1. Draw a contour map for each function, showing several level curves.
 (a) \(f(x, y) = x^2 + y^2 \)
 (b) \(f(x, y) = \frac{x}{y} \)
 (c) \(f(x, y) = \sqrt{x + y} \)

2. HH, page 582 q10 and page 583 q17 (Contour diagrams)

3. Compare the contour maps of the functions \(f(x, y) = x^2 + 9y^2 \) and \(g(x, y) = \sqrt{36 - 9x^2 - 4y^2} \). As an additional exercise, sketch the domain of \(g \).

4. HH page 601 q22 & 23

5. Two economics researchers, Charles Cobb and Paul Douglas, developed a model of the production output \(P \) for the American economy as a function of the labour \(L \) and the amount of capital invested \(K \). The function they used is
 \[
 P = f(L, K) = bL^\alpha K^{1-\alpha}
 \]
 where \(P \) is the monetary value of all goods produced in one year, \(L \) is the amount of labour measured in total person hours worked in one year, and \(K \) is the capital invested in dollars and \(b \) is a constant.

 Show that for \(b = 1.01 \) and \(\alpha = 0.75 \) then the production doubles if both the amount of labour and the capital investment doubles. Is this also true for general \(b \) and \(\alpha \)?

6. Evaluate the limit or explain why it does not exist.
 (a) \[
 \lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}
 \]
 (b) \[
 \lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + y^2}
 \]
 (c) \[
 \lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{x^2 + y^2}
 \]
 (d) \[
 \lim_{(x,y)\to(0,0)} \frac{xy + 1}{x^2 + y^2 + 1}
 \]

7. The sales of a product, \(S = f(p, a) \) is a function of the price, \(p \) of the product (in dollars per item) and the amount of advertising, \(a \), in thousands of dollars.
 (a) Do you expect \(f_p \) to be positive or negative? Why?
 (b) Explain the meaning of \(f_a(8, 12) = 150 \) in terms of sales.

8. HH page 645 q13

9. HH page 646 Q17

10. Let \(f(x, y) = \frac{x + y}{1 + x^2} \). Find the equation of the tangent plane and the normal line at \((1, -2)\). Find the directional derivative at \((1, -2)\) in the direction of \((-1, 4)\).
11. Prove \[\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \]
by using the principle of mathematical induction. Also try to prove it directly by summing the series, using the fact \[\frac{1}{3\cdot4} = \frac{1}{3} - \frac{1}{4}. \]

12. Prove \[\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n} \] by using the principle of mathematical induction. (Hence the sum \[\frac{1}{1} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \] diverges as \(n \to \infty \).)

13. Use the principle of mathematical induction to show that \[\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2 \]

14. Let \(a_n = \sum_{k=0}^{n-1} \frac{1}{k!} \) and \(b_n = 1 + \sum_{k=0}^{n} \frac{1}{2^k} \).
 (a) Explain why \((a_n) \) is an increasing sequence.
 (b) Explain why \(a_n < b_n \) for \(n \in \mathbb{N} \).
 (c) Find a closed expression for \(b_n \). Hint: think geometric series.
 (d) Explain why \((a_n) \) is bounded and give a brief justification of why it converges. What does \((a_n) \) converge to? (You will need to recognize this famous number rather than work it out.)

15. Find a real sequence \(x_n \) that satisfies the following conditions simultaneously:
 (a) \(0 < x_n < 1 \) for every \(n \in \mathbb{N} \);
 (b) \(x_n \neq \frac{1}{2} \) for every \(n \in \mathbb{N} \) and;
 (c) \(x_n \to \frac{1}{3} \) as \(n \to \infty \).

16. You will now prove that if a sequence \((a_n) \) converges to a limit, then the limit is unique. Assume that \(s_n \to a \) as \(n \to \infty \) and also \(s_n \to b \) as \(n \to \infty \). First of all, say what these two convergence statements say in terms of the \(\varepsilon-N \) definition. Then consider \(|a-b|\) and use the identity \(a-b = a - s_n + s_n - b \).

17. Let \(a_1 = 2 \) and \(a_{n+1} = \frac{1}{3-a_n} \).
 (a) Work out the first few terms of \((a_n) \).
 (b) Show that \(0 < a_n \leq 2 \). Use the principle of mathematical induction (or otherwise). Can you do any better and show \(\frac{1}{3} < a_n \leq 2? \)
 (c) Show that \((a_n) \) is decreasing. Use the principle of mathematical induction and consider \(\frac{a_{n+1}}{a_n} \).
 (d) Explain why \((a_n) \) converges to a limit. Can you make a conjecture for the limit?
 (e) Use the arithmetic of limits to evaluate the limit of \((a_n) \).

18. Find the limit of the sequences or explain why the limit doesn’t exist. Use whatever methods you feel like but provide justification.
 (a) \(2 + \sin \frac{n\pi}{2} \)
 (b) \(2 + \frac{\cos n\pi}{n} \)
 (c) \(\frac{\sqrt{n}}{1+\sqrt{n}} \)
 (d) \(\frac{1+2+3+\ldots+n}{n^2} \)