
Pythagoras sheared, Euclid dissected:

Are they cut out for scissors congruence?

E. W. Bowen and D. G. Rogers

Dedicated to the New England Mathematical Association (NEMA),

on the occasion of its fiftieth anniversary (1958–2008)

I have often been surprized that Mathematics, the Quintessence of Truth,

should have found admirers so few and so languid — Frequent considera-

tion and minute scrutiny have at length unravelled the cause — Viz — That,

though Reason is feasted Imagination is starved; whilst Reason is luxuriating

in its proper Paradise, Imagination is wearily travelling on a dreary desart.

To assist Reason by the stimulus of Imagination is the Design of the following

production. S. T. Coleridge [16, p. 7], quoted in [10]

1 The shearing dissection of Cundy and Rollett

Mathematical Models[10], by (Henry) Martyn Cundy (1913–2005) and Arthur Percy
Rollett (1902–1968), appeared from the Clarendon Press in 1951 and quickly es-
tablished itself as a well-loved classic, going through three editions and frequent
reprinting. Both authors were gifted school teachers of long experience who were
to go on to other levels of engagement with mathematics: Rollett as an Inspector
of Schools and, in the year before his death, President of the Mathematical Asso-
ciation; Cundy as a Professor in Malawi. Arthur Rollett had taught at Sevenoaks
School from 1926 (confirmed in position, 1927) until the mid-1940s, following a de-
gree from East London College (later Queen Mary College), University of London
and a brief stint at a county secondary school in Middlesex. Martyn Cundy, after a
distinguished period of study at Cambridge, taking a starred Part III in the Math-
ematical Tripos of 1935 and a Rayleigh Prize two years later, had then opted for
teaching at Sherborne School, instead of continuing with university work at that
stage. While it was Rollett who provided the initial impetus and ideas for the un-
dertaking, Cundy was responsible for its execution as a finished text. Their purpose
was to capture and foster mathematical imagination through the use of models that
gave a true feel for the subject — a purpose they cleverly declared in launching
their Preface with the words of a youthful Samuel Taylor Coleridge (1772–1834),
written to his brother George on 31 March, 1791, that we take anew as our own
epigraph. This quotation is all the more apposite on recalling that the budding poet
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was just two months into his time at Jesus College, Cambridge, and grappling with
his undergraduate studies, of which he told George early that November [16, p. 16]:

We have Mathematical Lectures, once a day — Euclid and Algebra alternately.

I read Mathematics three hours a day — by which means I am always consid-

erably before lectures, which are very good ones.

The materials Cundy and Rollett selected for their chapters are equally “very good
ones”, rebuffing any suggestion that imagination in mathematics need necessarily
be starved in a dreary desert. In particular, early in Chapter 2, on models in plane
geometry, they present the dynamic demonstration of the Pythagorean Proposition
shown in Figure 1 [10, §2.1.4, Fig. 10]. Readers of The Australian Mathematical
Society Gazette have had a recent reminder of this in a review [7, (c)] in 2006 of a
book [7, (b)] on state-of-the-art illustration for mathematical texts. In a familiar
sequence of silent frames, we see the squares on the legs of a right triangle being
sheared into parallelograms, and then dropped down, to be trimmed into rectangles
partitioning the square on the hypotenuse — ‘shear–translate–shear ’. Since areas
are preserved at each step, we conclude that the sum of the squares on the legs is
equal to the square on the hypotenuse, as an assertion about areas. Although this is
little more that a re-presentation of the proof of Elements I.47 in the general form
that appears in the Mathematical Collections of Pappus (c. 290–c. 350), near the
beginning of Book IV, still it makes a pleasing appeal to the imagination (compare
[20, (a) §213]; we consider generalisations in our final Section).

(i) (ii) (iii)

(iv) (v)

Figure 1: Dynamic demonstration, after Hermann von Baravalle, c. 1926

Effective teachers who appreciate the mechanics of a geometrical argument have
long understood how this helps motivate proof, without necessarily being conscious
in this regard of the Erlanger Programm of Felix Klein (1849–1925). To give just
one example bearing on the proof Euclid gives of Elements I.47, at a discussion [24,
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p. 78] of methods of learning geometrical theorems, held in London in 1933, we find
Edith Florence Edwards (1879–1966), Headmistress throughout the 1920s and 30s
of Fairfield High School, Droylsden (founded 1796), pointing out that:

children were helped to remember the construction for proving Pythagoras’

theorem if they were shown that the second triangle was obtained by twisting

the first through a right angle.

