1. (a) Do you think it is possible to have a vector space with exactly two vectors in it? Explain.
(b) Do you think that it is possible for a vector space to have two different zero vectors? That is, is it possible to have two different vectors \(\mathbf{0}_1 \) and \(\mathbf{0}_2 \) such that they both satisfy the vector space axioms?

2. Let \(f = \cos^2 x \) and \(g = \sin^2 x \). Which of the following lie in the space spanned by \(f \) and \(g \)?
 (a) \(\cos 2x \)
 (b) \(3 + x^2 \)
 (c) \(1 \)
 (d) \(\sin x \)
 (e) \(0 \)

3. Let \(P_2 \) be the vector space of polynomials of degree less than or equal to 2. Determine whether or not the following polynomials span \(P_2 \).
 \[p_1 = 1 - x + 2x^2, \quad p_2 = 3 + x, \quad p_3 = 5 - x + 4x^2, \quad p_4 = -2 - 2x + 2x^2 \]

4. Which of the following sets of vectors \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \) in \(\mathbb{R}^n \) are subspaces of \(\mathbb{R}^n \)?
 (a) All \(\mathbf{x} \) such that \(x_1 \geq 0 \).
 (b) All \(\mathbf{x} \) such that \(x_2 \) is rational.

5. Let the set \(F \) be all functions of the form \(f : \mathbb{R} \to \mathbb{R} \) with the usual meanings of addition of functions and multiplication by scalars. Which of the following sets are subspaces of \(F \)?
 (a) The set of functions \(g \) such that \(g(x^2) = g(x)^2 \).
 (b) The set of functions \(g \) such that \(g(0) = g(1) \).
 (c) The set of all polynomials of degree exactly equal to 2.
 (d) The set of all functions of the form \(k_1 + k_2 \sin x \), where \(k_1 \) and \(k_2 \) are real numbers.

6. Show that the solution vectors of a consistent nonhomogeneous system of \(m \) linear equations in \(n \) unknowns do not form a subspace of \(\mathbb{R}^n \).

7. Is the vector \((3, -1, 0, -1)\) in the space spanned by the vectors \((2, -1, 3, 2), (-1, 1, 1, -3), \) and \((1, 1, 9, -5)\)?

8. Explain why it is not possible for \(\sum_{n=1}^{\infty} \frac{1}{5 + 2^{-n}} \) to be convergent.

9. Suppose that a series \(\sum a_n \) has positive terms and its partial sums satisfy the inequality \(s_n \leq 1000 \) for all \(n \). Explain why \(\sum a_n \) must be convergent.

10. Does \(\sum_{n=0}^{\infty} ne^{-n^2} \) converge or diverge? Consider the partial sums, and the laws of logarithms.

11. In this problem, you will justify the integral test. Suppose \(a \geq 0 \) and \(f(x) \) is a decreasing positive function, defined for all \(x \geq a \). Let \(a_n = f(n) \).
 (a) Suppose \(\int_{a}^{\infty} f(x) \, dx \) converges. By considering rectangles under the graph of \(f \), show that \(\sum a_n \) converges.
 (b) Suppose \(\int_{a}^{\infty} f(x) \, dx \) diverges. By considering rectangles above the graph of \(f \), show that \(\sum a_n \) diverges.

12. Does \(\sum_{n=0}^{\infty} ne^{-n^2} \) converge or diverge?
13. You will show that the sequence

\[t_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \log n \]

has a limit, which is called the Euler constant, \(\gamma \). Incidentally, it is not known whether \(\gamma \) is rational or irrational.

(a) Figure 1 shows a graph of \(y = f(x) = 1/x \). To the figure, add the left hand Riemann sums from \(x = 1 \) to \(x = n \). Interpret \(t_n \) as an area to show that \(t_n > 0 \) for all \(n \).

(b) Interpret

\[t_n - t_{n+1} = (\log(n+1) - \log n) - \frac{1}{n+1} \]

as a difference of areas to show that \(t_n - t_{n+1} > 0 \).

(c) What can you conclude?

![Figure 1: Graph of \(y = f(x) = 1/x \)]