(1) For each of the following functions \(f \), first write down the derivative of \(f \) at \(x_0 \), \(f'(x_0) \), then calculate the slope of the tangent to the graph of \(f \) at \((1, f(1)) \) and check it by sketching the graph of \(f \) and drawing the tangent line at \((1, f(1)) \).

(a) \(f(x) = x^4 \)
(b) \(f(x) = 2x^{1/2} \)
(c) \(f(x) = (x-1)^2 \).

(2) Find where the tangent lines to the graph of \(y = x^2 \) through \((-1,1)\) and \((3,9)\) intersect. Set this up as simultaneous linear equations and use matrix inversion to solve it.

(3) The **normal line** to a curve \(C \) at a point \(P \) is defined to be that line which passes through \(P \) and is perpendicular to the tangent line to \(C \) at \(P \). Where else does the normal line to the parabola \(y = x - x^2 \) at the point \((1,0)\) intersect the parabola?

(4) Suppose that \(\tan \alpha = -\sqrt{3} \) and \(\alpha \) is in the second (top left) quadrant, find \(\cos \alpha \).

(5) When viewed from a distance, the angle of elevation to the top of a radio antenna is \(\pi/6 \) radians. After the observer moves 100 metres closer to the antenna the angle of elevation is \(\pi/4 \) radians. Let \(h \) be the height of the antenna (in metres) and \(x \) the distance of the first observation from the base of the antenna. Then \(\tan(\pi/6) = h/x \) and \(\tan(\pi/4) = h/(x-100) \). Find the height of the antenna.

(6) For each of the following equations, find all the solutions \(\theta \) with \(0 \leq \theta < 2\pi \).

(a) \(\tan \theta = -1 \),
(b) \(\cos \theta = -\sqrt{3}/2 \).

(7) Verify each of the following identities:

(a) \(\sin x \cot x \sec x = 1 \),
(b) \(\frac{16 \sin^2 x - 1}{4 \sin x + 1} = 4 \sin x - 1 \),
(c) \(\frac{\sin^2 x - 3 \sin x + 2}{\sin x - 1} = \sin x - 2 \),