1. Let $u(x, y) = \frac{1}{2}x^2 - \frac{1}{2}x^2y^2 + 4y^2$.

(a) If $x = t$ and $y = f(t)$ then find the total derivative of u with respect to t. That is, find $\frac{du}{dt}$.

(b) If $x = s^2t$ and $y = t^2 + 3st$ then find $\frac{du}{ds}$ and $\frac{du}{dt}$.

2. **Theorem:** Suppose f is a differentiable function of two variables. Then the maximum value of the directional derivative $D_u f(x)$ is $|f'(x)|$ and it occurs when u has the same direction as the gradient vector $f'(x)$.

(a) Prove the theorem just stated. Hint: recall the definition of $D_u f$ as well as the definition of the dot product given in Tutorial 1.

(b) Hence find the direction that $g(x, y) = x^2e^y$ is changing the fastest at the point $(1, 0)$. What is the maximum rate of change?

(c) Find the equation of the tangent plane and the normal line to $g(x, y)$ from part (2b) at the point $(1, 0)$.

3. Let $f(x, y) = x^3 - 3xy^2$. Find all the critical points. Can you classify them? Explain. Show that the fibre of $f(x, y)$ over $\alpha = 0$ consists of three lines intersecting at the origin. Show that $f(x, y)$ alternates from positive to negative in the regions defined by the lines. Sketch a contour diagram for f near $(0, 0)$. Hint: look at the fibres over $\alpha = \pm 1$ and ± 2.

The graph of this function is called a *monkey saddle*.

4. Use the ideas of geometric series to express the number $3.1724724724\ldots$ as a ratio of integers.

5. Using the integral test, show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when $p > 1$ and diverges when $0 < p \leq 1$.

6. Test the following series for convergence or divergence.

(a) $\sum_{n=1}^{\infty} n^2 2^{-n}$

(b) $\sum_{n=1}^{\infty} \frac{1}{n} \cos(n\pi)$

(c) $\sum_{n=1}^{\infty} \frac{3n^2 + n + 1}{n^5 + 1}$

(d) $\sum_{n=1}^{\infty} \frac{1}{(\log n)^3}$

7. Let A be an $n \times n$ matrix with rows $\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_n$. Prove that if $\det A \neq 0$ then $\{\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_n\}$ are linearly independent.

8. (a) Do you think it is possible to have a vector space with exactly two vectors in it? Explain.

(b) Do you think that it is possible for a vector space to have two different zero vectors? That is, is it possible to have two different vectors $\vec{0}_1$ and $\vec{0}_2$ such that they both satisfy the vector space axioms?
9. Express the following as linear combinations of \(p_1 = 2 + x + 4x^2, \) \(p_2 = 1 - x + 3x^2, \) and \(p_3 = 3 + 2x + 5x^2 \).

(a) \(-9 - 7x - 15x^2\) \hspace{1cm} (b) \(6 + 11x + 6x^2\) \hspace{1cm} (c) 0 \hspace{1cm} (d) \(7 + 8x + 9x^2\)

10. Let \(f = \cos^2x \) and \(g = \sin^2x \). Which of the following lie in the space spanned by \(f \) and \(g \)?

(a) \(\cos 2x\) \hspace{1cm} (b) \(3 + x^2\) \hspace{1cm} (c) 1 \hspace{1cm} (d) \(\sin x\) \hspace{1cm} (e) 0

11. Let \(P_2 \) be the vector space of polynomials of degree less than or equal to 2. Determine whether or not the following polynomials span \(P_2 \).

\[p_1 = 1 - x + 2x^2, \quad p_2 = 3 + x, \quad p_3 = 5 - x + 4x^2, \quad p_4 = -2 - 2x + 2x^2 \]

12. Which of the following sets of vectors \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \) in \(\mathbb{R}^n \) are subspaces of \(\mathbb{R}^n \)?

(a) All \(\mathbf{x} \) such that \(x_1 \geq 0 \).

(b) All \(\mathbf{x} \) such that \(x_1x_2 = 0 \).

(c) All \(\mathbf{x} \) such that \(x_2 \) is rational.

13. Let the set \(F \) be all functions of the form \(f : \mathbb{R} \to \mathbb{R} \) with the usual meanings of addition of functions and multiplication by scalars. Which of the following sets are subspaces of \(F \)?

(a) The set of functions \(g \) such that \(g(x^2) = g(x)^2 \).

(b) The set of functions \(g \) such that \(g(0) = g(1) \).

(c) The set of all polynomials of degree exactly equal to 2.

(d) The set of all functions of the form \(k_1 + k_2 \sin x \), where \(k_1 \) and \(k_2 \) are real numbers.

14. Show that the solution vectors of a consistent nonhomogeneous system of \(m \) linear equations in \(n \) unknowns do not form a subspace of \(\mathbb{R}^n \).

15. Recall that the lines through the origin are subspaces of \(\mathbb{R}^2 \). If \(W_1 \) is the line \(y = x \) and \(W_2 \) is the line \(y = -x \), is the union \(W_1 \cup W_2 \) a subspace of \(\mathbb{R}^2 \)? Explain.