pointwise are coproducts of representables. While this
turns out not quite to work, the techniques we develop will be crucial to our
subsequent efforts.

3.1. Linear operations and familial functors. The key concept underlying the
notion of familial functor is that of a linear operation.

Definition 3.1. Given F : A → B and objects A ∈ A and B ∈ B, an F -operation
of input arity A at stage B is a map t : B → FA. An F -operation t is linear if it
is initial in its connected component of the comma category B ↓ F .

An operation t : B → TA of a monad T on A corresponds to a family of
interpretation functions JtK : A (A,X)→ A (B,X), one for each T-algebra (X,x);
maps of B ↓ T account for reindexing such T-operations so as to act only on part
of their input arity, so that linearity expresses the idea of an operation which
“consumes all its input arity”.
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Lemma 3.2. An operation t : B → FA is linear if and only if for every square of
the following form, there is a unique h : A→ A′ with Fh.t = u; it then follows
also that fh = g.

(3.1)

B
u //

t
��

FA′

Ff
��

FA
Fg
//

Fh

==

FA′′ .

Proof. This is [7, Proposition 0]. �

Now a familial functor is one whose operations are all reindexings of linear
ones. In giving the definition, we say that Y covers X if there is a map Y → X.

Definition 3.3. A functor F : A → B is familial at stage B ∈ B if each operation
in B ↓ F is covered by a linear one; a transformation α : F ⇒ G is familial at
stage B if F and G are so, and the induced functor B ↓ F → B ↓ G preserves
linear operations. We write simply familial to mean “familial at every stage”.

Familial functors were introduced by Diers [7]; his terminology is that familial
functors are those “having a left multiadjoint”. Our name is a shortening of the
term “familially representable” used—for the special case B = Set—in [15].

Lemma 3.4. A functor F : A → B is familial at stage B ∈ B if and only if the
functor B(B,F–) : A → Set is a (possibly large) coproduct of representables.

Proof. For F to be familial at stage B is for B ↓ F to be a coproduct of categories
with initial objects; since B ↓ F is the category of elements of B(B,F–), this is
to say that this latter functor is a coproduct of representables. �

3.2. Pointwise familiality. We are interested in familial endofunctors of presheaf
categories; later, we will need more general familial functors with codomain a
presheaf category. The salient kind of familiality for these is as follows.

Definition 3.5. A functor F : A →PC or transformation α : F ⇒ G : A →PC
is pointwise familial if it is familial at all representable stages; F is called small if
π0(yc ↓ F ) is a mere set for each c ∈ C . We write FAM0(A ,PC ) for the category
of small pointwise familial functors and pointwise familial transformations.

By Lemma 3.4, F : A → PC is (small) pointwise familial just when each
(F–)c ∈ [A ,Set] is a small coproduct of representables. So, for example, the “free
polycategory” endofunctor on the category PP of polygraphs as in Proposition 2.6
is pointwise familial, but the corresponding endofunctor on the category PPs of
symmetric polygraphs is not so, as it involves not just coproducts of representables
but also quotients by group actions. We will be able to handle the latter example
when we consider analytic functors in the following section.

Clearly, a small pointwise familial F is determined by the representable sum-
mands of each (F–)c and how these transform under maps (F–)f : (F–)d→ (F–)c.
The following definition provides a compact way of representing these basic data.
In giving it, we assume that any given F ∈ FAM0(A ,PC ) is equipped with
a choice of linear operation in each connected component of yc ↓ F ; for each
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t ∈ yc ↓ F we write t̃ for the chosen linear operation which covers it. We also
write elX for the category of elements of a presheaf X ∈PC , whose object-set
is

∑
c∈C Xc and whose morphisms from s ∈ Xc to t ∈ Xd are arrows f : c→ d

of C with s = (Xf)(t).

Definition 3.6. The spectrum [7, Definition 3] of a small pointwise familial
F : A →PC is the presheaf SF ∈PC given by:

SF (c) = {t ∈ yc ↓ F : t̃ = t} and SF (f : d→ c) : t 7→ t̃yf .

The canonical diagram of F is the functor DF : elSF →PC ↓ F with:

DF (t) =

yc

t
��

FA

and DF (f : t̃yf → t) =

yc
yf

//

t̃yf
��

yd

t
��

FA′
Fuf

// FA ,

where the lower right map is uniquely induced by linearity of t̃yf . The ex-
ponent [33, Definition 7.1] of F is the functor EF : elSF → A obtained by
composing the canonical diagram with the second projection π2 : PC ↓ F → A .

As elements of SF (c) are in bijection with connected components of yc ↓ F ,
the presheaf SF is equally the colimit of F ; smallness is just what is needed to
ensure this colimit exists. In particular, smallness is vacuous when either A is
small or A has a terminal object, and in the latter case, we may take SF = F1.

We now make precise the idea that a pointwise familial functor is completely
determined by its spectrum and its exponent, by constructing an equivalence
between FAM0(A ,PC ) and the following category:

Definition 3.7. For any A and small C , the category elC //A has as objects, pairs
of a presheaf S ∈PC and a functor E : elS → A , and as maps (S,E)→ (T,D),
pairs of a presheaf map p : S → T and a natural isomorphism ϕ of the form:

(3.2)
elS

el p
//

E ""

ϕks
elT .

D||
A

This category is the “C -Fam(A )” of [32, Definition 2.10], and the following
result is a generalisation of Theorem 2.18 of ibid.

Proposition 3.8. The assignation F 7→ (SF , EF ) is the action on objects of an
equivalence of categories between FAM0(A ,PC ) and elC //A .

Proof. First let α : F ⇒ G in FAM0(A ,PC ). To give the transformation α is
to give transformations αc : (F–)c⇒ (G–)c naturally in c; since by Lemma 3.4
the functor (F–)c is a coproduct of representables, giving each αc is equivalent
to giving the G-linear operation αA.t : yc → GA obtained by acting α on each
chosen F -linear operation t : yc → FA. But αA.t factorises as on the left in:

(3.3)
ycp(t) := α̃A.t

}}

αA.t

!!

GA′
Gϕt

// GA

elSF
el p

//

EF ##

ϕks
elSG

EG{{

A
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using the chosen linear operations of G, and linearity of αA.t is clearly equivalent
to each ϕt being invertible. Thus, to give the pointwise familial α is equally to
specify for each chosen linear t ∈ yc ↓ F a chosen linear p(t) ∈ yc ↓ G together
with an isomorphism ϕt : EG(p(t))→ EF (t). All this must be done naturally in c
so that to give α is equally to give a pair (p, ϕ) as right above with ϕ invertible.

This defines FAM0(A ,PC ) → elC //A on morphisms and simultaneously
shows that it is fully faithful (functoriality is easily checked); it remains to
prove essential surjectivity. Given S ∈PC and E : elS → A , define a functor
F : A →PC by taking (F–)c =

∑
t∈Sc A (Et, –) and taking (F–)(f : d→ c) to

be the unique natural transformation rendering commutative each diagram:

A (Et, –)
A (Ef,–)

//

ι
��

A (E(tf), –)

ι
��∑

t∈Sc A (Et, –)
(F–)f

//
∑

u∈Sd A (Eu, –) .

By Lemma 3.4, F is pointwise familial, and is moreover small since the coproduct
defining (F–)c is so; now by choosing the linear operations in yc ↓ F to be those
γt : yc → FEt picking out the pairs (t, 1Et), we have a bijection S → SF sending
t to γt, which, since EF (γt) = Et, commutes strictly with the functors to A . �

3.3. Composition of familial functors. In seeking a universal shapely monad
among the class of familial endofunctors, we must consider both composability
and existence of a terminal object; we start with composability. The following
lemma gives the properties of linear operations necessary to establish our results.

Lemma 3.9. Let F : A → B and G : B → C be functors.

(i) If s : C → GB is G-linear and t : B → FA is F -linear, then the composite
Gt.s : C → GB → GFA is GF -linear.

(ii) The full subcategory Lin(B ↓ F ) ⊂ B ↓ F on the linear operations is closed
under pointwise colimits (ones created by the projection B ↓ F → B ×A ).

Proof. An easy exercise using Lemma 3.2. �

Definition 3.10. Given A ′ ⊂ A and B′ ⊂ B full replete subcategories, we say
that F : A → B is (A ′,B′)-familial if it is familial at each stage B ∈ B′ and
each linear t ∈ B ↓ F has input arity in A ′. A transformation α : F ⇒ G between
such functors is (A ′,B′)-familial if it is familial at every stage B ∈ B′.

In this terminology, a familial functor F : A → B is equally (A ,B)-familial,
while a pointwise familial functor A →PC is equally an (A , yC )-familial one.
The next result improves in very mild ways on [7, p. 985] and [33, Corollary 5.15].

Proposition 3.11. If F : A → B and G : B → C are (A ′,B′)- and (B′,C ′)-
familial, then their composite is (A ′,C ′)-familial, and has as linear operations
at stage C ∈ C ′ precisely the composites Gt.s : C → GB → GFA of G- and
F -linear operations. The correspondingly familial transformations between these
functors are likewise composable; in particular, there is a 2-category FAM of
categories, familial functors and familial transformations.
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Proof. To show that GF is (A ′,C ′)-familial it suffices, by an easy argument, to
show that any s : C → GFX with C ∈ C ′ is covered in C ↓ GF by some linear
operation with input arity in A ′. But we have successive factorisations

C
s̃

��

s

��

B
t̃

��

t

��

GB
Gt // GFX FA

Ff
// FX

with B ∈ B′ and A ∈ A ′ by applying familiality of G to s and of F to t.
By Lemma 3.9(i), the composite Gt̃.s̃ is GF -linear so that f : Gt̃.s̃ → s is the
required cover. The remaining parts of the result are now easy consequences. �

Since we are really interested in pointwise familial functors between presheaf
categories, we should like to know that these, too, are closed under composition.
The key to showing this is the following result.

Proposition 3.12. Let A be cocomplete. For any functor F : A → B or trans-
formation α : F ⇒ G, the full subcategory B′ ⊂ B whose objects are those stages
B ∈ B at which F (respectively α) is familial is closed in B under colimits.

Proof. Suppose given F : A → B, a diagram D : I → B such that F is familial
at each DI ∈ B, and a colimiting cocone (pI : DI → V )I∈I ; we must show that
F is also familial at V . So let t : V → FA, and consider the diagram of linear
operations Dt : I → B ↓ F defined by:

Dt(I) =

DI

t̃pI
��

FAI

Dt(f : I → J) =

DI
Df
//

t̃pI
��

DJ

t̃pJ
��

FAI
Fuf
// FAJ

where the map uf is the unique one induced by linearity of t̃pI . Since A is
cocomplete, the diagram Dt admits a pointwise colimit u : V → FW , which
by Lemma 3.9(ii) is itself linear. There is a cocone Dt ⇒ ∆t with components
(pI , qI) : t̃pI → t where the maps qI are, again, induced by linearity of t̃pI , and
this now induces a map u → t in V ↓ F providing the desired linear cover of
t. This shows F is familial at V , and also that t ∈ V ↓ F is linear just when
its cocone (p, q) : Dt ⇒ ∆t is colimiting; using this last fact, the corresponding
result for transformations α follows easily. �

As every presheaf is a colimit of representables, we immediately conclude from
the preceding two results that:

Corollary 3.13. If A is cocomplete, then each pointwise familial functor or
transformation in FAM0(A ,PC ) is familial; whence there is a 2-category FAM0

of presheaf categories and pointwise familial functors and transformations.

In the next section, size considerations will force us to bound the input arities
of the pointwise familial functors we consider. As we would still like such functors
to compose, we introduce the relevant notions and prove composability here.
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Definition 3.14. We write FC ⊂PC for the full, replete subcategory of finitely
presentable presheaves: those expressible as a finite colimit of representables. A
pointwise familial functor PC →PD is called finitary if it is (FC , yD)-familial.

The modifier “finitary” typically refers to a functor which preserves filtered
colimits; that our usage agrees with this follows from Lemma 3.4 and the fact
that a representable PC (A, –) : PC → Set is finitary just when A is in FC .

To see that finitary pointwise familial functors and transformations compose,
we appeal to Proposition 3.11 and the following result:

Proposition 3.15. The pointwise familial F : PC →PD is finitary if and only
if it is (FC ,FD)-familial; whence there is a 2-category FAMω

0 of presheaf cate-
gories, finitary pointwise familial functors and pointwise familial transformations.