It is certainly a point for instructors to keep in mind when covering Euclid’s proof
of I.47. Sybrandt Hanszoon van Harlingen (Cardinael; 1578–1647) seems to hint
at just such a ‘shear–rotate–shear ’ visualisation, using parallelograms rather than
triangles, in a single frame emblazoned on the title page of a problem book from
about 1612, except that angles are marked inconsistently with rotation (see [25,
Fig. 5]). More recemtly, in [5, p. 187], this depiction is unpacked in a sequence of
four unannotated frames, although again perhaps the middle step may not register
as a rotation so obviously as do the shearings on either side. But contemporary
computer-aided printing can bring such an idea to life, in this case as displayed in
[7, (a), Fig. 5, p. 159], more fully and flexibly than was possible even a dozen years
ago, not to mention a lifetime. Now we shall have no excuse for missing the point.

Nonetheless, long before these modern advantages, Hermann von Baravalle (1898–
1973), one of the founding complement of teachers at the original Steiner-Waldorf
school in Stuttgart in the 1920s, devised teaching materials from which a version of
Figure 1 evolved as part of a portfolio of ‘geometry in pictures’ [3, (a)] issued in 1926.
He republished this in more definitive form [3, (b, c)] in the mid-1940s for a new
audience, having emigrated to the USA in 1937. It received a good press, being taken
up by E. T. Bell (1883–1960) in [4] in 1951, as well as by Martin Gardner in [14] in
1964, coming thereby to enjoy wide currency. While Cundy and Rollett, unlike Bell
and Gardner, do not refer to Baravalle by name, it seems plausible that his work also
inspired their use of Figure 1, in which, however, they make the helpful innovation
of reversing the order of the frames, so as to start more naturally with the squares
on the legs of the right triangle. But Baravalle’s standing as a mathematician, and
even as a mathematics educator, is today less recognised, being if anything rather
eclipsed by his contributions to Steiner-Waldorf education more generally — he is
not mentioned in [7, (a, b)] nor, for that matter, in the stories retold in [13, (a), Fig.
17, p. 75; (b), Fig. 9, p. 33], despite his community of outlook with these authors.

Now, having presented Figure 1, Cundy and Rollett make the throw-away obser-
vation that, were this shearing demonstration of Elements I.47 to be encapsulated
by means of a dissection, it would require eight pieces. Readers who have prized
Mathematical Models, especially those of a practical disposition, might be expected
to rise to the challenge implicit in such a remark. So, it has certainly shown staying
power to have survived through three editions and several reprintings. Of course, it
is clear that the dissection of the square on the longer leg can be accomplished in
four pieces to simulate shearing (compare Figure 9). Symmetry might suggest that
the square on the shorter leg can be dissected similarly in another four pieces, for a
total of eight. In some cases, that is true. But there is more to this than meets the
casual eye; and we hope that readers will find a second glance as instructive as we
have.
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2 Dissecting Elements I.35

The dynamic demonstration of Elements I.47 can be caught as it were in silhouette
using three congruent right triangles on a pentagonal board, with one of the right
triangles divided along the altitude perpendicular to the hypotenuse (see Figure 2).
In one setting (Figure 2(ii)) of the four moveable pieces, the squares on the legs are
left vacant, while translating the pieces on the board into a second setting (Figure
2(iii)) reveals the square on the hypotenuse (compare [20, (a) §210], echoed in [20,
(b) §233]). While this approach to I.47 goes back at least to al-Sabi Thâbit ibn
Qurra al-Harrani (836–901), it would seem not to be the sort of dissection that
Cundy and Rollett had in mind. However, Figure 2 does remind us that Euclid, in
working towards the proof of Elements I.47 , did not prove I.35 , that parallelograms
on the same base and between the same parallels have equal area, by dissecting one
parallelogram into pieces that could then be reassembled into a second parallelogram.

(i) board (ii) squares on legs (iii) square on hypotenuse

Figure 2: Equicomplementable shearing

Indeed, one common proof of Elements I.35 , the “window shutter”, shown in Figure
3, resembles Figure 2, in that the demonstration is effected by putting the shutter in
two different positions to leave “open” one or other of the parallelograms. But this
is from the improving hand of some latter-day commentator, and is not the work of
Euclid, For, Euclid’s proof of I.35 has been grist to those, like Proclus Diadochus
(411–485), bent on distinguishing cases.

