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Theorem 3 Every diameter of a hyperbola is an oblique-angled diameter.

Proof The equation of the hyperbola is

X2 y? .

2 p2
Repeating the above argument with this equation produces terms which differ only by an
occasional sign. We leave it to the reader to complete the details.

Reference

1 L. Euler, Sur quelques propriétés des sections coniques qui conviennent a un infinité d’autres lignes
courbes (On some properties shared between conic sections and infinitely many other curves), 1746,
available at http://www.math.dartmouth.edu/ ~ euler/.
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Picture This: From Inscribed Circle
to Pythagorean Proposition

D. G. ROGERS

The Editor of Mathematical Spectrum, in one of his occasional capsules (see reference 1),
recently confronted readers with the following two expressions for the radius r of the inscribed
circle of a right-angled triangle with legs a and b and hypotenuse c:

a+b—c ab
_ F=—
2  a+b+c

A natural response is to try setting these two expressions equal, whence a little algebra reveals
that they are indeed equivalent, subject to the following even more celebrated Pythagorean
relation between a, b, and c:

a? +b% =2 (1)

This algebra is reversible to the extent that, given (1), each of the expressions for r implies the
other. But it might seem rather artificial to go in these directions. However, as we shall see,
the connection between the inscribed circle and the Pythagorean proposition is closer yet.
The two expressions for the radius of the inscribed circle of a right-angled triangle have
a long history, and already, some 17 centuries ago, a Chinese mathematician, Liu Hui
(220-280), gave a neat dissection argument that makes both transparent — an early instance
of a proof without words. First of all, Liu Hui dismembered the right-angled triangle as shown
in figure 1(a). Then, as in figure 1(b), he reassembled the pieces from four copies of the
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Figure 1 Liu Hui’s dissection.
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right-angled triangle into a long rectangle whose sides we recognize to be the perimeter of the
right-angled triangle and the diameter d of the inscribed circle, i.e. a +b 4+ c and d = 2r.
From the alternative way we have placed these pieces in figure 1(c) or, more directly, from the
dissection in figure 1(a), we see that

a+b=c+d, 2

and, since the area of the four right-angled triangles is conserved in the long rectangle,
2ab=(a+b+c)d. (3)
Of course, these are just the equations from reference 1 rewritten in terms of the diameter, rather

than the radius.
Liu Hui’s demonstration comes from an illustrated commentary on a then famous math-

ematical compilation, the Jiu Zhang Suan Shu (conventionally translated as Nine Chapters on

the Mathematical Arts) from perhaps a century and a half earlier. Among the many problems
contained in this work is, to give but one further instance, an early, exemplary version of
Brahmagupta’s problem of the broken bamboo, familiar to readers of Mathematical Spectrum
from reference 2. Unfortunately, in regard to the problem on the inscribed circle of a right-
angled triangle, so far from actually having a proof without words, the illustrative diagrams
have disappeared, although what survives of the text indicates that they were coloured — for
example, yellow for the little square of side r in figure 1(a) and crimson and indigo for the pairs
of triangles. The reconstruction shown in figure 1(b) is standard, with the four small (yellow)
squares grouped in pairs (sometimes with all four together), whereas in figure 1(c) they are
placed so as to make (2) more apparent (with due deference to reference 3, p. 104).

But, now we have figure 1(b), we are free to play as we please with the set of 20 pieces that
go to make up the rectangle, and to explore what other shapes can be obtained from them, much
as in the game of Tangrams. Thus, we have in figure 2 two further rearrangements of this set
of pieces that bring the Pythagorean relation (1) into view, so to say, in silhouette. We see that,

q+v

Figure 2 a2+ b2 = 2.
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Figure 3

by (2), the containing rectangles in figures 2(a) and (b) have equal area. So, the complements
of our set of 20 pieces in these rectangles have equal area, i.e. the unshaded squares of sides a
and b in figure 2(a) and the unshaded square of side ¢ in figure 2(b).