Proof. For the non-trivial direction, let t : B → FA with B ∈ FD . On expressing
B as a finite colimit of representables, the proof of Proposition 3.12 yields a cover
of t by a linear operation u : B → FA obtained as a finite colimit in B ↓ F of
linear operations of the form ydI → FAI . By assumption, each AI is in FC ,
whence A = colimI AI is too. �

3.4. Universal familial endofunctors. We now have all the ingredients we require
for our first attempt at constructing a universal shapely monad U on PC . As
anticipated in the previous section, a naive attempt to construct it as a terminal
object in the monoidal category FAM0(PC ,PC ) fails for size reasons.

Proposition 3.16. If C 6= 0 and the category A has a proper class of non-
isomorphic objects, then FAM0(A ,PC ) has no terminal object; in particular, if
C 6= 0 then FAM0(PC ,PC ) has no terminal object.

Proof. By Proposition 3.8, it suffices to show that elC //A has no terminal object.
Suppose that (S,E) were terminal; fixing some c ∈ C , we would then have for
each A ∈ A a unique map

el yc
el tA //

∆A ""

ϕAks
elS

E||

A

where ∆A is the constant functor at A. Note that tA ∈ Sc satisfies EtA ∼= A;
since there are a proper class of non-isomorphic A’s, there must be a proper class
of distinct tA’s, contradicting the fact that Sc is a set. �

What permits the above negative argument is the fact that a pointwise familial
functor may have linear operations of arbitrarily large input arity; this suggests
restricting attention to the finitary pointwise familial functors whose linear input
arities lie in the essentially small5 FC . We first note that:

Lemma 3.17. Precomposition with the inclusion J : FC → PC induces an
equivalence between the categories FAMω

0 (PC ,PD) and FAM0(FC ,PD).

5A category is essentially small if it is equivalent to a small category.
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Proof. Precomposing the equivalence FAM0(FC ,PD)→ elD //FC of Propo-
sition 3.8 by (–) ◦ J : FAMω

0 (PC ,PD) → FAM0(FC ,PD) evidently yields
another equivalence; whence, by two-out-of-three, (–) ◦ J is an equivalence. �

Unfortunately, even with the finitariness restriction we are still unable to
construct a strictly terminal familial endofunctor:

Proposition 3.18. If C 6= 0 and A is essentially small, then FAM0(A ,PC )
always has a weakly terminal object, but has a terminal object if and only if A has
no non-identity automorphisms; consequently, if C 6= 0, then FAMω

0 (PC ,PC )
has a weakly terminal object, but not a terminal object.

Proof. By Proposition 3.8 we may prove the stated properties for the equivalent
category elC //A ; but as A ' A ′ with A ′ small and now elC //A ' elC //A ′,
we may assume without loss of generality that A is itself small. We construct a
weakly terminal (S,E) in elC //A as follows. The presheaf S ∈PC has:

Sc = { functors F : C /c→ A } and S(f : d→ c) : F 7→ F (f ◦ –) ,

while E : elS → A is given by E(F : C /c→ A ) = F (1c) on objects, and by:

f : F (f ◦ –)→ F 7→ F (f : f → 1c) : Ff → F1c

on morphisms. To see weak terminality of (S,E), consider some other (T,D) in
elC //A . We define p : T → S in PC by sending t ∈ Tc to the element

p(t) : C /c = el yc
el t−−→ elT

D−→ A

of Sc. Naturality of p in c is easy; while from the equality p(t)(1c) = Dt, we
deduce E ◦ el p = D : elT → A and so (p, 1D) : (T,D)→ (S,E) in elC //A .

Now let A have no non-identity automorphisms; replacing it by its (equivalent)
skeleton, we may assume that in fact it has no non-identity isomorphisms, and so
that each map (3.2) of elC //A has ϕ an identity. In this case, we claim the weakly
terminal (S,E) given above is terminal. Indeed, if (q, 1D) : (T,D) → (S,E) is
any map in elC //A , then for each t ∈ Tc, the functor q(t) : C /c→ A satisfies
q(t)(1c) = Dt = p(t)(1c); but then q(t)(h) = q(th)(1d) = p(th)(1d) = p(t)(h) for
all h : d→ c, whence q = p as required.

Next let A admit the non-identity automorphism a ∈ A (A,A), and assume
that there is a terminal object (T,D) in elC //A ; we derive a contradiction. By
terminality of (T,D), there is for any c ∈ C a unique pair as on the left in

el yc
el p

//

∆A ""

ϕks
elT

D||

A

el yc
el p

//

∆A ""

ϕ.∆aks
elT

D||

A

where here ∆A is the constant functor at A. But now the triangle on the right
also describes a morphism (yc,∆A)→ (T,D); so we must have ϕ.∆a = ϕ and
so, by invertibility of ϕ, that ∆a = id∆A

, contradicting a 6= idA.
For the final claim, note that we have FAMω

0 (PC ,PC ) ' FAM0(FC ,PC )
by Lemma 3.17; now if C 6= 0, then the essentially small FC certainly contains
non-identity automorphisms—for instance, the switch map yc+yc → yc+yc—and
so FAMω

0 (PC ,PC ) has a weakly terminal object, but no terminal object. �
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4. Analytic functors and shapeliness

The underlying reason that there is no terminal object among finitary familial
endofunctors of a presheaf category is that linear operations cannot be fixed by
automorphisms of their input arities; this means that such automorphisms may
be propagated up to the level of familial functors, so obstructing the existence of
a terminal object. The next step in our pursuit of a universal shapely monad
will attempt to resolve this problem by introducing analytic functors, whose
generating operations can be fixed by input arity automorphisms.

4.1. Generic operations and analytic functors. The fundamental step in moving
from familial to analytic functors is to generalise from linear to generic operations.
In what follows, we write SX for the automorphism group of any object X ∈ C .

Definition 4.1. An object X ∈ C is Galois if for each Y ∈ C , the composition
action makes C (X,Y ) into a connected SX -set. An operation t : B → FA of a
functor F : A → B is generic if it is Galois in its connected component of B ↓ F .

An object X is Galois when it admits a map to every other object (weak
initiality) and, for any pair of maps f, f ′ : X ⇒ Y , there is an automorphism
σ ∈ SX with f ′ = fσ (transitivity); thus, Galois objects are initial “up to a group
of automorphisms”. In these terms, a generic F -operation can be understood as
one which, like a linear operation, consumes all of its input arity, but which may
now be invariant under certain automorphisms of that arity.

The next result identifies our generic operations with those of [33, Defini-
tion 5.2], which when A = B = Set and B = 1 are equally those of [16].

Lemma 4.2. An operation t : B → FA is generic if and only if for every square
of the following form there exists some ` : A→ Y with F`.t = u and h` = k:

(4.1)

B
u //

t
��

FY

Fh
��

FA
Fk //

F`

==

FZ .

Proof. It is easy to see—as in [5, Remarks 2.4], for example—that an object
X ∈ C is Galois just when it is weakly initial, and each cospan X → Z ← Y can
be completed to a commuting triangle by some X → Y . Now the condition on t
above says that any cospan t→ v ← u in B ↓ F can be completed to a commuting
triangle, which thus says that t is Galois in its connected component. �

Corollary 4.3. Any map h : u→ t in B ↓ F with generic codomain is a split epi-
morphism; in particular, any map between generic operations is an isomorphism.

Proof. Take k = 1A in (4.1). �

Replacing linear operations with generic ones in the definition of familial
functor yields the notion of analytic functor.

Definition 4.4. A functor F : A → B is analytic at stage B ∈ B if each operation
in B ↓ F is covered by a generic one; a transformation α : F ⇒ G is analytic at
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stage B if F and G are so, and the induced functor B ↓ F → B ↓ G preserves
generic operations. We write simply analytic to mean “analytic at every stage”.

Analytic endofunctors of Set and weakly cartesian transformations were intro-
duced in [16]; by [33, Theorems 10.10 & 10.11], they are precisely the (filtered-
colimit preserving) analytic endofunctors and transformations in our sense.

Just as familial functors are obtained from coproducts of representables, so
analytic functors arise from coproducts of near-representables in the sense of [30]:

Definition 4.5. Let A ∈ A and G 6 SA. A coinvariant for G is a joint coequaliser
q : A� A/G for the set of morphisms {σ : A→ A | σ ∈ G}; dually, an invariant
for G is a joint equaliser ι : A\G� A for the maps in G. A functor F : A → Set
is near-representable if F ∼= A (A, –)/G for some A ∈ A and G 6 SA = SA (A,–).

Lemma 4.6. A functor F : A → B is analytic at stage B ∈ B if and only if the
functor B(B,F–) : A → Set is a (possibly large) coproduct of near-representables.

Proof. This will follow as in Lemma 3.4 once we have proved that: F ∈ [A ,Set]
is near-representable just when elF contains a Galois object. For any (x,A) in
elF , let G = S(x,A) 6 SA; now x : yA → F coequalises yσ : yA → yA for each
σ ∈ G, and so descends to a map x̄ : yA/G → F . It suffices to show that x̄ is an
isomorphism just when (x,A) is Galois. Surjectivity of x̄ clearly corresponds
to weak initiality of (x,A); injectivity requires that, for any f, f ′ : A⇒ B with
x̄(f) = x̄(f ′) = y, we have f ′ = fσ for some σ ∈ G, or in other words, that for
any f, f ′ : (x,A) ⇒ (y,B) in elF , there is some σ : (x,A) → (x,A) in G with
f ′ = fσ: which is transitivity of (x,A). �

4.2. Pointwise analyticity. As before, when we consider endofunctors of presheaf
categories, or more generally functors into a presheaf category, the most appro-
priate kind of analyticity is pointwise:

Definition 4.7. A functor F : A →PC or transformation α : F ⇒ G : A →PC
is pointwise analytic if it is analytic at all representable stages; F is called small if
π0(yc ↓ F ) is a mere set for each c ∈ C . We write AN0(A ,PC ) for the category
of small pointwise analytic functors and pointwise analytic transformations.

In particular, by Lemma 4.6, a functor F : A → PC is small pointwise
analytic just when each (F–)c is a small coproduct of near-representables; so, for
example, comparing with the formula of Proposition 2.8, we find—as promised
above—that the “free polycategory” endofunctor on the category of symmetric
polygraphs is pointwise analytic, though it is not pointwise familial.

As in the familial case, a small pointwise analytic F is determined by the
near-representable summands of each (F–)c and how these transform under maps
(F–)f : (F–)d→ (F–)c. We wish to give a representation of these data analogous
to Definition 3.6; the new aspect is that, in encoding a near-representable
summand A (A, –)/G, we must record not just the arity A but also the group G
of automorphisms which fix it. We do this using the notion of orbit category.

Definition 4.8. The orbit category O(A ) of a category A has as objects, pairs
(A,G) where A ∈ A and G 6 SA, and as morphisms [f ] : (A,G) → (B,H),
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equivalence classes of maps f : A→ B in A with the property that

(4.2) for all τ ∈ H, there exists σ ∈ G with τf = fσ,

where [f ] = [f ′] when there exists σ ∈ G with f ′ = fσ. We write J : A → O(A )
for the full embedding sending A to (A, 1).

Intuitively, we regard the generating operations of F ∈ AN0(A ,PC ) as having
input arities drawn not from A but from O(A ); we will make this precise by
equating such functors F with pointwise familial ones F ′ ∈ FAM0(O(A ),PC ).
First we describe the passage between functors with domains A and O(A ).

Proposition 4.9. O(A ) admits all group invariants, and for any category C
admitting group invariants, composition with J induces an equivalence

(4.3) INVAR(O(A ),C )
(–)◦J−−−−→ CAT(A ,C )

with domain the category of invariant-preserving functors and transformations.

