1. Find the regions in the xy plane where the equation
\[(1 + x) u_{xx} + 2xy u_{xy} - y^2 u_{yy} = 0\]
is elliptic, hyperbolic or parabolic; sketch the regions.

2. Find the general solution $u = u(x, y)$ of the following equations:
 (i) $u_{xx} - 4u_{xy} + 3u_{yy} = 0$, (ii) $u_{xx} - 4u_{xy} + 4u_{yy} = 0$.

3. Consider the second order linear PDE

 \[a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + a_1u_x + a_2u_y + a_0u = 0,\]
 where $a_{11}, a_{12}, a_{22}, a_1, a_2$ and a_0 are constants. In lectures it was shown that when this
 PDE is elliptic, a suitable linear transformation of the independent variables transforms
 the PDE to the form

 \[u_{xx} + u_{yy} + \text{lower order terms} = 0.\]
 Show that when the PDE is hyperbolic or parabolic, suitable linear transformations of
 the independent variables transform the PDE to the forms
 \[u_{xx} - u_{yy} + \text{lower order terms} = 0\]
 or
 \[u_{xx} + \text{lower order terms} = 0,\]
 respectively.

4. Use the method of separation of variables to find the solution $u = u(x, t)$ to the wave
 equation

 \[u_{tt} = c^2 u_{xx}, \quad 0 < x < l, \ t \geq 0,\]
 subject to the boundary conditions

 \[u(0, t) = u(l, t) = 0,\]
 and the initial conditions
 \[u(x, 0) = \sin \frac{\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l}, \quad u_t(x, 0) = 0.\]
 (c and l are fixed positive constants.)

5. Use the method of separation of variables to find the solution $u = u(x, t)$ to the heat
 equation

 \[u_t = ku_{xx}, \quad 0 < x < l, \ t \geq 0,\]
 subject to the boundary conditions

 \[u(0, t) = u(l, t) = 0,\]
 and the initial condition
 \[u(x, 0) = x (l^2 - x^2).\]
 (k and l are fixed positive constants.)