(i) (ii)

Figure 3: Elements I.35 — the window shutter

As it happens, this is unnecessary here, since Euclid’s proof works quite generally, in
so far as what he does is acceptable in terms of what has gone before in Elements I .
Thus, we have parallelograms ABCD and EBCF , on common base BC and with
A, D, E and F on a line parallel to BC. Without loss of generality, let us agree that,
on reading from left to right along that parallel line, it is A that is encountered first
of all. Then, if the parallelograms are distinct, BE and CD are not parallel, so
meet in some point, G, say. At this juncture in Elements I , all that Euclid has at
his disposal as regards areas is the congruence of triangles. Consequently, Euclid
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offers decompositions of the parallelograms in terms of the juxtaposition (addition)
or cutting off (subtraction) of contiguous triangles:

ABCD = ∆EAB + ∆CBG − ∆DEG

and
EBCF = ∆FDC + ∆CBG − ∆DEG.

The only modification we have made to Euclid’s argument is to write these decom-
positions so as to ensure that an area is always present before it is cut off, to allow for
the possibility that G may not be between the parallel lines (the case traditionally
illustrated; compare Figure 4(i) and (ii)). But triangles ∆EAB and ∆FDC are con-
gruent. So, Euclid concludes from his decompositions that the two parallelograms
are equal in area, as was required to be demonstrated.

A D E F

B C

G

(i)

A FE D

G

B C
(ii)

A E D F

B C
(iii)

D F

B C
(iv)

A E D F

B C

E′

(v)

Figure 4: Elements I.35, 37 — after Euclid

If it still be pressed that something needs to be said separately about the cases
where AD and EF do or do not overlap, then consideration of Elements I.37 ,
that triangles on the same base and between the same parallels have equal area,
helps clarify the picture. For, if AD and EF intersect, as in Figure 4(iii), then the
triangles ∆BCD and ∆BCF , shown in Figure 4(iv), are exactly as envisaged in
I.37 . However, Euclid does not move back to Figure 4(iii), but rather on to Figure
4(v), in which parallelograms ABCD and FBCE

′

, in addition to being on the same
base and between the same parallels, have AB and FE

′

disjoint. So, even if there
are two cases to be distinguished, Euclid is aware that one can be transformed into
the other — of course, the trick here is that triangles ∆FEB, ∆BCF and ∆E

′

FC
are all congruent.

Readers of the Gazette will be attuned by [11, (b)] to the unexpected subtleties to be
found in such fundamental notions as area and volume. One natural approach to area
is by dissection: two regions are said to be equidecomposable if they can be dissected
into the same, finite number of subregions, typically triangles, such that there is a
bijection between the subregions in one dissection and congruent subregions in the
other (the subregions here must clearly be such that congruency itself is well-defined,
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as it is for triangles). A classic result, under the presence of an Archimedean axiom,
such as Euclid introduces later as Definition 4 in Elements V , is that rectilinear
regions have the same area if and only if they are equidecomposable. As in [11, (b) p.
83], this theorem is traditionally attributed to Wolfgang Farkas Bolyai (1775–1856)
and P. Karl Ludwig Gerwien (1779–1858), writing in the early 1830s. But it can be
found in work of William Wallace (1768–1843) up to a quarter of a century earlier,
as well as in a contribution by John Lowry (1768–1850) in 1814 to a question raised
by Wallace (see [18] for recent discussion; that such issues exercised some general, if
non-technical, interest in that period can be seen from the chapter devoted to them
in the popular manual [20, (b) Ch. IX, pp. 93–110] of 1831). In this terminology,
Euclid’s proof of Elements I.35 shows that the parallelograms ABCD and EBCF ,
each with the triangle ∆DEG adjoined, are equidecomposable.