Proof. The statement says that O(A ) is the free completion of A under group
invariants, and by [17, Theorem 5.35], this completion may be found as the full
subcategory of [A , Set]op obtained by closing the representables under group
invariants. So it suffices to identify O(A ) with this full subcategory. Direct
calculation using the Yoneda lemma shows that maps in O(A ) from (A,G) to
(B,H) are in bijection with maps A (B, –)/H → A (A, –)/G in [A ,Set]; so there
is a fully faithful K : O(A ) → [A ,Set]op with K(A,G) = A (A, –)/G. Clearly,
each A (A, –)/G in the image of K lies in the closure of the representables in
[A , Set]op under group invariants, and so it suffices to show that this subcategory
in fact has all group invariants—which is [30, Proposition 2.2]. �

Explicitly, if C admits group invariants and H : A → C , then the invariant-
preserving extension H ′ : O(A )→ C is defined by H ′(A,G) = HA\HG, where
here HG = {Hσ : σ ∈ G} 6 SHA. In particular, if F : A → B is any functor
between categories, then applying this construction to JF : A → O(B) yields an
invariant-preserving O(F ) : O(A )→ O(B) given by O(F )(A,G) = (FA,FG).

We will now show that, when B = PC , the equivalence (4.3) restricts back to
one between pointwise analytic functors out of A and pointwise familial ones out
of O(A ). However, under this equivalence, pointwise analytic transformations
correspond not to familial ones but to near-familial ones in the following sense:

Definition 4.10. A morphism [f ] : (A,G)→ (B,H) in O(A ) is called vertical if
the underlying map f : A→ B is invertible in A . For any F ′ : O(A )→ B, an
operation t in B ↓ F ′ is called near-linear if it admits a vertical map from a linear
operation. If F,G : O(A ) → B are familial at stage B, then a transformation
α : F ⇒ G is near-familial at stage B if it preserves near-linear operations.

We now give our equivalence result, together with a preparatory lemma; in the
statement of the lemma, we call an object of an orbit category O(A ) near-initial
if it admits a vertical map from an initial object.

Lemma 4.11. (i) A has a Galois object if and only if O(A ) has an initial one.
F : A → B preserves Galois objects if and only if O(F ) : O(A )→ O(B)
preserves near-initial objects.
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(ii) Let B admit group invariants and let F : A → B have invariant-preserving
extension F ′ : O(A )→ B. We have B ↓ F ′ ∼= O(B ↓ F ) naturally in F .

Proof. For (i), A ∈ A is Galois just when each A (A,B) is a connected SA-set.
This is easily equivalent to the existence of a unique [uB] : (A,SA)→ (B, 1) in
O(A ) for each B ∈ A ; as [uB ] clearly factors through each [1] : (B,H)� (B, 1),
this is equivalent to (A,SA) being initial in O(A ). The second claim is immediate
on observing that (A,G) ∈ O(A ) is near-initial if and only if (A,SA) ∈ O(A )
is initial, if and only if A ∈ A is Galois.

For (ii), an object of B ↓ F ′ comprises (A,G) ∈ O(A ) and u : B → FA\FG in
B. Now, to give u is equally to give a map t : B → FA satisfying Fσ.t = t for all
σ ∈ G. This condition says that each σ ∈ G lies in St 6 SA, and so an object of
B ↓ F ′ is equally a pair (t ∈ B ↓ F, G 6 St). Arguing similarly on morphisms,
we conclude that B ↓ F ′ ∼= O(B ↓ F ); naturality in F is straightforward. �

Proposition 4.12. Let B admit group invariants. Under the equivalence (4.3),
functors and transformations A → B which are analytic at stage B correspond
to functors and transformations O(A ) → B which are familial, respectively
near-familial at stage B. When B = PC , the equivalence (4.3) restricts to one

(4.4) NFAM0(O(A ),PC )
(–)◦J−−−−→ AN0(A ,PC )

with as domain the category of small pointwise familial functors and pointwise
near-familial transformations O(A )→PC .

Proof. Let F : A → B have invariant-preserving extension F ′ : O(A ) → B.
Easily O(–) preserves connected components, and so by Lemma 4.11, each B ↓ F
is a coproduct of categories with Galois objects just when each O(B ↓ F ) ∼= B ↓ F ′
is a coproduct of categories with initial objects. Moreover, if α : F ⇒ G is a
transformation between functors analytic at stage B, with invariant-preserving
extension α′ : F ′ ⇒ G′, then by Lemma 4.11, each functor B ↓ α : B ↓ F → B ↓ G
preserves Galois objects just when each O(B ↓ α) ∼= B ↓ α′ preserves near-initial
objects. This proves the first claim.

Now suppose that B = PC . It is immediate that smallness is preserved
under the preceding equivalences, and so the only additional point to verify
is that NFAM0(O(A ),PC ) ⊂ INVAR(O(A ),PC ). But if G : O(A ) → PC
is pointwise familial, then each (G–)c : O(A ) → Set, being a coproduct of
representables, preserves connected limits and in particular group invariants;
whence G preserves group invariants, as limits in PC are pointwise. �

Using this result, we may now give the promised analytic analogue of Defini-
tion 3.6, describing each small pointwise analytic F : A →PC in terms of the
near-representable summands of each (F–)c.

Definition 4.13. Let F : A → PC be small pointwise analytic. The spectrum
SF ∈PC and exponent EF : elSF → O(A ) of F are the spectrum and exponent
of the small pointwise familial F ′ : O(A )→PC corresponding to F under (4.4).

Remark 4.14. Let us unpack this definition. Given F ∈ AN0(A ,PC ), we choose
like before a generic operation in each connected component of yc ↓ F , and write
t̃ for the chosen generic cover of t ∈ yc ↓ F . The spectrum of F is now exactly as
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in Definition 3.6, while the exponent EF : elSF → O(A ) is given on objects by
EF (t : yc → TA) = (A,St), where St is the automorphism group of t ∈ yc ↓ T ,
or equally the set of all σ ∈ SA such that (Tσ)(t) = t. To define EF on a map
f : t̃yf → t of elSF , we form the square

yc
yf

//

t′=t̃yf
��

yd

t
��

FA′
Fuf

// FA

whose lower edge is any map induced by weak initiality of t̃yf in yc ↓ F , and
take EF (f) = [uf ] : (A′,St′)→ (A,St). Note that the mapping f 7→ uf is only
functorial “up to automorphism groups”, so that EF may not exist as a functor
elSF → A .

Just as in the familial case, a small pointwise analytic A → PC can be
recovered from its spectrum and exponent. We express this in terms of an
equivalence between AN0(A ,PC ) and the following category:

Definition 4.15. For any A and small C , the category elC //v O(A ) has as objects,
pairs (S ∈ PC , E : elS → O(A )), and as maps (S,E) → (T,D), pairs of a
presheaf map p : S → T and a pointwise vertical transformation ϕ of the form:

(4.5)
elS

el p
//

E $$

ϕks
elT

Dzz

O(A ) .

Proposition 4.16. The assignation F 7→ (SF , EF ) is the action on objects of an
equivalence of categories between AN0(A ,PC ) and elC //v O(A ).

Proof. By Proposition 4.12, it suffices to show that F ′ 7→ (SF ′ , EF ′) underlies an
equivalence of categories NFAM0(O(A ),PC ) → elC //v O(A ). This is almost
exactly as in Proposition 3.8, with the only difference arising on morphisms. It
is easy to see that for a transformation α′ : F ′ ⇒ G′ between pointwise familial
F ′ : O(A ) → PC , near-familiality is equivalent to the requirement that each
triangle as to the left of (3.3) should have ϕt vertical, rather than invertible: this
accounts for the differing 2-cell data between (3.2) and (4.5). �

4.3. Universal analytic endofunctors. Now in seeking a universal shapely monad
among analytic endofunctors, we must as before consider both composability and
existence of a terminal object. This time we deal with terminality first. As in
Proposition 3.16, there is a size obstruction to constructing a terminal object of
the category AN0(PC ,PC ), and so we immediately restrict our attention to
finitary ones:

Definition 4.17. If A ′ ⊂ A and B′ ⊂ B are full replete subcategories, we say
that F : A → B is (A ′,B′)-analytic it is analytic at each B ∈ B′, and each
generic t ∈ B ↓ F has input arity in A ′. A transformation α : F ⇒ G between
such functors is (A ′,B′)-analytic if it is analytic at every stage B ∈ B′.
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Like before, the finitary analytic functors of the following definition are equally
those which preserve filtered colimits; this now follows using Lemma 4.6.

Definition 4.18. A pointwise analytic F : PC → PD is called finitary if it
is (FC , yD)-analytic. We write ANω

0 (PC ,PD) for the category of finitary
pointwise analytic functors and pointwise analytic transformations.

This restriction is in fact enough: ANω
0 (PC ,PC )—and more generally,

ANω
0 (PD ,PC )—does have a terminal object. To see this, we first argue as in

Lemma 3.17 to establish an equivalence between the categories ANω
0 (PD ,PC )

and AN0(FD ,PC ); the claim will now follow once we show more generally that
AN0(A ,PC ) has a terminal object whenever A is essentially small. The key
to proving this is the following lemma; in it, for any categories I and A , we
write [I ,O(A )]v for the category of functors I → O(A ) and pointwise vertical
transformations.

Lemma 4.19. Each connected component of [I ,O(A )]v has an initial object.

Proof. Let (T,G) : I → O(A ) be given on objects by I 7→ (TI,GI) and on
morphisms by f 7→ [Tf ] : (TI,GI)→ (TJ,GJ). Note that the family of subgroups
(GI 6 STI)I∈I satisfy the condition that

(?) for all f : I → J and σ ∈ GJ , there exists τ ∈ GI with Tf ◦ τ = σ ◦ Tf .

Call a family of subgroups H = (HI 6 STI)I∈I suitable if it satisfies (?) with
HI and HJ in place of GI and GJ . We claim that, if Hx is a suitable family of
subgroups for each x ∈ X, then the family of subgroups

∨
xH

x = (
∨
xH

x
I )I∈I is

again suitable (here the join
∨
xH

x
I is taken in the lattice of subgroups of STI).

Indeed, if f : I → J in I and σ ∈
∨
xH

x
J , then σ = σ1 · · ·σn for some σi ∈ Hxi

J ;
now by suitability of each Hxi , there are elements τi ∈ Hxi

I with Tf.τi = σi.T f
for each i, and so τ = τ1 · · · τn ∈

∨
xH

x
I is an element with Tf.τ = σ.Tf .

It follows that there is a largest suitable family of subgroups given by:

G̃ =
∨
{H : H is a suitable family of subgroups} .

By suitability, [Tf ] : (TI, G̃I)→ (TJ, G̃J) is well-defined for each f : I → J ; as
GI 6 G̃I , this assignation is functorial in f and so we obtain (T, G̃) : I → O(A )
and a vertical transformation ξ : (T, G̃) → (T,G) with components ξI = [1TI ].
We claim that (T, G̃) is in fact initial in its connected component.

First we show that any pair of vertical transformations α, β : (T, G̃)⇒ (S,H)
are equal. Each component αI or βI is an equivalence class of maps TI → SI,
and so we may consider the family of subgroups

(KI = 〈a−1b | a ∈ αI , b ∈ βI〉 6 STI)I∈I .

We claim this family is suitable: for then KI 6 G̃I so that a−1b ∈ G̃I for all
a ∈ αI and b ∈ βI , whence αI = βI as required. For suitability, it suffices to
show that, if (a, b) ∈ αJ × βJ and f : I → J , then there exists (c, d) ∈ αI × βI
with Tf.c−1d = a−1b.Tf . For any c ∈ αI we have by naturality of α that
[a.Tf ] = [Sf.c]; but then a.Tf = Sf.(cσ) for some σ ∈ G̃I , and so on replacing
c by cσ ∈ αI we may take it that in fact a.Tf = Sf.c. Similarly, we can find
d ∈ βI such that b.Tf = Sf.d, and now Tf.c−1d = a−1b.Tf as required.
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To show initiality of (T, G̃) in its connected component, it now suffices to show
that, for all cospans α : (T, G̃) → (S,H) ← (R,K) : β in [I ,O(A )]v there is
some map γ : (T, G̃)→ (R,K). To this end, consider the family of subgroups

(LI = 〈a−1bc−1d | a, d ∈ αI , b, c ∈ βI〉 6 STI)I∈I .

Repeating the above argument shows this family is suitable, and so LI 6 G̃I for
all I ∈ I . Now, choosing any a ∈ αI and b ∈ βI , we have for each I ∈ I a well-
defined map γI = [b−1a] : (TI, G̃I)→ (RI,KI). Indeed, if σ ∈ KI then bσ ∈ βI
and so τ = a−1bσb−1a ∈ LI 6 G̃I satisfies b−1a.τ = σb−1a as required. Clearly
βI .γI = αI for each I; since each βI is vertical, hence monic in O(A ), we conclude
by naturality of α that γ : (T, G̃)→ (R,K) is also natural as required. �

Using this, we are finally able to prove:

Proposition 4.20. If A is essentially small, then the category AN0(A ,PC ) has
a terminal object; in particular, any ANω

0 (PD ,PC ) has a terminal object.

