1. Determine whether or not the following series converge.

 (a) \[\sum_{n=1}^{\infty} \frac{n}{n^3 + 1} \]

 (b) \[\sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^n \]

 (c) \[\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \]

 (d) \[\sum_{n=1}^{\infty} \frac{n^n}{(2n)!} \]

 (e) \[\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!} \]

2. You will show that the sequence

 \[t_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \log n \]

 has a limit, which is called the Euler constant, \(\gamma \). Incidentally, it is not known whether \(\gamma \) is rational or irrational.

 (a) Figure 1 shows a graph of \(y = f(x) = 1/x \). To the figure, add the left hand Riemann sums from \(x = 1 \) to \(x = n \). Interpret \(t_n \) as an area to show that \(t_n > 0 \) for all \(n \).

 (b) Interpret

 \[t_n - t_{n+1} = (\log(n+1) - \log n) - \frac{1}{n+1} \]

 as a difference of areas to show that \(t_n - t_{n+1} > 0 \).

 (c) What can you conclude?

 ![Figure 1: Graph of \(y = f(x) = 1/x \) with left hand Riemann sums added](image)
3. You will show that
\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log 2 \]

Let \(h_n \) and \(s_n \) be the partial sums of the harmonic and alternating harmonic series.

(a) Show that \(s_{2n} = h_{2n} - h_n \).

(b) From question 2 we have
\[h_n - \log n \to \gamma \quad \text{as} \quad n \to \infty \]

and therefore
\[h_{2n} - \log 2n \to \gamma \quad \text{as} \quad n \to \infty \]

Use these facts together with part (3a) to show that \(s_{2n} \to \log 2 \) as \(n \to \infty \).

4. Let the set \(F \) be all functions of the form \(f : \mathbb{R} \to \mathbb{R} \) with the usual meanings of addition of functions and multiplication by scalars. Which of the following sets are subspaces of \(F \)?

(a) The set of all functions \(y \) that satisfy the differential equation \(2 \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + y = 0 \).

(b) The set of functions \(g \) which satisfy \(f \neq 0 \).

5. Let \(M_{n \times n} \) be the vector space of all \(n \times n \) matrices. Which of the following are subspaces?

(a) All symmetric \(n \times n \) matrices. If so, what is a set of matrices which span this subspace for \(n = 3 \)?

(b) All invertible \(n \times n \) matrices.

(c) All \(2 \times 2 \) matrices \(A \) such that \(A^2 = A \).

6. Given that \(\{ \tilde{v}_1, \tilde{v}_2, \tilde{v}_3 \} \) are linearly independent set of vectors in \(\mathbb{R}^3 \), explain whether or not
\[\{ \tilde{v}_1 + \tilde{v}_2 + \tilde{v}_3, \tilde{v}_1 + 2\tilde{v}_2 + 3\tilde{v}_3, \tilde{v}_1 - \tilde{v}_2 - 2\tilde{v}_3 \} \]

form a linearly independent set.

7. Let \((a, b)\) and \((c, d)\) be two elements of \(\mathbb{R}^2 \). Show that if \(ad - bc = 0 \) then they are linearly dependent, and that if \(ad - bc \neq 0 \) then they are linearly independent.

8. Prove that the functions \(e^x \) and \(xe^x \) are linearly independent. Hint: consider the equation that they must satisfy if they are to be linearly dependent, differentiate it to obtain a second equation and ponder.

9. Are the vectors
\[\tilde{v}_1 = (1, 1, 2, 4) \]
\[\tilde{v}_2 = (2, -1, -5, 2) \]
\[\tilde{v}_3 = (1, -1, -4, 0) \]
\[\tilde{v}_4 = (2, 1, 1, 6) \]

linearly independent in \(\mathbb{R}^4 \)? Find a basis for the subspace \(V = \text{span}\{ \tilde{v}_1, \tilde{v}_2, \tilde{v}_3, \tilde{v}_4 \} \).

10. Find a basis for the subspace \(V \) of \(\mathbb{R}^5 \) defined by
\[V = \{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 3x_2 \text{ and } x_3 = 7x_4 \} \]