But this, in turn, suggests a second approach to area: two regions are equicomple-
mentable if they can be augmented to equidecomposable regions by adjoining to each
the same finite number of disjoint subregions, such that the subregions augmenting
one region are in one-to-one correspondence with congruent subregions augmenting
the other. Thus, at the risk of making Euclid sound like a character out of Molière,
we can now rephrase I.35 to say that the parallelograms ABCD and EBCF are
equicomplementable, as certified by the decompositions Euclid presents for them in
his proof. Of course, we expect that pairs of regions that are equicomplementable
are also equidecomposable and vice versa. This was confirmed in a more general
context by Jean-Pierre Sydler (1921-1988) in [26]. However, Euclid tends to use
whatever comes most conveniently to hand — in I.45 and, more conspicuously, in
I.47 , he even runs ahead of himself in fusing rectangles with a common side into a
larger rectangle, something he does not cover officially until II.2 .

(i) overlaid tesselations (ii) square (iii) parallelogram

Figure 5: Dissecting a square into a parallelogram

The need for an Archimedean axiom soon makes itself felt in any attempt to imple-
ment Cundy and Rollett’s suggestion to mimic Figure 1 by dissecting a square into
a parallelogram or, more particularly, into a rectangle, of equal area. The challenge
here is to confirm directly that they are indeed equidecomposable, rather than to
infer this, following Euclid, as a consequence of showing that they are equicomple-
mentable. A simple enough method of dissection is by means of tessellations: as
in Figure 5, we overlay a mesh of congruent parallelograms on a uniform square
grid, and then sort out the pieces. But it is immediately clear that the number of
subregions will be determined by how many squares in the grid a given parallelo-
gram straddles. In terms of a right triangle with legs a and b, where a ≤ b, we find
ourselves needing to know that there is an integer n such that na < b ≤ (n + 1)a.
Little surprise then that Euclid went another route in proving Elements I.35 .
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3 A Euclidean dissection for Elements I.47

Thâbit ibn Qurra seems to have had some sense of the distinction made formally
only much later between regions being equidecomposable and their being equicom-
plementable. His demonstration of Elements I.47 caught in Figure 2 is one in which
regions, on the one hand the squares on the legs of a right triangle, and, on the other,
the square on that triangle’s hypotenuse, are shown to be equicomplementable. But
Thâbit ibn Qurra also established that these regions are equidecomposable by means
of the dissection shown in Figure 6, thereby providing an alternative demonstration
of I.47 .

1

2 3

4

5
1

2
3

4

5

1
2

3

4

5

(i) side-by-side (ii) by translations (iii) by rotations

Figure 6: Direct dissection demonstration of Elements I.47

For this direct dissection demonstration of I.47 , as we see in Figure 6(i), the squares
on the legs of a right triangle are aligned side-by-side, with two copies of the right
triangle cut from them. The resulting five pieces (subregions) can then be rearranged
to form the square on the hypotenuse (compare [20, (a) §212]). However, the me-
chanics of this transformation can be viewed in two ways, although some authors
seem to favour one to the exclusion of the other. In one view, as in Figure 6(ii),
the copies of the right triangle are translated across the square on the hypotenuse,
from outside to inside. In the other, as in Figure 6(iii), they are rotated about
opposite corners of the square on the hypotenuse. That the translational version is
minimal in a certain logical sense was shown by (Rudolf Hermann) Hans Brandes
(1883–1965) in a dissertation [6] in 1907 (see [22] for further discussion of this result
and [15] for information on Brandes; the comparable status of the rotational version
and of Thâbit ibn Qurra’s equicomplementability demonstration seems not to have
been investigated).

Heinz Hopf (1894–1971), in a celebrated lecture course [17, p. 64] at Stanford Uni-
versity in 1946, enlarged upon this minimality result. Hopf noted that Euclid’s
own strategy in proving Elements I.47 converted the square on each leg separately
into rectangles having an edge in common that together form the square on the
hypotenuse, but that the dissection in Figure 6 does not respect this Euclidean divi-
sion. Since the theory of equidecomposability covered in Hopf’s lectures guarantees
that the squares on the legs can, in fact, be dissected into rectangles dividing the
square on the hypotenuse after the manner of Euclid, Hopf posed the question [17,
p. 75] of finding such dissections, if possible with a minimal number of pieces.
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(i) dissected parallelogram (ii) uniform trim (iii) dissected rectangle

Figure 7: Trimming parallelogram into rectangle — uniform trim

Leaving aside the issue of minimality, to answer Hopf’s question it is enough to trim
a dissected parallelogram obtained by superimposed tessellations, as in Figure 5,
to produce a rectangle, the simplest trimming cut being the uniform one shown in
Figure 7. Indeed, this is exactly what is adopted by Dionysius Lardner (1793–1859)
in A Treatise on Geometry, and its Application in the Arts [20, (b)], a popular
tract that appeared in 1831 — it is reputedly the first geometry book to bring
paper-folding to the aid of explicating an argument [20, (b) §10]. Lardner had
already shown his expository skill in an edition [20, (a)] of the first six books of
Euclid’s Elements published in 1828 for the use of students in and preparing for the
newly formed University College, London, where he had been appointed foundation
Professor of Natural Philosophy and Astronomy the previous year.