Proof. It suffices by Proposition 4.16 to show that the equivalent category
elC //v O(A ) has a terminal object, and as before, we may assume without
loss of generality that A is in fact small. For any c ∈ C , we know by Lemma 4.19
that each connected component of [C /c,O(A )]v has an initial object; make
a choice of such, and for each F ∈ [C /c,O(A )]v, write F̃ for the chosen ini-
tial object in its connected component, and u : F̃ → F for the unique vertical
transformation. The required terminal (S,E) ∈ elC //v O(A ) now has:

Sc = {F ∈ [C /c,O(A )]v : F̃ = F} and S(f : d→ c) : F 7→ ˜F (f ◦ –) ,

and has E : elS → O(A ) given by E(F, c) = F (1c) on objects, and

f : ( ˜F (f ◦ –), d)→ (F, c) 7→ ˜F (f ◦ –)(1d)
u1d−−→ F (f ◦ –)(1d) = Ff

Ff−−→ F1c

on morphisms. To see terminality of (S,E), let (T,D) be another object of
elC //v O(A ). To define a map f : T → S, we form for each t ∈ Tc the composite

(4.6) Ft : C /c = el yc
el t−−→ elT

D−→ O(A )

and now define p(t) = F̃t ∈ Sc. This is easily seen to be natural in c; moreover,
we have a pointwise vertical transformation

elT
el p

//

D ##

ϕks
elS

E{{

O(A )

whose component at t ∈ Tc is the map u1c : E(p(t)) = F̃t(1c)→ Ft(1c) = Dt. So
we have a map (p, ϕ) : (T,D)→ (S,E) and to conclude the proof, we must show
that any (q, ψ) : (T,D)→ (S,E) is equal to (p, ϕ). For each t ∈ Tc, consider the
composite functor

Gt : C /c = el yc
el t−−→ elT

el q−−→ elS
E−→ O(A ) .
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By naturality of q, this functor sends f : d → c to ˜q(t)(f ◦ –)(1d) ∈ O(A ),
and there is now a vertical transformation ξ : Gt ⇒ q(t) : C /c → O(A ) with
component

Gt(f) = ˜q(t)(f ◦ –)(1d)
u1d−−→ q(t)(f ◦ –)(1d) = q(t)(f)

at f : d→ c ∈ C /c. Since q(t) is a (chosen) initial object in its connected compo-
nent of [C /c,O(A )]v, the map ξ : Gt ⇒ q(t) must be a split epimorphism; since
every map of [C /c,O(A )]v is (pointwise monomorphic and hence) monomorphic,
ξ is thus invertible, so that Gt ∼= q(t). Since the composite vertical transformation

(4.7)
C /c

el qt
//

Ft=D. el t ""

ψ. el tks
elS

E||

O(A )

exhibits Gt (the upper composite) as connected to Ft in [C /c,O(A )]v, this
determines q(t) uniquely as being F̃t = p(t); since this holds for all t ∈ elT , we
conclude that p = q. Moreover, as Gt ∼= q(t) is initial in its connected component
of [C /c,O(A )]v, the 2-cell in (4.7) must be equal to ϕ. el t : Gt ⇒ Ft; as this
holds for all t ∈ elT , we have ϕ = ψ as required. �

Remark 4.21. For any small category C , we may view the terminal object U of
ANω

0 (PC ,PC ) as an object in AN0(PC ,PC ). From its construction above,
it is easy to see that any F ∈ AN0(PC ,PC ) which admits a map to U must
itself be finitary, so that the map F → U is unique if it exists. In other words,
U is a subterminal object in AN0(PC ,PC ); it follows that we can identify
ANω

0 (PC ,PC ) with the slice category AN0(PC ,PC )/U . We will revisit this
point in Remark 6.3 below.

4.4. Composition of analytic functors. The passage from familial to analytic
functors has thus fixed the problem we had previously, namely the lack of a
terminal object among such functors. However, we are not in the clear yet,
as we must still show that pointwise analytic functors compose. By modifying
Lemma 3.9(i) to use Lemma 4.2 in place of Lemma 3.2 we may show that generic
morphisms compose; now arguing as in Proposition 3.11 yields:

Proposition 4.22. If F : A → B and G : B → C are (A ′,B′)- and (B′,C ′)-
analytic, then their composite is (A ′,C ′)-analytic, and has as generic operations
at stage C ∈ C ′ precisely the composites Gt.s : C → GB → GFA of G- and
F -generic operations. The correspondingly analytic transformations between
these functors are likewise composable; in particular, there is a 2-category AN of
categories, analytic functors and analytic transformations.

However, this does not imply that pointwise analytic functors between presheaf
categories are composable, since we do not know that pointwise analytic functors
are necessarily analytic. In fact, this is not true, by virtue of:

Proposition 4.23. Pointwise analytic functors between presheaf categories are not
closed under composition.
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Proof. Consider the following two functors:

(4.8)
F : Set→ Set2 G : Set2 → Set

X 7→ (X2 → X2/S2) (A→ B) 7→ A×B A .

G is representable at W = (2 → 1), and so pointwise analytic; F is pointwise
analytic with spectrum 1 ∈ Set2 and exponent el 1 = 2→ O(Set) picking out the
arrow (2,S2)→ (2, 1). The composite GF : Set→ Set sends a set X to

X2 ×X2/S2
X2 = {(a, b, c, d) ∈ X4 : (a, b) = (c, d) or (a, b) = (d, c)} .

Now, no operation (a, a, a, a) : 1→ GFX can be generic, because the square left
below has no filler; while if a 6= b ∈ X, then no (a, b, a, b) or (a, b, b, a) : 1→ GFX
can be generic because the square below right has no filler in either direction.

1
(0,1,0,1)

//

(a,a,a,a)
��

GF{0, 1}
GF !
��

1
(a,b,b,a)

//

(a,b,a,b)
��

GFX

GF !
��

GFX
GF ! // GF1 GFX

GF ! // GF1

So GF is not pointwise analytic, as there are no generic operations in 1 ↓ GF . �

Corollary 4.24. ANω
0 (PC ,PC ) need not be monoidal under composition.

Proof. If F and G are as in the preceding proof, then Fπ1 and ∆G are easily
seen to lie in ANω

0 (Set2,Set2). But if their composite ∆GFπ1 were pointwise
analytic, then so too would be π1(∆GFπ1)∆ = GF . �

Remark 4.25. The preceding argument does not rule out the possibility that the
composition-powers of the terminal finitary analytic endofunctor U of a presheaf
category happen to be again analytic—which would allow for the construction
of a monad structure on U . However, at least for the presheaf categories of our
examples, it is easy to adapt the preceding argument to show that this is not so.

5. Cellular functors and shapeliness

We have now failed to construct a universal shapely monad on a presheaf
category PC in two different ways: there was no universal familial monad due to
the lack of a terminal familial endofunctor, while there was no universal analytic
monad due to the failure of pointwise analytic functors to be composition-closed.

Our next attempt to produce a universal shapely monad will focus on a special
class of pointwise analytic functors, which we term cellular, that are closed under
composition. This is achieved by way of an additional condition which allows
their pointwise analyticity to be built up to analyticity at more complex stages,
so that Proposition 4.22 can then be applied.

Building up this analyticity will require an analogue of Proposition 3.12, which
showed that the stages of familiality of a functor A → B are closed under
colimits. The reason this does not carry over unchanged to the analytic setting
is that the analogue of Lemma 3.9(ii) fails to hold: generic operations are not
closed under arbitrary colimits in B ↓ F . However, we will see in this section
that there are certain kinds of colimit under which generic operations are closed,
and for these, we do have an analogue of Proposition 3.12.
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With this result in place, we will be in a position to introduce the notion of
cellular functor, this being a pointwise analytic functor whose generic operations
have input arities that can be constructed out of the well-behaved kinds of colimit
under which stages of analyticity are closed. This then allows us to show that
cellular functors are closed under composition.

5.1. Arrow-genericity and arrow-analyticity. It is easy to see from the definitions
that generic operations are closed under coproducts in B ↓ F , and at first this
may appear to be all that we can salvage from Proposition 3.12 in the analytic
case. However, there is in fact a class of morphisms in B ↓ F along which generic
operations are closed under pushout; we now introduce this class.

Definition 5.1. Let F : A → B. We say that a map (b, a) : t1 → t2 in B ↓ F as
below is arrow-generic if t1 and t2 are F -generic and (t1, t2) : b→ F 2a is generic
for the functor F 2 : A 2 → B2.

(5.1)

B1
b //

t1
��

B2

t2
��

FA1
Fa // FA2

Just as with linear and generic operations, there is a characterisation of
arrow-genericity as a diagonal filling property:

Lemma 5.2. Let t1, t2 be F -generic operations. A map (b, a) : t1 → t2 in B ↓ F
is arrow-generic just when for every commuting diagram as below (with hj = ka),
there exists ` as shown with h` = k and F`.t2 = u and `a = j.

(5.2)

B1
b //

t1

��

B2

t2

��

u // FY

Fh

��

FA1
Fa
//

Fj

77

FA2
Fk
//

F`

>>

FZ

It follows that the class of arrow-generic maps in B ↓ F contains the isomorphisms
and is composition-closed.

Proof. First assume the condition in the statement. We must show that for any
cube as below left, there are diagonal fillers j1 : A1 → Y1 and j2 : A2 → Y2 with
hiji = ki and Fji.ti = ui and j2a = yj1. Applying genericity of t1 to the front
face yields the required j1; now the left and back faces give the solid part of
a diagram as in (5.2) with the composite yj1 as its diagonal, and applying the
stated condition to this yields a filler j2 for the back face satisfying the required
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equations.

B2

t2
��

u2 // FY2

Fh2

��

B1

b ;;

t1

��

u1 // FY1
Fy

;;

Fh1

��

FA2
Fk2 // FZ2

FA1
Fk1

//

Fa ;;

FZ1
Fz

;;

B2

t2
��

u // FY

Fh

��

B1

b ;;

t1

��

ub // FY
F1

;;

F1

��

FA2
Fk // FZ

FA1
Fj

//

Fa ;;

FY
Fh

;;

Suppose conversely that (b, a) : t1 → t2 is arrow-generic. Given a diagram as in
the solid part of (5.2), we apply arrow-genericity to the cube above right to obtain
fillers for the front and back faces making everything commute. The front filler
is necessarily j, and so the back filler is the ` : A2 → Y required for (5.2). �

As mentioned above, the reason for introducing arrow-generic maps is that
generic operations in B ↓ F are closed under pushout along them; we show this
in the next section, but first let us introduce the associated notion of analyticity.

Definition 5.3. A functor F : A → B is arrow-analytic at stage b ∈ B(B1, B2) if
F is analytic at stages B1, B2 ∈ B and F 2 is analytic at stage b ∈ B2; we define
arrow-analyticity of a transformation α : F ⇒ G correspondingly.

It should not yet be clear whether arrow-analyticity is a property that will be
fulfilled in examples of interest. We will see that this is the case in Lemma 5.18
below, where we characterise arrow-generic morphisms t1 → t2 in terms of an
easily-satisfied relation between the automorphism groups of t1 ∈ B1 ↓ F and
t2 ∈ B2 ↓ F . Combining this with the following lemma will allow us to find many
examples of arrow-analytic functors and transformations.

Lemma 5.4. A functor F : A → B is arrow-analytic at b ∈ B(B1, B2) if and
only if it is analytic at B1, B2 ∈ B and every (b, a) : t1 → t2 in B ↓ F between
generic operations is arrow-generic. A transformation α : F ⇒ G between two
such functors is arrow-analytic at b if and only if it is analytic at B1, B2 ∈ B.

Proof. If F is analytic at stages B1, B2 ∈ B, then every square as to the front of
the diagram below left can be factorised through the back faces as displayed:

B1
b //

t1
��

t̃1

||

B2

t2

��

t̃2

||

FA1
Fa //

Fu1 ""

FA2

Fu2 ""

FX1
Fx // FX2

B1
b //

s1
��

B2

s2
��

FY1
Fy
// FY2 .

