
Theory and Applications of Categories, Vol. 37, No. 26, 2021, pp. 908–913.

AN ESSENTIAL LOCAL GEOMETRIC MORPHISM

WHICH IS NOT LOCALLY CONNECTED THOUGH
ITS INVERSE IMAGE PART IS AN EXPONENTIAL IDEAL

RICHARD GARNER AND THOMAS STREICHER

Abstract. We give examples of essential local geometric morphisms which are not
locally connected although their inverse image parts give rise to exponential ideals.

1. Introduction

In [BP80] the authors introduced and studied a property of geometric morphisms between
toposes which they called “molecular” and nowadays is usually referred to as “locally
connected”. One of the various characterizations of this property is that the inverse
image part F of the geometric morphism F ⊣ U : E → S preserves dependent products,
i.e. right adjoints to pullback functors. As described below this requirement is tantamount
to F having a fibered or “indexed” left adjoint. In loc. cit. the authors also consider the
property that F has an enriched left adjoint, which amounts to F preserving (ordinary)
exponentials and having a left adjoint.

In this note, we exhibit a geometric morphism F ⊣ U : E → S which satisfies the
weaker of these two sets of conditions, but not the stronger: thus, it is not locally con-
nected although it is essential (i.e. F has a left adjoint) and the inverse image F preserves
exponentials. In fact, F will be full and faithful and U will have a right adjoint, i.e. our
geometric morphism is local ; moreover, the left adjoint of F will preserve finite products,
so that F even exhibits S as an exponential ideal in E .

2. Preliminaries

A geometric morphism F ⊣ U : E → S is called locally connected just when F has a left
adjoint L which is fibered or indexed over S. A succinct way of expressing this is as the
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requirement that
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as discussed, for example, in [BP80, Jo02, Str21].
When I (and thus also FI) is a terminal object, this condition boils down to the

requirement that L ⊣ F validates Frobenius reciprocity, i.e. that for all I ∈ S and A ∈ E
the canonical map ⟨π̂1, Lπ2⟩ : L(FI ×A) → I ×LA is an isomorphism. One easily checks
that local connectedness is equivalent to Frobenius reciprocity holding not only for the
adjunction L ⊣ F itself, but also for each adjunction on slices LI = εI ◦ L/FI ⊣ F/I = FI

(where εI is the adjunction counit at I). Furthermore, by [Jo02, Lemma A.1.5.8] an
adjunction between cartesian closed categories validates Frobenius reciprocity if and only
if its right adjoint preserves exponentials.

In fact, for a geometric morphism F ⊣ U : E → S the following conditions are equiva-
lent:

(i) F ⊣ U is locally connected;

(ii) F preserves dependent products (i.e. right adjoints to pullback functors);

(iii) F/I preserves exponentials for all I ∈ S,

as formulated in [Jo02, Proposition C3.3.1].
Some of the notions and remarks above extend to finitely complete categories. We

call an adjunction L ⊣ F : A → B between finitely complete categories stably Frobenius
when it validates the condition in diagram (1). Stably Frobenius adjunctions with full
and faithful right adjoint F are sometimes called semi-left-exact reflections [CHK]; they
are reflections whose left adjoint preserves pullbacks along morphisms in the image of F .

Further, if A and B are locally cartesian closed then by [Jo02, Lemma A1.5.8] an
adjunction L ⊣ F : A → B is stably Frobenius if and only if condition (iii) above holds,
i.e. all slices F/I preserve exponentials. In fact, in this case we can say slightly more; F
not only preserves exponentials but creates them:

2.1. Lemma. If L ⊣ F : A → B is a semi-left-exact reflection between finitely complete
categories, and B is locally cartesian closed, then so too is A.

Proof. This is [GL12, Lemma 4.3].

For a reflection L ⊣ F : A → B, a stronger condition than Frobenius reciprocity is the
requirement that L preserve all finite products. If B is cartesian closed then, by [Jo02,
Proposition A4.3.1], L preserve all finite products just when the subcategory determined
by F is (not only exponential-closed but) an exponential ideal. The “stable” version of
this condition is that L preserves all pullbacks over objects in the image of F ; in [CHK]
this condition was called having stable units.
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It has been shown in Prop. 10.3 of [LM15] that for essential connected geometric
morphisms F ⊣ U : E → S the left adjoint L of F has stable units if and only F ⊣ U is
locally connected and L preserves binary products.

As shown in [Jo11, Proposition 2.7] if L ⊣ F ⊣ U ⊣ R : S → E with F (and thus
also R) full and faithful then S is an exponential ideal in E (via F ) whenever F pre-
serves exponentials and all components of the canonical transformation θ : U → L are
epimorphic. Here, as in [Jo11, LM15] θA : UA → LA is the unique map whose image
under F is ηA ◦ εA : FUA → A → FLA. As also shown in [Jo11], for a locally connected,
hyperconnected and local geometric morphism F ⊣ U : E → S, the left adjoint L of F
necessarily preserves finite products.