(i) b/a=1 (ii) b/a=3/2 (iii) b/a=5/2

(iv) b/a=1 (v) b/a=3/2 (vi) b/a=5/2

Figure 8: Lardner’s Euclidean dissection for I.47

A merit of this edition is that Lardner provides supplementary observations, includ-
ing, when it comes to Elements I.47 , arguments [20, (a) §§210, 212] on the lines
of both Figure 2 and Figure 6. The former reappears in [20, (b) §233, Figs. 108,
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109]. But, in this more demotic work, he prefaces it with a dissection demonstra-
tion [20, (b) §233, Fig. 107] of I.47 that adheres strictly to the scheme of Euclid’s
proof. For, not only does it respect the division of the square on the hypotenuse
by the perpendicular altitude of the right triangle, but the pieces are rotated into
position, as shown, in some typical cases, in Figures 8(i)–(iii). However, it is easy
to modify these dissections to effect the transformation by translations (see Figures
8(iv)–(vi)).

For a right triangle with legs a and b, where a ≤ b this style of dissection requires
three pieces for each square when a = b, but, if 0 < na < b ≤ (n+1)a, the square on
the shorter legs requires n + 3 pieces, although that on the longer leg still requires
only three pieces. As it happens, Cundy and Rollett, in their version [10, §2.1.4, Fig.
10] of Figure 1, do seem to illustrate a case where n = 2, for which a dissection of
this type uses eight pieces. But that seems to be a happy accident, since, whatever
else Lardner’s dissections do, they do not mimic the shearing action that motivates
Figure 1, so it would not appear to be of the sort Cundy and Rollett meant. To
capture that requires a different trimming cut, to which we now turn.

4 A shearing dissection for Elements I.47

It is apparent, from Figures 1(iii) and 2(iii), that if a square on the hypotenuse of a
right triangle overlaps the triangle and squares placed externally on the legs, then it
cuts off a congruent right triangle from the square on the longer leg. The shearing
of the latter square into the shaded parallelogram in Figure 1(iii) can be simulated
as a dissection by translating this triangle from inside the square, as in Figure 9(i),
to outside, as in Figure 9(ii). The trimming cut needed to convert the parallelogram
to a rectangle passes through both sections of the square to give, in Figure 9(iii),
a dissection of the rectangle from the square in four pieces, as foreshadowed at the
close of Section 1. Thus, this shearing dissection for the square on the longer leg is
effected using one more piece than required for Lardner’s dissections in Figure 8.

(i) shearing (ii) trimming (iii) rectangle

Figure 9: Shearing dissection for square on longer leg

The square placed externally on the shorter leg of the right triangle overlaps the
corresponding sheared parallelogram in a similar right triangle, as can be seen in
Figure 1(iii). The key to implementing a shearing dissection in this case is that the
overlapping region remains intact as a piece in the dissection. Consequently, the
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uniform trim used in Lardner’s dissections is unavailable, and the sheared parallel-
ogram has to be trimmed from the other end. But then the number of regions cut
exhibits a more subtle dependency on the ratio between the legs of the right trian-
gle. For example, considering a right triangle with legs a and b, where a < b ≤ 2a,
Figure 10 indicates that early in this interval and again at the end, the dissection
uses four pieces, while there is a portion of the interval towards the end where this
number rises to five.

a

b

a

b

a

b

(i) b/a=4/3 (ii) b/a=15/8 (iii) b/a=2

Figure 10: Catching the first transition

Naturally, interest now centres on determining where in the interval this transition
in the shearing dissection takes place. To this end, let ∆ABC be the right triangle
with the square ABKH on the hypotenuse AB placed over it, but the square BDEC
on the shorter leg CB placed externally (see Figure 11).