Here, u1 : t̃1 → t1 and u2 : t̃2 → t2 are generic covers obtained from analyticity
at B1 and B2, and a is induced by applying Lemma 4.2 to the generic t̃1. Now
if the hypotheses in the statement hold, then (t̃1, t̃2) is F 2-generic and so each
(t1, t2) in b ↓ F 2 admits a generic cover, as required for F 2 to be analytic at b.
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Suppose conversely that F 2 is analytic at b, and consider a square as right above
with generic sides; we must show that it is arrow-generic. So construct covers

(t̃1, t̃2)
(u1,u2)−−−−−→ (t1, t2)

(v1,v2)−−−−→ (s1, s2)

in b ↓ F 2, where (t1, t2) is an F 2-generic cover, and where (t̃1, t̃2) is obtained as
above left using analyticity of F at B1, B2. Since t̃1 and s1 are both F -generic
operations at stage B1, v1u1 is invertible by Corollary 4.3 and so u1 is a split
monomorphism; similarly u2 is split monic. On the other hand, since (t1, t2) is
F 2-generic, the map (u1, u2) must—by Corollary 4.3 again—be a pointwise split
epimorphism: whence u1, u2, v1 and v2 are invertible, so that (s1, s2), like (t1, t2),
is arrow-generic as required. It follows that, if F is arrow-analytic at b, then
the generic operations in b ↓ F 2 are precisely the squares with generic sides; the
statement about arrow-analytic transformations follows directly from this. �

In the sequel, we will make use of this characterisation of arrow-genericity
without further comment. We conclude this section by recording the analogue of
Definitions 3.10 and 4.17 for arrow-analytic functors:

Definition 5.5. If I ⊂ A 2 and J ⊂ B2 are full replete subcategories, we say
that F : A → B is (I ,J )-arrow-analytic if it is arrow-analytic at each b ∈J ,
and each arrow-generic (b, a) : t1 → t2 as in (5.1) with b ∈ J has a ∈ I . A
transformation α : F ⇒ G between such functors is (I ,J )-arrow-analytic if it
is arrow-analytic at every stage b ∈J .

Proposition 5.6. If F : A → B and G : B → C are (I ,J )- and (J ,K )-arrow-
analytic, then their composite is (I ,K )-arrow-analytic, and correspondingly for
the transformations between such functors.

Proof. Direct from the definitions and Proposition 4.22. �

5.2. Building up stages of analyticity. We are now ready to see what the purpose
of arrow-genericity and arrow-analyticity really is. We begin with a lemma which
provides an analytic analogue of Lemma 3.9(ii) above.

Lemma 5.7. Let F : A → B and consider a pointwise pushout square in B ↓ F
as below. If s1, s2 and t1 are generic and (d, c) is arrow-generic, then t2 is also
generic and (b, a) is also arrow-generic.

(5.3)

s1
(g,f)

//

(d,c)

��

t1

(b,a)

��

s2
(m,n)

// t2

Proof. We will show that every diagram as in the solid part of (5.2) admits a
dotted filler; since t1 is generic, this immediately implies that t2 is generic, and
so by Lemma 5.2 that (b, a) is arrow-generic. To prove the claim, observe that
the stated filling condition can be described as a left lifting property : it says that,
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for each h : Y → Z in A , each square in B ↓ F as left below has a diagonal filler.

(5.4)

t1
(ub,j)

//

(b,a)

��

1FY

(1,h)

��

t2
(u,k)

//

(u,`)

==

Fh

s1
(ubg,jf)

//

(d,c)

��

1FY

(1,h)

��

s2
(um,kn)

//

(um,`′)

==

Fh .

Pasting the given square with the pushout (5.3) gives a square as right above;
since (d, c) is arrow-generic, we induce a filler for this square as indicated and so
by the universal property of pushout the required filler (u, `) as left above. �

In fact, we can do better than this: the characterisation of arrow-generic
maps by a left lifting property allows us to show that they are also closed under
transfinite composition [13, Definition 2.1.1]. As we do not need this further fact,
we leave its verification to the interested reader.

We now use the preceding lemma to give the promised analytic analogue of
Proposition 3.12.

Proposition 5.8. Let A be cocomplete and let F : A → B.

(i) If F is analytic at B, then it is arrow-analytic at 1B; if F is arrow-analytic
at composable maps b and c, then it is also arrow-analytic at cb.

(ii) For any pushout as below in B, if F is analytic at B1, B2 and C1 and
arrow-analytic at b, then it is also analytic at C2 and arrow-analytic at c.

(5.5)

B1
f1
//

b
��

C1

c

��

B2
f2
// C2

The analogous results hold for natural transformations α : F ⇒ G : A → B.

Again, we could add an additional clause to this proposition showing closure
of stages of arrow-analyticity under transfinite composition, but we refrain from
doing so as we have no use for it in what follows.

Proof. Let F be analytic at B. Any map (1B, a) : t1 → t2 between generic
operations in B ↓ F is a map in B ↓ F , so that f is invertible by Corollary 4.3
and (1B, f) is arrow-generic by Lemma 5.2. This shows that B is arrow-analytic
at 1B. Suppose next that F is arrow-analytic at b : B1 → B2 and c : B2 → B3.
Given a square as below left with t1 and t3 generic, let e : t2 → t3c be a generic
cover in B2 ↓ F and let d be induced by genericity as centre below; this yields a
factorisation of the left square as to the far right.

B1
cb //

t1
��

B3

t3
��

B1
t2b //

t1
��

FA2

Fe
��

B1
b //

t1
��

B2
c //

t2
��

B3

t3
��

FA1
Fa // FA3 FA1

Fa
//

Fd

;;

FA3 FA1
Fd // FA2

Fe // FA3 .
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By arrow-analyticity at b and c, both small squares are arrow-generic, whence
also their composite by Lemma 5.2; this shows that B is arrow-analytic at cb
as required for (i). Now suppose the hypotheses of (ii). We first show that F is
analytic at C2. Let z : C2 → FZ, and consider the left cube in:

(5.6)

B1
b
{{

t1
��

f1
// C1

c{{
u1

��

B2

t2

��

f2
// C2

z

��

FA1
Fg1

//

Fa
{{

FY1

Fn{{

FA2
Fm

// FZ

B1
b
{{

t1
��

f1
// C1

c{{
u1

��

B2

t2

��

f2
// C2

u2

��

FA1
Fg1

//

Fa
{{

FY1

Fy{{

FA2
Fg2

// FY2

The front, left and right faces arise from generic covers m : t2 → zf2, a : t1 → t2b
and n : u1 → zc, while the map g1 across the back face is obtained as in (i) using
genericity of t1. Since the top face is a pushout, and A is cocomplete, the back
and left faces admit a pushout in B ↓ F which may be taken to be as right above.
Since t1 and t2 are generic and F is arrow-analytic at b, the map (b, a) : t1 → t2
is arrow-generic; since u1 is also generic, we conclude by Lemma 5.7 that u2 is
generic and (c, y) : u1 → u2 is arrow-generic.

Now taking w : Y2 → Z to be the unique map with wy = n and wg2 = m, we
see that w : u2 → z provides a generic cover of z in C2 ↓ F , so that F is analytic
at C2 as required. For arrow-analyticity at c, suppose that (c, n) : u1 → z is a
map between generic operations in B ↓ F . We may complete this to a cube
as left above and form the generic pushout u2 as to the right. Now since z is
generic, the induced map u2 → z in C2 ↓ F is invertible by Corollary 4.3. So the
left cube above is also a pushout; as (b, a) : t1 → t2 is arrow-generic, so too is
(c, n) : u1 → z by Lemma 5.7. �

5.3. Cellular analytic functors. By using Proposition 5.8, we can now build up
the analyticity of a pointwise analytic functor between presheaf categories to
analyticity at more complex stages by assuming suitable instances of arrow-
analyticity. In order to specify what these more complex stages are, we borrow
some ideas from algebraic topology, in particular the theory of cell complexes in
model categories; see [13, §2.1.2], for example.

Definition 5.9. Let I be a class of maps in a category C with an initial object. A
map f : X → Y is called a finite relative I-complex if either it is an isomorphism,
or it can be written as a finite composite

(5.7) X = X0
f1−−→ X1 → . . .

fm−−→ Xm = Y

where each fi is a pushout of a map in I. An object Y ∈ C is called a finite
I-complex if the unique map 0 → Y is a finite relative I-complex. We write
Cx(I) ⊂ C for the full subcategory on the finite I-complexes, and Cx2(I) ⊂ C 2 for
the full subcategory on the relative finite I-complexes between finite I-complexes.

The modifier “finite” here comes from the fact that in (5.7) we allow only
finite compositions; the general notion of cell complex in topology also allows
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for transfinite ones, and everything that follows could be adapted to this greater
generality; however, like before, we refrain from giving this as we will not need it.

Definition 5.10. Let C be a small category. A bordage on PC is a filtered family
∅ = I0 ⊂ I1 ⊂ · · · ⊂

⋃
n In = I of maps in PC such that:

(i) Each g ∈ In+1 has representable codomain and domain a finite In-complex;
(ii) Each representable is a finite I-complex.

Note that condition (i) for a bordage ensures that each map in I has domain a
finite I-complex and, as such, is an object of Cx2(I); this is something which need
not be true for a general class of maps I. Condition (ii) is much less important
than (i) and will only play a role in Proposition 5.15 below.

Examples 5.11. (i) Any presheaf category PC has a bordage given by I =
I1 = { 0→ yc : c ∈ C }. The finite I-complexes are the finite coproducts of
representables, and the finite relative I-complexes are coproduct injections
with complement a finite I-complex.

(ii) Let 2 be the arrow category f : 0 → 1. The presheaf category P2 has a
bordage given by I1 = { 0 → y0} and I \ I1 = {yf : y0 → y1}. The finite
I-complexes are all finitely presentable presheaves, and the finite relative
I-complexes are the monomorphisms with cofinite image.

(iii) Let G be the category s, t : 0⇒ 1. The presheaf category PG has a bordage
given by I1 = { 0→ y0} and I \ I1 = {〈ys, yt〉 : y0 + y0 → y1}, whose finite
I-complexes and finite relative I-complexes are as in (ii).

(iv) Changing I \ I1 in the preceding example to be {yt : y0 → y1} yields another
bordage on PG whose finite I-complexes are now finite forests whose edges
are all directed towards the roots. Changing I \I1 to be {ys : y0 → y1} yields
finite forests with edges directed away from the roots, while taking I \ I1 to
be {ys, yt} yields finite forests whose edges may be oriented arbitrarily.

We will see further examples of bordages when we revisit the motivating
examples of polycategories, properads and props in Section 6 below.

Definition 5.12. Let I be a bordage on PC . A pointwise analytic F : A →PC
is I-cellular if any square as below with b ∈ I and t1, t2 generic is arrow-generic.

(5.8)

S
b //

t1
��

yc

t2
��

FA1
Fa // FA2 .

We will see in the following section that the cellularity condition is very easy
to check in practice. Note that cellularity almost says that F is arrow-analytic
at b : S → yc for each b ∈ I, except that we do not assume that F is analytic at
the domain object S. In fact, this is true by virtue of:

Proposition 5.13. Let I be a bordage on PC and let A be a cocomplete category.
Any I-cellular F : A →PC is analytic at all B ∈ Cx(I) and arrow-analytic at
all b ∈ Cx2(I). The same holds for pointwise analytic transformations α : F ⇒ G
between I-cellular functors.
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Proof. Let F be I-cellular. We prove by induction on n that F is analytic at
every B ∈ Cx(In) and b ∈ Cx2(In). For the base case n = 0, every B ∈ Cx(I0) is
initial: thus B ↓ F ∼= A , and so as A has an initial object, F is analytic at B.
Since any b ∈ Cx2(I0) is invertible, F is analytic at b by Proposition 5.8.