Now, making the rearrangements of the pieces shown in figure 2 is only a matter of
mathematical play, without suggestion that this has any historical basis. In fact, purely as part
of this play, we observe that the selected rearrangements are such that the pieces of figure 1(b)
can be slid with rotations into the positions in figures 2(a) or (b) without turning them over,
as though in a board game. But still we might wonder whether it was within the scope of
Liu Hui, knowing both that he favoured dissection arguments and that he seemed to have
accepted, in combination with them, demonstrations that turn on complementary figures? Liu
Hui discussed the Pythagorean relation (1), but the passage, as it has come down to us, is obscure,
and possibly corrupt, so that it has been a matter of debate what he intended, beyond some kind
of dissection. Several candidates are mentioned in the references below, each with its own
champions.

In a further rearrangement of the 20 pieces in figure 1(b), we can form a frame inside a
square of side a + b, so as to leave a square of side ¢ aligned with it inside the frame, as in
figure 3(a). It is instructive to juxtapose this rearrangement of the pieces with a much more
familiar diagram associated with the Pythagorean proposition, seen recently in Mathematical
Spectrum (see figure 4 of reference 4), and shown again here in figure 3(b) (a version of this
diagram appeared in the logo for the International Congress of Mathematicians (ICM) held in
Peking in 2002 and, indeed, there has been some presumption that it featured in a commentary
from the same century as Liu Hui on another Chinese mathematical classic, the Zhou Bi). We
see that figures 3(a) and (b) share the same underlying rotational symmetry, as suggested by the
dotted lines in figure 3(a); full rotational symmetry can be obtained in figure 3(a) if we break
the convention of not turning pieces over. Moreover, in view of figure 1(a), each outer triangle
in figure 3(b) has the same area as the corresponding L-shaped section of the frame, namely
half the area of a rectangle with sides @ and b. By sweeping the area of the four outer triangles
into the frame, as it were, the inner square of side ¢ is brought into alignment with the outer
square of side a + b.
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Figure4 2ab=(a+c—b)(b+c—a).

Again, this is only a mathematical observation, without any claim to historical foundation.
But, curiously enough, a novel rendition of a passage from the Zhou Bi (see reference 5, p. 786)
does speak of forming a ring of L-shaped trysquares, in conscious departure from the hitherto
generally accepted translation (compare with reference 6, p. 134, n. 37).

The 20 pieces in figure 1(b) can be slid on their imagined board into two more configurations,
as shown juxtaposed in figure 4, where now the pieces are held in acommon containing rectangle
of sides 2a and 2b. Reasoning as earlier with figure 2, we see that the unshaded portion of
this rectangle in figure 4(a) has the same area as the unshaded portion in figure 4(b). Hence,

2ab = Q2a—d)Y2b—d)=(a+c—b)(b+c—a),

where we have made use of (2) for the last equality. While this may seem no more than a minor
variant on (3), both take on greater significance on recalling that, for x = a, b, ¢, the diameter dy
of the escribed circle of the right-angled triangle with legs a and » and hypotenuse ¢ touching
the side x externally and the other two sides produced is given by

d;, =a+c—b, dpy=b+c—a, d.=a+b+ec.

Thus, the same set of 20 tiles can be used to provide dissection demonstrations of four related

results, i.e.
2ab=(a+b+c), 2ab = (a + b — c)d,,

2ab = (b +c —a)d,, 2ab = (a + ¢ — b)dp.

On the other hand, it seems more difficult to establish directly by dissection that the shaded and
unshaded portions of figure 4(b), like those of figure 4(a), have equal area or, equivalently, that

(4)

dd. = dydp,

although, as we see in figures 2 and 4, both sides represent areas equal to 2ab. (It may be of
interest to note that if a triangle with sides a, b, and ¢ has inscribed and escribed circles of
diameters d, d,, dp, and d., then any of the conditions

dd, =2ab,  dydp=2ab,  dd, = d.d
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is sufficient to ensure that the triangle is a right-angled triangle with legs a and b and
hypotenuse c.)

