1. Let \(n \) be a positive integer and subdivide the interval \([0, 1]\) into \(n \) subintervals \([x_0, x_1], [x_1, x_2], \ldots, [x_{n-2}, x_{n-1}], [x_{n-1}, x_n]\) of equal width \(h = n^{-1} \), where \(x_r = rh \) \((0 \leq r \leq n)\).

Let \(y_r = y(x_r) \) denote the value of the function \(y(x) \) at the grid point \(x_r \). Let

\[
f(x) = \begin{cases}
1 + x - e^x \Big/ x, & 0 < x \leq 1, \\
0, & x = 0.
\end{cases}
\]

Note that \(f \) is continuous at \(x = 0 \): \(\lim_{x \to 0} f(x) = 0 \).

(a) Consider the integral equation

\[
y(x) = f(x) + \int_0^1 e^{xt}y(t) \, dt, \quad 0 \leq x \leq 1.
\]

Check that the exact solution to the integral equation is the constant function

\[
y_{\text{exact}}(x) = 1, \quad 0 \leq x \leq 1.
\]

Use the results of lectures that gives the trapezoidal rule approximation for the solution to the integral equation in the form of a matrix equation

\[
y = f + hADy
\]

where \(y = (y_0, y_1, \ldots, y_{n-1}, y_n)^t \), \(f \) is a suitable vector, \(D \) is a diagonal matrix with components \(\left(\frac{1}{2}, 1, 1, \ldots, 1, 1, \frac{1}{2} \right) \) and \(A \) is a suitable \((n + 1)\) by \((n + 1)\) matrix.

(b) Use a MATLAB program to generate the approximate solution to the integral equation based upon (2), for arbitrary values of the parameter \(n \). Plot the approximate solution and exact solution for values of \(n \) equal to 4, 8 and 16, calculating in each case

\[
\max_{0 \leq r \leq n} |y_{\text{exact}}(x_r) - y_r|.
\]

(c) Consider the integral equation

\[
\int_0^1 e^{xt}y(t) \, dt = 1 - f(x), \quad 0 \leq x \leq 1
\]

Check that the exact solution to the integral equation is the constant function

\[
y_{\text{exact}}(x) = 1, \quad 0 \leq x \leq 1.
\]

The trapezoidal rule approximation developed in part (a) for the matrix equation solution to the integral equation now takes form

\[
hADy = f_1
\]
where \(y \) and \(A \) are as defined above, and \(f_1 \) is a suitable vector. Modify the MATLAB program developed in part (b) to generate the approximate solution to the integral equation based upon (3), for arbitrary values of the parameter \(n \). Plot the approximate solution and exact solution for values of \(n \) equal to 4, 8 and 16, calculating in each case

\[
\max_{0 \leq r \leq n} |y_{\text{exact}}(x_r) - y_r|.
\]

(d) Comment on the apparent differences between the two integral equations.

2. (a) Compute the Legendre polynomials \(P_n(x) \) of degrees 0, 1, \ldots, 7 in the interval \(-1 \leq x \leq 1\) using the recursion formula

\[
(n + 1)P_{n+1}(x) - x(2n + 1)P_n(x) + nP_{n-1}(x) = 0
\]

and the starting values \(P_0(x) = 1, P_1(x) = x \). [Computationally it may be convenient to use a vector \(x = (-1 : 0.01 : 1) \) and store the values of the polynomials in a matrix \(P(n, x) \).]

Plot the polynomials of degree 0, 1, \ldots, 4 as functions of \(x \) on one figure and those of degree 5, 6 and 7 on another figure.

Verify that your computed values of the Legendre polynomials \(P_n(x) \) are in agreement with the theory:

\[
P_n(1) = 1, \quad P_n(-1) = (-1)^n, \quad P_{2n+1}(0) = 0, \quad P_{2n}(0) \neq 0;
\]

verify that your computed polynomial \(P_n(x) \) of degree \(n \) has \(n \) zeros in the interval \(-1 \leq x \leq 1\).

(b) Use the same recursion formula, but with the starting values

\[
Q_0(x) = \frac{1}{2} \log \frac{1 + x}{1 - x}, \quad Q_1(x) = x \frac{1}{2} \log \frac{1 + x}{1 - x} - 1,
\]

to compute the Legendre functions \(Q_n(x) \) of degrees 0, 1, \ldots, 5 in the interval \(-0.95 \leq x \leq 0.95\). Plot them on two figures as functions of \(x \). [Again, it is convenient to define \(x \) as a vector \(x = (-0.95 : 0.01 : 0.95) \) and store the values of \(Q_n(x) \) as a matrix \(Q(n, x) \).]