Now assume the result for n. Each map b : S → yc in In+1 has domain in
Cx(In), and so F is analytic at S; thus I-cellularity implies that F is arrow-
analytic at every b ∈ In+1. Applying Proposition 5.8 finitely many times shows
that, if f : X → Y is a finite relative In+1-cell complex for which F is analytic at
X, then F is also analytic at Y and arrow-analytic at f . Taking X to be initial
and using the base case, shows that F is analytic at every B ∈ Cx(In+1); while
taking X to be an arbitrary finite In+1-complex shows that F is arrow-analytic at
every b ∈ Cx2(In+1). The case of transformations is similar, and so omitted. �

The preceding proposition shows us that the pointwise analyticity of functors
F : PC → PD and G : PD → PE is stable under composition if there is a
bordage I on PD such that F is I-cellular and the input arities of G’s generic
operations are I-cell complexes. However, GF need not then satisfy any cellularity
conditions allowing it to compose further; the following definition ensures this.

Definition 5.14. Let I and J be bordages on PC and PD . A pointwise analytic
functor F : PC →PD is called (I, J)-cellular if every square (5.8) with b ∈ J
and t1, t2 generic is arrow-generic and has a a finite relative I-complex. We write
CELL((C , I), (D , J)) for the category of (I, J)-cellular functors and pointwise
analytic transformations.

Proposition 5.15. Let I and J be bordages on PC and PD . A functor F : PC →
PD is (I, J)-cellular if and only if it is (Cx2(I),Cx2(J))-arrow-analytic. In par-
ticular, there is a 2-category CELL of presheaf categories equipped with bordages,
cellular analytic functors, and pointwise analytic transformations.

Proof. By condition (ii) for a bordage, each representable in PD is a finite
J-complex, whence any (Cx2(I),Cx2(J))-arrow-analytic functor is pointwise
analytic. By condition (i), we have J ⊂ Cx2(J), and so any (Cx2(I),Cx2(J))-
arrow-analytic functor is (I, J)-cellular. This proves the “if” direction. For the
“only if”, if F is (I, J)-cellular, then it is certainly J-cellular, and so arrow-analytic
at each b ∈ Cx2(J); it remains to show that each square (5.1) with b ∈ Cx2(J)
and t1, t2 generic has a ∈ Cx2(I). Let K denote the collection of all arrows
b ∈ Cx2(J) for which each square (5.1) with t1, t2 generic has a a finite relative
I-complex. By assumption J ⊂ K, and by examining the proof of Proposition 5.8
we see that K is stable under pushout and closed under composition, and so must
comprise all of Cx2(J). So each (5.1) with b ∈ Cx2(J) and t1, t2 generic has a a
relative finite I-complex, and it remains to show that the domain and codomain
of a are in fact finite I-complexes. But whenever B ∈ Cx(J) and t : B → FA is
generic, the following square has top edge in Cx2(J) and generic sides:

0
! //

!
��

B

t
��

F0
F ! // FA
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and so has bottom map a finite relative I-complex; whence A ∈ Cx(I) as
required. The existence of the 2-category CELL now follows from this together
with Proposition 5.6. �

5.4. A combinatorial characterisation of arrow-genericity. We now know that
cellular pointwise analytic functors are closed under composition; what we have
not yet seen is that there are any cellular functors. In this section, we give a
result which will allow us to verify that a given pointwise analytic functor is
indeed cellular. The key concept required is that of a minimal extension.

Definition 5.16. Let f : A → B and let σ ∈ SA. An extension of σ along f is
some τ ∈ SB for which τf = fσ. An extension is called minimal if whenever
g : B → C satisfies gfσ = gf , also gτ = τ ; equivalently, if f, fσ : A⇒ B admit a
coequaliser q, then τ is minimal just when qτ = q.

The name is motivated by the case of f : A� B an injection in Set; for such
an f , any σ ∈ SA is easily seen to have a unique minimal extension τ ∈ SB with

(5.9) τ(x) =

{
σ(x) if x ∈ Im(f);

x otherwise.

So τ is minimal among extensions of σ in that it permutes the smallest possible
part of B. This intuition works for monomorphisms in any presheaf category:

Proposition 5.17. If f : A � B is monic in PC then each σ ∈ SA admits at
most one minimal extension along f ; this extension exists just when

(5.10) x /∈ f(A) and xh ∈ f(A) =⇒ xh ∈ f(A\σ)

for all x ∈ Bc and h : d→ c, and is then given componentwise as in (5.9).

Proof. If q coequalises f and fσ, then τ ∈ SB is a minimal extension of σ just
when qτ = τ , just when qcτc = τc for all c, just when each τc is a minimal
extension of σc (as colimits in PC are pointwise). So any minimal extension of
σ must be given componentwise by (5.9), with (5.10) being just what is needed
to ensure naturality of this definition in c. �

We now use the notion of minimal extension to give a combinatorial character-
isation of arrow-generic morphisms. As in Remark 4.14, we use St1 and St2 to
denote the automorphism groups of t1 ∈ B1 ↓ F and t2 ∈ B2 ↓ F .

Lemma 5.18. Let A have coequalisers and F : A → B. A map (b, a) : t1 → t2
between generic operations in B ↓ F is arrow-generic if and only if each σ ∈ St1

admits a minimal extension τ ∈ St2 along a : A1 → A2.

Proof. We use the alternate characterisation of arrow-genericity of Lemma 5.2.
For the “if” direction, suppose given a diagram as in the solid part of (5.2).
As t2 is generic, there exists a map g : A2 → Y with hg = k and Fg.t2 = u;
now both ga and j are maps t1 → ub in B1 ↓ F and so by genericity of t1
there is some σ ∈ St1 with j = gaσ. By the assumption on a, there is some
minimal τ ∈ St2 with τa = aσ; letting ` = gτ , we have `a = gτa = gaσ = j and
F`.t2 = Fg.Fτ.t2 = Fg.t2 = u. Now kaσ = hgaσ = hj = ka, whence kτ = k by
minimality of τ , and so h` = hgτ = kτ = k as required for ` to be a filler.
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For the “only if” direction, let (b, a) : t1 → t2 be arrow-generic and let σ ∈ St1 ;
we must find a minimal extension τ ∈ St2 along a. Let q : A2 → Q be a
coequaliser of a and aσ, and consider the diagram

B1
b //

t1

��

B2

t2

��

t2 // FA1

Fq

��

FA2
Fa
//

F (aσ)

66

FA2
Fq
//

Fτ

>>

FQ .

The solid part clearly commutes, and so we induce a map τ as displayed making
everything commute. Since t2 is generic, τ is invertible by Corollary 4.3; since
Fτ.t2 = t2, we have τ ∈ St2 . Moreover, τa = aσ, so τ is an extension of σ; while
qτ = q so that τ is minimal. �

This result allows us to check in a concrete fashion the (I, J)-cellularity of a
pointwise analytic F : PC →PD . For this, it suffices to check (I, Jn)-cellularity
for each n. This is trivial for n = 0 since J0 = ∅; so suppose now that we have
verified it up to n. To check (I, Jn+1)-cellularity, we must show that, for any
b : S → yd in Jn+1 \ Jn, each square (5.1) with generic sides is arrow-generic with
a a finite relative I-complex. We can do this using the previous result so long as
we can compute all such squares (5.1).

Now, as F is (I, Jn)-cellular, it is by Proposition 5.13 analytic at the finite
Jn-complex S. Thus, each square (5.1) is obtained from a generic t2 : yd → FA2—
which we can classify by pointwise analyticity of F—upon forming a generic
cover a : t1 → t2b in S ↓ F , which can be calculated explicitly by applying the
algorithm of Proposition 5.8 to some presentation of S as a finite Jn-complex.

Example 5.19. Let J be the bordage of Examples 5.11(ii) on P2, let I be any
bordage on PC , and let F : PC →P2 be pointwise analytic. Recalling that
J1 = {0→ y0}, the condition for F to be (I, J1)-cellular is that, for each generic
t : y0 → FA, the induced square

0
! //

!
��

y0

t
��

F0
Fa // FA

with generic sides is arrow-generic with a a finite relative I-complex. Arrow-
genericity is trivial in this case, and so the condition is simply that A is a
finite I-complex. Now, since J2 \ J1 = {yf : y0 → y1}, we see that F will be
(I, J2) = (I, J)-cellular when, for each generic t2 : y0 → FB, the induced square

y0

yf
//

t1
��

y1

t2
��

FA
Fa // FB

with generic sides is arrow-generic and has a a finite relative J-complex. Let
us see what this says relative to an explicit presentation of F as a pointwise
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coproduct of near-representables:

F =
∑

u∈U PC (Bu, –)/Gu
α−→

∑
v∈V PC (Av, –)/Hv .

Here, the map α is determined by a function h : U → V together with natural
transformations αu : PC (Bu, –)/Gu →PC (Ahu, –)/Hhu—which, as in the proof
of Proposition 4.9, correspond to maps [au] : (Ahu, Hhu)→ (Bu, Gu) in O(PC )
(note that this is really just an explicit description of the exponent of F ). In
these terms, the necessary conditions for F to be (I, J)-cellular are that: each
Av should be a finite I-complex; each au : Ahu → Bu should be a finite relative
I-complex; and each σ ∈ Hhu should have a minimal extension τ ∈ Gu along au.

5.5. Universal cellular functors. We have now achieved what we set out to
do in this section, by exhibiting a class of pointwise analytic functors which
is closed under composition. Our broader objective, recall, is to construct a
universal shapely monad as a terminal object among a suitable class of composable
endofunctors, and it may appear that we have now achieved this. However, we
are not yet done, as we must still check the existence of a terminal object among
cellular functors. Unfortunately, we have:

Proposition 5.20. CELL((C , I), (D , J)) need not admit a terminal object.

Proof. Let C = D = 2 and let both I and J be the bordage {0→ y0, y0 → y1} of
Examples 5.11(ii). Consider the endofunctor F : P2→P2 sending f : A→ B
to f × f : A×A→ B ×B; this is pointwise analytic, with explicit presentation

F = P2(y1 + y1, –)/1
P2(yf+yf ,–)
−−−−−−−−→P2(y0 + y0, –)/1 .

To see that F is (I, I)-cellular, we observe that y0 + y0 is a finite I-complex
(= finitely presentable presheaf), that yf + yf is a relative finite I-complex (=
monomorphism with cofinite image), and that the minimal extension condition is
trivially satisfied: this verifies the three conditions of Example 5.19, as required.

In the terminology of Definition 4.13, F has spectrum SF = 1 ∈P2—so that
elSF ∼= 2—and exponent EF : 2→ O(P2) picking out the arrow

[yf + yf ] : (y0 + y0, 1)→ (y1 + y1, 1)

of O(P2). It follows using Proposition 4.16 that for each G ∈ AN0(P2,P2),
pointwise analytic transformations α : F ⇒ G correspond bijectively with squares

(5.11)

y0

yf
//

t1
��

y1

t2
��

G(y0 + y0)
G(yf+yf )

// G(y1 + y1)

in P2 with generic sides. We claim that whenever G is (I, I)-cellular, there are al-
ways two distinct such squares, so thatG cannot be terminal in CELL((2, I), (2, I)).
Since G was arbitrary, this concludes the proof. Now, if G is (I, I)-cellular, then
any square as displayed above must be arrow-generic; by Lemma 5.18, this means
that each σ ∈ St1 admits a minimal extension τ ∈ St2 along yf + yf . Using
Proposition 5.17, we see that the switch isomorphism σ12 : y0 + y0 → y0 + y0

has no minimal extension along yf + yf , and so we must have St1 = 1. Since
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[yf + yf ] : (y0 + y0,St1)→ (y1 + y1,St2) in O(P2), it follows that St2 = 1 too;
whence the square

y0

yf
//

Gσ12.t1
��

y1

Gσ12.t2
��

G(y0 + y0)
G(yf+yf )

// G(y1 + y1)

is a second, distinct instance of (5.11). This proves the claim. �

6. Shapeliness in context

We have now failed for a third time to exhibit a notion of universal shapely
monad: the imposition of cellularity, which fixed the failure of general analytic
functors to compose, did so at the cost of destroying the terminal object existing
among them. At this point, we prefer to leave for future work the problem
of finding a general notion of shapeliness, and concentrate instead on giving a
solution for the particular motivating examples from Section 2.

For these examples, the notion of cellularity turns out to be almost sufficient:
some simple ad hoc additional conditions will be enough to obtain the desired
universal shapely monad U. With this in place, we can define a general shapely
monad to be any pointwise analytic submonad of U, and then provide an inductive
construction of the free shapely monad on a generating set of operations. Finally,
we apply this construction to our motivating examples, and thereby realise the
main goal of this paper by exhibiting the monads for polycategories, properads
and props as free shapely monads on the basic wiring operations.