Once again, these are entirely mathematical observations. But it so happens that all four
results in (4) appear in Ce Yuan Hai Jing (conventionally translated as Sea Mirror of Circle
Measurements), a work by Li Ye (1192-1279) that was completed in 1248, so roughly a
millennium after Liu Hui (see reference 7, pp. 43-149, especially figure 11.1). Indeed,
reference 7 presents some 170 problems based on a single diagram in which, in effect, a circle is
inscribed in and escribed to four similar right-angled triangles. Commentators have often been
struck by an apparent duality between problems in this collection. However, tackled by means
of dissections of the sort used by Liu Hui, as with (4), Li Ye’s set of problems loses some of this
mystique: the problems are less difficult than commonly supposed and it is possible to move
between solutions to different problems quite easily. Liu Hui’s commentary on the Jiu Zhang
Suan Shu had been studied intensively, including for official examinations, in the intervening
centuries. But the historical problem is the regard in which Li Ye and his contemporaries may
have viewed these older dissection methods compared with the algebraic ones described in
Ce Yuan Hai Jing and for which it is most noted.

The lack of documentation for figures 2, 3(a), and 4 is not just a matter of the historical
record, since they seem to be missing from more recent mathematical and teaching discussions
too. If truly absent, it would seem strange that such a versatile set of shapes has attracted so
little comment.

Mathematical Spectrum has already carried a general synopsis (see reference 4) of
mathematics from Chinese antiquity. Some popular account of the work of Liu Hui is given in
references 5, 8,9, and 10 (reference 10 goes so far as to reproduce a version of figure 1 in colours
approximating Liu Hui’s own choice). Two works of reference to note are references 3 and 7,
while a more definitive account (see reference 11) of the Jiu Zhang Suan Shu has only recently
appeared in French, supplementing a similar exercise (see reference 12) in English. But none
of these works includes mention of figures 2, 3(a), or 4. A comment of Liu Hui regarding
the way certain algorithms emerge from ‘the same transformation of one particular figure’ has
recently been taken up at length in reference 6. That might sound somewhat akin to the various
deductions made here merely by rearranging one set of 20 tiles in different ways. However,
the figure on which reference 6 focuses is not one of these arrangements, being instead more
closely related to figure 3(b).
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In the thirty years or so since graduation, Douglas Rogers has
travelled widely with his sums. Consequently, he has become
tolerably well used to picking up the pieces, and reassembling
them.

Mathematics in the Classroom

Archimedes and parabolic segments

Twenty two centuries ago, when mathematics was in a state of infancy, Archimedes was able to
make several significant physical and mathematical contributions, which were much ahead of
his time. For example, his analysis of the quadrature of the parabola is really amazing. In one
result, he states that the area S of a parabolic segment is one third of the area of the bounding
triangle T which is formed by a chord of the segment, a tangent to the parabola at one extremity
of the chord, and a line parallel to the axis of the parabola passing through the other extremity
of the chord (see reference 1).

Archimedes exhibited an amazing understanding of the basic concept of limits by demon-
strating that S cannot be less than %T and also that S cannot be greater than %T. Therefore,
he deduced that S = 7. _

Archimedes’ original proof of this proposition is rather long; the interested reader may find
it in reference 1. Here we establish this proposition by using calculus. Consider the parabola
with the equation y = ax? (see figure 1).

The shaded area § in figure 1 is given by

S = area of trapezium AMNB — area bounded by AM, MN, NB, and the parabolic arc
x2
= JMN(AM + BN) —/ ax?*dx
X1
=100 —x)1 + ) — 3a(x3 —x7)
= La(x — x) B0 + x3) — 2(x3 + x2x1 + xD)
= La(xn —x) 0 —x1)?

3
= %a(xz —x1)°.
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Figure 1 Shaded segment S of the parabola y = ax? cut off by the chord AB and the bounding triangle
ABC.

Next,
area AABC = area ABCD — area AABD
= 5(CD)(BD) — 3(AD)(BD)
= 1(AC)(BD).

The tangent to the parabola at B has equation y — y» = 2ax,(x — x2), so C, which is the point
of intersection of the tangent BC and the line AC with the equation x = x;, has y-coordinate

yo 4 2axz(x1 — x2) = 2axyx1 — ax%.
Hence,
area AABC = £(AC)(BD)
= %(ax% — 2axpx1 + ax%)(xz —X1)
= fa(x —x1)°
=38, asrequired.
Reférence

1 http://www.math.ubc.ca/~ cass/archimedes/parabola/.
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