3. The counterexample

Any functor L : B → A between small categories gives rise to a geometric morphism
L∗ ⊣ L∗ : B̂ → Â between presheaf categories, where L∗ and L∗ are restriction and right
Kan extension along L. This geometric morphism is always essential, i.e., the inverse
image has a left adjoint L!, given by left Kan extension along L. If L has a fully faithful
right adjoint L ⊣ F : A → B, then our geometric morphism is in fact local, i.e., its inverse
image is fully faithful and its direct image has a right adjoint. Indeed, since L ⊣ F we
have L∗ ⊣ F∗; and since right Kan extension along a fully faithful functor is fully faithful,
we have F∗ fully faithful, which, since L∗ ⊣ L∗ ⊣ F∗, implies also that L∗ is fully faithful.

3.1. Lemma. For reflections L ⊣ F : A → B between small finitely complete categories
the following assertions hold.

(i) L∗ is fully faithful;

(ii) If L preserves finite products, then so does L!, so that L∗ exhibits Â as an exponential

ideal in B̂;
(iii) If L∗ ⊣ L∗ is locally connected then L ⊣ F is semi-left-exact.

Proof. We just proved (i). For (ii), since L preserves finite products, L! preserves finite
products of representables. Since every presheaf is a colimit of representables, and ×
preserves colimits in each variable, it follows that L! preserves finite products.

Finally, for (iii), to say that L∗ ⊣ L∗ is locally connected is to say that L! ⊣ L∗ is stably
Frobenius. Since L! and L∗ ∼= F! preserve representable objects, the adjunction L ⊣ F
is also stably Frobenius; and since F by assumption is full and faithful, the adjunction
L ⊣ F is in fact semi-left-exact.

From Lemmas 2.1 and 3.1 we immediately obtain:

3.2. Theorem. Consider a reflection L ⊣ F : A → B between small finitely complete
categories for which:

� L preserves finite products;
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� B is locally cartesian closed;

� A is not locally cartesian closed.

The geometric morphism L∗ ⊣ L∗ : B̂ → Â is essential and local but not locally connected,
i.e. L∗ does not preserve dependent products, although the left adjoint L! of L

∗ preserves
finite products, i.e. the full subcategory of B̂ given by the image of Â under L∗ is an
exponential ideal.

To complete the construction of our counterexample, it thus suffices to find a reflection
L ⊣ F : A → B with the properties listed above. In fact, we give two examples of quite
different flavour.

3.3. Example. In [GL12] the authors consider the following situation. Let B be a small
category equivalent to the category of finite reflexive graphs and morphisms between them,
and let F : A → B be the inclusion of the full subcategory of finite preorders. Example 3.9
of loc. cit. shows that A is an exponential ideal in B, so that L preserves finite products.
Of course, as a category of finite presheaves, the category B is locally cartesian closed;
however, as also noted in loc. cit., the category A is not so. So by the corollary above,
the geometric morphism L∗ ⊣ L∗ is essential and local, with inverse image giving rise to
an exponential ideal, but is not locally connected.

3.4. Example. A further counterexample arises from realizability models of dependent
type theories as studied in [Str91]. For our purposes we may restrict to the case where
the underlying partial combinatory algebra is the First Kleene Algebra corresponding to
the standard notion of computation on natural numbers.

For B one takes the category of modest sets and for A the full reflective subcategory
on ¬¬-closed subobjects of powers of N , the natural numbers object of B. The category
B is locally cartesian closed and A forms a full reflective subcategory of B which is an
exponential ideal since it is a model of the Calculus of Constructions as verified in Chapter
2 of [Str91]. Moreover, as follows from (the proof of) Theorem 2 in the Appendix of [Str91],
the category A is not a sub-locally-cartesian-closed-category of B.

For sake of completeness we describe the counterexample explicitly but refer the reader
for its verification to loc.cit. Let I = NN and A be the ¬¬-closed subobject of NN

consisting of those f with f(0) ≤ 1 and f(0) = 0 if and only if f(n + 1) = 0 for all n.
Let g : A → I send f to λn.f(n + 1) and h : B → A be the projection π : A × N → A.
Obviously, both g and h are maps in A but the domain of the dependent products Πgh
taken in B is not isomorphic to an object in A as can be shown using the Kreisel-Lacombe-
Shoenfield Theorem well known from computability theory.

Note that in both examples the geometric morphism L∗ ⊣ L∗ is not hyperconnected
since L∗ is not full on subobjects. The reason for this is that we can find sieves S on objects
FA ∈ B which contain morphisms u : B → FA whose reflection FLu : FLB → FA is not
in S. In [HR20] one finds an example of an essential hyperconnected and local geometric
morphism which, however, fails to be locally connected. Though their counterexample
and ours are quite different in nature, together they seem to suggest that an essential
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hyperconnected and local geometric morphism need not be locally connected even if its
inverse image part is an exponential ideal. This would provide a (negative) answer to the
question raised immediately after [LM15, Corollary 10.4].

A positive answer to this question would mean that the inverse image part of a hyper-
connected and local geometric morphism necessarily preserves dependent products when-
ever it preserves exponentials. This, however, is most unlikely since it would mean that
dependent functions spaces are definable in first order intuitionistic logic from ordinary
function spaces.
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[BP80] M. Barr, R. Paré Molecular Toposes Journal of Pure and Applied Algebra,
17(2):127-152, 1980.
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