6.1. Universal shapely monads on (symmetric) polygraphs. Our first goal is to
construct universal shapely monads on the presheaf categories of polygraphs
and symmetric polygraphs from Section 2 which are suitable for analysing
polycategories, properads and props. We will find these universal monads among
the class of cellular analytic endofunctors of the previous section; but in order to
neutralise the counterargument of Proposition 5.20, we must further restrict the
functors under consideration. We build on the observation that the monads in
our examples act trivially on the set of objects of a (symmetric) polygraph.

Definition 6.1. An endofunctor F of either PP or PPs is called framed if
FX(?) ∼= A×X(?) for some fixed set A.

Of course, “acting trivially” on objects is only the special case A = 1 of this
definition. The reason for allowing the more general definition is to ensure that
any pointwise analytic functor admitting a pointwise analytic transformation to
a framed one is itself framed; see Remark 6.3 below.

Since framed functors are clearly stable under composition, we have for any
bordage I on PP or PPs a monoidal category of framed (I, I)-cellular endo-
functors. In both the symmetric and non-symmetric cases, we are free to choose
I in any way which ensures that the monads for polycategories, properads and
props are all in fact (I, I)-cellular; we now describe suitable such choices, and
check by hand that corresponding monoidal categories of framed (I, I)-cellular
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endofunctors have a terminal object—so giving the desired universal shapely
monads. Let us begin with the case of PP. The bordage IP we take has
(IP)1 = {0→ y?} and IP \ (IP)1 the set of the following maps for all n,m ∈ N:

〈yσ1 , . . . , yσn〉 : y? + · · ·+ y? → y(n,m) and 〈yτ1 , . . . , yτm〉 : y? + · · ·+ y? → y(n,m) .

We now show that there is a universal framed (IP, IP)-cellular endofunctor.
We make use of the sets L (n,m) of (n,m)-labelled finite polygraphs from
Definition 2.3 above. We will call X ∈ L (n,m) well-labelled if the maps

〈`X1 , . . . , `Xn 〉 : y? + · · ·+ y? → |X| and 〈rX1 , . . . , rXm〉 : y? + · · ·+ y? → |X|
are both relative finite IP-complexes; and, extending the notation of Proposi-
tion 2.8, we write SX for the set of label-preserving automorphisms of |X|.

Proposition 6.2. The monoidal category of framed (IP, IP)-cellular endofunctors
of PP has a terminal object UP, which thus underlies a monad on PP, the
universal shapely monad. The spectrum S ∈PP of UP may be taken to be:

S(?) = {u} and S(n,m) = {X ∈ L (n,m) : X is well-labelled} ,

and the exponent E : elS → O(PP) to have E(u) = y? and

E(X) = (|X|,SX), E(σi : u→ X) = [`Xi ], E(τj : u→ X) = [rXi ] .

Proof. By Proposition 4.16, we have AN0(PP,PP) ' elP //v O(PP); if we define
(elP //v O(PP))′ ⊂ elP //v O(PP) to be the full subcategory corresponding under
this equivalence to the full subcategory of framed (IP, IP)-cellular endofunctors,
then it suffices to show that (S,E) as defined above is terminal in this category.

First, let us call a functor P/? ∼= 1 → O(PP) acceptable if it picks out the
object (y?, 1), and a functor P/(n,m)→ O(PP) acceptable if it takes the form

(6.1)

σ1

σ1
%%

· · · σn
σn
��

τ1

τ1
��

· · · τm

τm
zz

id(n,m)

7→

(y?, 1)

[`1] %%

· · · (y?, 1)

[`n]
��

(y?, 1)

[r1]
��

· · · (y?, 1)

[rm]yy

(X,G)

with (X, `, r) a well-labelled polygraph. By an argument like Example 5.19 above,
a pointwise analytic F : PP→PP is framed (IP, IP)-cellular just when, for each
element t ∈ SF (x) of its spectrum, the composite

Ft : P/x = el yx
el t−−→ elSF

EF−−→ O(PP) .

is acceptable. Noting that this Ft is the same as (4.6) appearing in the proof of
Proposition 4.20, we thus continue by emulating the rest of that proof.

Recall the key Lemma 4.19 stating that, for each x ∈ P, the connected
component of any F ∈ [P/x,O(PP)]v contains an initial object F̃ . We claim
that, if F is acceptable, then so too is F̃ . This is trivial when x = ?, while if
x = (n,m), then F̃ is obtained from F as in (6.1) simply by changing its value
at id(n,m) from (X,G) to (X,SX). So the analogue of Lemma 4.19 holds for
acceptable functors; it follows that we can define a terminal object (S′, E′) for
(elP //v O(PP))′ by taking

(6.2) S′(x) = {F ∈ [P/x,O(PP)]v : F̃ = F is acceptable } ,
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with the remaining data defined exactly as in Proposition 4.20 above. All that
remains is to identify this (S′, E′) with the (S,E) in the statement. Once again,
this is trivial at stage ?, while at stage (n,m), any acceptable F by definition has
the form (6.1); but the further requirement that F = F̃ means that G = SX , so
that F determines and is determined by the well-labelled polygraph (X, `, r). �

Remark 6.3. As in Remark 4.21, if we view the terminal framed cellular endofunc-
tor of PP as an object U ∈ AN0(PP,PP), then any pointwise analytic F which
admits a map to U in this category must itself be framed (IP, IP)-cellular. So U
is subterminal in AN0(PP,PP), and the slice category AN0(PP,PP)/U may
be identified with the monoidal category of framed (IP, IP)-cellular endofunctors.

The case of the presheaf category PPs of symmetric polygraphs is very similar:
the maps in the bordage IPs are identical in form to those of IP—though now
living on a different category—and we now obtain:

Proposition 6.4. The monoidal category of framed (IPs , IPs)-cellular endofunctors
of PPs has a terminal object UPs, which thus underlies a monad on PPs, the
universal shapely monad. The spectrum S ∈PPs of UPs may be taken to be:

S(?) = {u} and S(n,m) = {X ∈ Ls(n,m) : X is well-labelled} ,

with symmetric actions on S(n,m) given by X 7→ ψ ·X ·ϕ as in Definition 2.3(c);
the exponent E : elS → O(PPs) now has E(u) = y?, E(X) = (|X|,SX) and

E(σi : u→ X) = [`Xi ], E(τj : u→ X) = [rXi ], E(ξϕ,ψ : ψ·X·ϕ→ X) = [1|X|] .

6.2. Free shapely monads. Now that we have universal shapely monads on the
presheaf categories of polygraphs and symmetric polygraphs, we are finally in a
position to define more general shapely monads. It will be convenient to abstract
away from the particularities of our examples as follows.

Definition 6.5. Let U ∈ AN0(PC ,PC ) be subterminal. We write ANU for
the full subcategory of AN0(PC ,PC ) on the U-analytic endofunctors: those
admitting a map to U . We call U nice if ANU is closed in CAT(PC ,PC ) under
the composition monoidal structure, and in this case we write MNDU for the
category of U -analytic monads: monoids in ANU .

Clearly, the subterminal U in AN0(PC ,PC ) becomes terminal in ANU ; when
U is nice, this terminal object has a unique monoid structure making it into a
terminal object U in MNDU . The universal shapely monads of Propositions 6.2
and 6.4 arise in this way from the nice subterminal objects UP and UPs in the
categories of pointwise analytic endofunctors of PP and PPs; here “UP-analytic”
means “framed (IP, IP)-cellular” and likewise for Ps.

Definition 6.6. Let U ∈ AN0(PC ,PC ) be subterminal. A U -analytic endofunc-
tor is shapely if the unique pointwise analytic F → U is pointwise monic. If U
is nice, then a U -analytic monad is called shapely if its underlying endofunctor
is so. We write SHU ⊂ ANU and SHMU ⊂MNDU for the full subcategories on
the shapely endofunctors and monads.
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By the free shapely monad on a shapely endofunctor F , we mean the value
at F of a left adjoint to the forgetful functor SHMU → SHU . To construct free
shapely monads we will first need to analyse more closely the structure of shapely
endofunctors. The following two results are the key to doing so.

Proposition 6.7. For any A and C (with C small), the category AN0(A ,PC )
admits a factorisation system (pointwise epi, pointwise mono).

Proof. First we show that pointwise epimorphic and pointwise monomorphic
transformations are orthogonal in AN0(A ,PC ): this says that any square

F
α //

γ

��

G

δ
��

ε

~~

H
β
// K

in AN0(A ,PC ) with α pointwise epimorphic and β pointwise monomorphic
admits a unique diagonal filler ε as displayed. As pointwise epimorphic and
monomorphic transformations are orthogonal in CAT(A ,PC ), there is certainly
a unique transformation ε : G⇒ H; we must show it is pointwise analytic. For
each c ∈ C we have the factorisation

yc ↓ δ = yc ↓ G
yc↓ε−−−→ yc ↓ H

yc↓β−−−→ yc ↓ K .

Now since β is pointwise monomorphic, yc ↓ β is fully faithful and so reflects
generic operations; since yc ↓ δ preserves them, we conclude that yc ↓ ε preserves
generics, whence ε is pointwise analytic as required.

It remains to show that any δ : G ⇒ K in AN0(PC ,PC ) has a pointwise
(epi, mono) factorisation. Let δ = βε : G ⇒ H ⇒ K be such a factorisation
in CAT(A ,PC ); we must show that H, β and ε are pointwise analytic. We
argue as before to see that each yc ↓ ε preserves generics, but since ε is pointwise
epimorphic, yc ↓ ε is also surjective on objects. It follows that each t ∈ yc ↓ H
has a generic cover obtained by lifting along yc ↓ ε, taking a generic cover there,
and then applying the generic-preserving yc ↓ ε. This shows that H and ε are
pointwise analytic; moreover, it follows easily that each generic operation in
yc ↓ H is the image of a generic operation in yc ↓ G. Since yc ↓ δ preserves
generics, it follows that yc ↓ β does so too, so that β is also pointwise analytic. �

Proposition 6.8. The (pointwise epi, pointwise mono) factorisation system on
AN0(A ,PC ) corresponds under Proposition 4.16 to the factorisation system
(E ,M ) on elC //v O(A ) for which E and M comprise those maps (p, ϕ) as
in (4.5) for which p is epimorphic, respectively p is monic and ϕ is invertible.

Proof. As (pointwise) epimorphic and monomorphic maps form a factorisation
system on PC , it is not hard to show that (E ,M ) is indeed a factorisation
system on elC //v O(A ). It is moreover easy to see that under the equivalence
AN0(A ,PC ) ' elC //v O(A ), pointwise epimorphic maps correspond to maps
in E ; it follows that pointwise monomorphic maps correspond to ones in M . �

Corollary 6.9. Let U ∈ AN0(PC ,PC ) be subterminal. The category SHU

of shapely U-analytic functors is equivalent to the poset of subfunctors of U ’s
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spectrum SU ∈PC ; in particular, SHU is a complete preorder, whose joins are
given by unions of subfunctors of U ∈ CAT(A ,PC ).

Proof. By the preceding result, the shapely U -analytic endofunctors correspond
under Proposition 4.16 to the M -subobjects of (SU , EU ) in elC //v O(PC ).
Any such subobject is easily seen to have a unique representative of the form
(p, 1) : (S,EU . el p) → (SU , EU ) for p : S ↪→ SU a subfunctor inclusion. This
proves the first claim; the stated form of joins in SHU follows by transporting
across the equivalence elC //v O(PC ) ' AN0(PC ,PC ). �

Example 6.10. Consider the subterminal UP ∈ AN0(PP,PP) which classifies
framed (IP, IP)-cellular endofunctors. By Proposition 6.2, the spectrum S of UP

has S(?) = {u} and S(n,m) the set of well-labelled elements in L (n,m). We
will say that a subpresheaf of S is non-degenerate if it contains u ∈ S(?). Clearly,
a non-degenerate subpresheaf is given by selecting arbitrary subsets F (n,m) of
well-labelled elements from each L (n,m); the corresponding shapely endofunctor
F : PP→PP—which we also call non-degenerate—satisfies FA(?) = A(?) and

FA(n,m) =
∑

X∈F (n,m) PP(|X|, A)/SX .

We may express this subsequently by saying that the non-degenerate F contains
the well-labelled polygraphs in each F (n,m). For example, it is easy to see
that the identity endofunctor of PP contains precisely each of the well-labelled
polygraphs 〈n,m〉 of Definition 2.3(d).

Returning to the general situation, when U is a nice subterminal object of
AN0(PC ,PC ), the composition monoidal structure on ANU induces by way of
Proposition 6.7 the following binary operation on SHU .

Definition 6.11. Let U ∈ AN0(PC ,PC ) be nice. For any F,G ∈ SHU , we let
F ·G ∈ SHU be the pointwise monic image of the unique u : FG→ U in ANU :

F ·G
?? ?? ��

��

FG u
// U .

The following lemma describes the basic properties of this operation.

Lemma 6.12. Let U ∈ AN0(PC ,PC ) be nice. The assignation F,G 7→ F · G
defines a monotone map SHU × SHU → SHU which satisfies:

F · id ∼= F id ·G ∼= G and (F ·G) ·H 6 F · (G ·H) .

Moreover, each (–) ·G : SHU → SHU preserves joins, and if U is finitary, then
each F · (–) preserves directed joins.

Proof. Monotonicity and the first two displayed equations are obvious. For the
third, consider the hexagon left below in AN0(PC ,PC ); the indicated arrows
are pointwise epimorphic or pointwise monomorphic, whence by orthogonality
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there is a filler as displayed.

FGH

vvvv ((

(F ·G)H

����

F (G ·H)

����

(F ·G) ·H
((

((

// F · (G ·H)
vv

vv
U

ΣiFiG

vvvv '' ''

(
∨
i Fi)G

����

Σi(Fi ·G)

����

(
∨
i Fi) ·G((

((

∼= //
∨
i(Fi ·G) .
vv

vv
U

Next we show that (–) · G preserves joins of shapely functors. Let
∨
i Fi be

any such join; since it is computed as a union of subfunctors of U , the induced
transformation ΣiFi →

∨
i Fi in CAT(PC ,PC ) is epimorphic, whence also its

precomposition ΣiFiG→ (
∨
i Fi)G. Thus in the hexagon right above, each edge

is pointwise epi or mono as indicated, so that by orthogonality we induce an
isomorphism (

∨
i Fi) ·G ∼=

∨
i(Fi ·G) as indicated.

Suppose now that U is finitary; by Remark 4.21, any F ∈ SHU is then also
finitary. Now any directed join

∨
iGi in SHU , being a union of subfunctors of

U , may be computed as the colimit in CAT(PC ,PC ) of the filtered diagram
of subfunctor inclusions. Because any F ∈ SHU is finitary, it will preserve
this colimit, so that the induced map ΣiFGi → F (

∨
iGi) in CAT(PC ,PC ) is

pointwise epimorphic. The argument of the previous paragraph now carries over
mutatis mutandis to show that F · (

∨
iGi)

∼=
∨
i(F ·Gi) as required. �

Proposition 6.13. Let U ∈ AN0(PC ,PC ) be finitary and nice. The forgetful
SHMU → SHU is a reflective inclusion of preorders, whose image comprises those
F ∈ SHU with id 6 F and F · F 6 F . The left adjoint, giving the free shapely
monad on F ∈ SHU is defined by:

F 7→ F̄ =
∨
n∈N(id ∨ F )·n

where here F ·0 = id and F ·n+1 = F · F ·n.

Proof. The only non-trivial point is the verification that F̄ is indeed a reflection
of F into SHMU . First, we have id = (id ∨ F )·0 6 F̄ and F̄ · F̄ 6 F̄ , since

F̄ · F̄ ∼=
∨
n

(id ∨ F )·n · F̄ ∼=
∨
n,m

(id ∨ F )·n · (id ∨ F )·m 6
∨
n,m

(id ∨ F )·(n+m) 6 F̄

where the first two equalities use cocontinuity of (–) · F̄ and directed cocontinuity
of each (id ∨ F )·n · (–) (noting that the join defining F̄ is indeed directed) and
the third inequality uses repeatedly (F · G) ·H 6 F · (G ·H). So F̄ ∈ SHMU ;
moreover, if G ∈ SHMU satisfies F 6 G, then since id 6 G we have (1 ∨ F ) 6 G;
furthermore, if (1 ∨ F )·n ≤ G, then

(1 ∨ F )·(n+1) = (1 ∨ F ) · (1 ∨ F )·n ≤ G ·G ≤ G

so that by induction on n we have (1 ∨ F )·n ≤ G for all n and so, finally, that
F̄ 6 G. This proves that F̄ is a reflection of F into SHMU as desired. �
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6.3. Polycategories, properads and PROPs. We are now ready to apply the
preceding theory to our motivating examples. We concentrate on exhibiting the
“free polycategory” monads on PP and PPs as free shapely monads, but also
indicate how this extends to the cases of properads and props.

We begin in the non-symmetric case PP by describing a non-trivial shapely
endofunctor ΣP which encodes the basic polycategorical wiring operations; for
this, it suffices by Example 6.10 to describe which well-labelled polygraphs ΣP

will contain. We make use of the operations on polygraphs of Definition 2.3
above. It is easy to see that the elements id ∈ L (1, 1) and 〈n,m〉 ∈ L (n,m)
in parts (a) and (d) of this definition are well-labelled, and that the operations
(–) j•i (–) and ψ · (–) ·ϕ of parts (b) and (c) preserve well-labelledness; so it makes
sense to give:

Definition 6.14. Let ΣP be the non-degenerate shapely UP-analytic endofunctor
of PP which contains the following well-labelled polygraphs:

(i) id ∈ L (1, 1);
(ii) ψ · 〈n,m〉 · ϕ for each n,m and permutations ϕ ∈ Sn and ψ ∈ Sm;
(iii) 〈p, q〉 j•i 〈n,m〉 ∈ L (n+ p− 1,m+ q − 1) for all n,m, p, q and all suitable

indices i, j.

Theorem 6.15. The free shapely monad on the shapely UP-analytic endofunctor
ΣP is the “free polycategory” monad on PP.

Proof. Since ΣP contains each of the shapes 〈n,m〉, we have by Example 6.10
that id ⊂ ΣP; so by the formula of Proposition 6.13, the free shapely monad
on ΣP is given by

∨
n(ΣP)·n. To compute this, we first calculate for any non-

degenerate shapely UP-analytic endofunctor F the composite ΣP · F . Since F
is non-degenerate, it is by Example 6.10 specified by families of well-labelled
polygraphs F (n,m) ⊂ L (n,m); it is easy to see that ΣP · F is then also non-
degenerate, and so it will suffice to determine the well-labelled polygraphs which
it contains. These polygraphs correspond to generic operations of ΣP ·F at stage
y(n,m), and by Definition 6.11 and Proposition 6.8, such operations are precisely
the images of the generic operations of ΣPF at stage y(n,m) under the unique
pointwise analytic ΣPF → UP; so it will suffice to compute these.

Now, by Proposition 4.22, any generic operation v : y(n,m) → ΣPFA is the
composite of a ΣP-generic operation s : y(n,m) → ΣPB and an F -generic operation
t : B → FA. The first possibility is that

v = y(1,1)
s−→ ΣP(y?)

ΣP(t)−−−−→ ΣPF (y?)

where s corresponds to id ∈ L (1, 1). This v is sent by ΣPF → UP to a well-
labelled polygraph X ∈ L (1, 1) with |X| = y?, which clearly forces X = id. The
next possibility is that

v = y(n,m)
s−→ ΣP(y(n,m))

ΣP(t)−−−−→ ΣPF (|X|)

where s corresponds to ψ · 〈n,m〉 · ϕ ∈ L (n,m), and t corresponds to some well-
labelled X ∈ F (n,m). The composite v is sent by ΣPF → UP to a well-labelled
Y ∈ L (n,m) with underlying polygraph |X|; to calculate the leaf labellings
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`Y1 , . . . , `
Y
n , we apply (4.6) and Remark 4.14, which tell us that they arise by

taking generic covers as to the left in:

y?
yσi //

ṽ.yσi
��

y(n,m)

v
��

ΣPF (y?)
ΣPF (`Yi )

// ΣPF (|X|)

y?
yσi //

s̃.yσi
��

y?

s
��

ΣP(y?)
ΣP(yσϕ(i) )

//

ΣP( ˜t.yσϕ(i) )

��

ΣP(y(n,m))

ΣP(t)
��

ΣPF (y?)
ΣPF (`X

ϕ(i)
)
// ΣPF (|X|) .

But from the given forms of s and t, we have generic covers as to the right, and
so must have that `Yi = `Xϕ(i). The same argument shows that rYj = rXψ−1(j), and
so we conclude that in fact Y = ψ ·X · ϕ. The final possibility is that

v = y(n+p−1,m+q−1)
s−→ ΣP(y(p,q) j•i y(n,m))

ΣP(t)−−−−→ ΣPFA

where s corresponds to 〈p, q〉 j•i 〈n,m〉 ∈ L (n + p − 1,m + q − 1). As for the
F -generic t, by virtue of the pushout (2.3) and Proposition 5.8, this must arise
from a pointwise pushout in PP ↓ F of the form:

y?yσj

{{

t0
��

yτi // y(n,m)

{{
t1

��

y(p,q)

t2

��

// y(p,q) j•i y(n,m)

t

��

F y?
FrXi //

F`Yj

{{

F |X|

{{

F |Y | // FA

where t0 is the unique F -generic operation at stage y?, and t1 and t2 are F -
generic operations corresponding to well-labelled polygraphs X ∈ F (n,m) and
Y ∈ F (p, q). Since the bottom face is a pushout, we conclude that the generic v
must correspond to a well-labelled polygraph Z ∈ L (n+ p− 1,m+ q − 1) with
|Z| = |Y j•i X|; now a similar calculation to before shows that the labellings of
Z are such that, in fact, we have Z = Y j•i X.

In sum, we have now shown that, for any non-trivial shapely UP-analytic
endofunctor F containing the well-labelled polygraphs F (n,m), the well-labelled
polygraphs contained in the shapely composite ΣP · F are given by:

(i) id ∈ L (1, 1);
(ii) ψ ·X · ϕ ∈ L (n,m) for all X ∈ F (n,m), ϕ ∈ Sn and ψ ∈ Sm;
(iii) Y j•i X ∈ L (n+ p− 1,m+ q − 1) for all X ∈ F (n,m), Y ∈ F (p, q) and

suitable indices i, j.

Consequently, the well-labelled polygraphs contained in the free shapely monad∨
n(ΣP)·n are those obtained by closing the 〈n,m〉’s under the operations (a)–

(c) of Definition 2.3, and by definition, these are precisely the finite labelled
polygraphic trees T (n,m). It follows from Example 6.10 that the free shapely
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monad T on ΣP is given by TX(?) = X(?) and

TX(n,m) =
∑

T∈T (n,m) PP(|T |, X)/ST =
∑

T∈T (n,m) PP(|T |, X)

where the second equality follows from the easy observation that a labelled
polygraphic tree has no non-trivial label-preserving automorphisms. Comparing
this with the formula of Proposition 2.6 gives the result. �

The argument just given for the free polycategory monad on PP applies
equally well to the free polycategory monad on PPs. By adapting Example 6.10,
we see that the non-trivial shapely endofunctors of PPs are specified by giving
subsets Fs(n,m) ⊂ Ls(n,m) of well-labelled finite symmetric trees; so we can
define a shapely endofunctor ΣPs by requiring it to contain id ∈ Ls(1, 1) and
each 〈p, q〉 j•i 〈n,m〉 ∈ Ls(n+ p− 1,m+ q − 1). Now following the precise same
argument as in Theorem 6.15 gives:

Theorem 6.16. The free shapely monad on the shapely UPs-analytic endofunctor
ΣPs is the “free polycategory” monad on PPs.

Finally, let us say a few brief words about the passage from polycategories
to properads and to props. This is almost completely trivial in our framework;
all we need to do is to replace the closure operations of Definition 2.3 which
defined the class of polycategorical trees with the corresponding closure operations
defining the properadic trees or the trees for props. Thus, for example, the
monad for properads on the category PP arises as the free shapely monad on
the shapely endofunctor specified by the well-labelled polygraphs

id, ψ · 〈n,m〉 · ϕ and 〈p, q〉 I•J 〈n,m〉 .

The remaining cases proceed similarly.
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