A

B
C

D
E

P

E1 E2

C1 C2

h h

x-h

x

x

y

y

y K J

H

Figure 11: Locating the first transition point

Further, let ∆HKJ be congruent to ∆ABC; and let the square CEE1C1 be congru-
ent to BDEC. Then the largest ratio of the legs CA and CB with 1 < CA/CB < 2
for which the shearing dissection can be effected in only four pieces occurs when,
referring to Figure 11, HK, CJ and C1E1 meet in a point, P , say. In this case,
∆BAC, ∆PCC1 and ∆KPE1 are all similar, so that

CA

CB
=

C1C

C1P
=

E1P

E1K
. (1)
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Thus, in the notation in Figure 11,

y

x
=

x

h
=

x − h

2x − y
, (2)

observing that 2x− y > 0 in the interval under consideration. It follows, on writing
t1 = y/x and eliminating h, that t1 is the root of the cubic equation

t3 − 2t2 + t − 1 = 0, (3)

in the interval 1 < t < 2; indeed, from Figure 10, 4/3 < t1 < 15/8. We conclude
that, for a right triangle with legs a and b, where a < b ≤ 2a, the number of pieces
in the shearing dissection is four when 1 < b/a ≤ t1 or b = 2a and five otherwise.

For a right triangle with legs a and b, where now a < na < b ≤ (n + 1)a, the story
is much the same. In an obvious notation extending that of Figure 11, we have, on
analogy with (1) and (2):

CA

CB
=

CnC

CnP
=

EnP

EnK
;

y

x
=

nx

h
=

x − h

(n + 1)a − b
.

So, in this interval, the shearing dissection has n + 3 pieces when n < b/a ≤ tn or
b/a = n = 1, and n + 4 pieces when tn < b/a < n + 1, where tn is the root of the
cubic equation

t3 − (n + 1)t2 + t − n = 0, (4)

with n < t < n + 1. Moreover, a little algebra reveals that

(tn−1 +1)3 − (n+1)(tn−1 +1)2 +(tn−1 +1)−n = (2tn−1 +1)(tn−1 −n) < 0, n > 1.

So, rather more precisely,
tn−1 + 1 < tn < n + 1;

and n + 1 − tn tends to zero as n increases. As in Figure 10, it is interesting to
probe this convergence by means of right triangles with integer sides. For example,
t2 < 35/12 < 3, but 63/16 < t3. In this spirit, for those who enjoy the number
theory of Pell equations, it may be an amusing exercise to find right triangles with
integer legs a and b = (n + 1)a− 1 giving integer hypotenuse and tn < b/a < n + 1.

b

a

a

A

CB

A

C

B

a b a

b

aba

b

A

C

B

a

a
a

a

a

a

a
a

b-a

b-a

(i) Supergolden (ii) Abu’l-Wafa (iii) Omar Khayyam

Figure 12: Right triangles with special properties

The occurrence of cubic equations in (3) and (4) is a reminder, if any were needed,
of the extensive presence of such equations in geometrical settings, often related to
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right triangles — some other instances appear in [8] and in a further contribution
[9] on the snub-cube from Martyn Cundy in his late eighties. The problem of the
supergolden rectangle in [8] can, for example, be recast as that of finding a right
triangle with legs a and b, where a < b, such that the longer segment cut off the
longer leg by the perpendicular from the foot of the altitude on the hypotenuse is
equal to the shorter leg, as illustrated in Figure 12(i) (compare [8, Fig. 4]). Setting
u = b/a, then, as shown in [8],

u3 − u2 − 1 = 0.

Problems of this sort have a long history. It was another example that moti-
vated Omar Khayyam (1048–1122) to study and classify cubic equations — Omar
Khayyam’s paper is translated in [1], but the late Alpay Özdural (1944–2003) retold
the story of Omar Khayyam’s researches from the perspective of an architectural
historian in an engaging series of articles [21] that explores the possible interplay
between geometer and artisan. The familiar arrangement in Figure 12(ii) of four con-
gruent right triangles right triangles, set internally in a square on their hypotenuses
to form an inner square, is much of a piece with Figures 2 and 6, as yielding yet
another visual demonstration of Elements I.47 . Not only was this known to Moham-
mad Abu’l-Wafa Al-Buzjani (940–998), but he saw how, reflected along the edges of
the containing square, it forms a pleasing geometrical pattern of squares and right
kites that underlies many ancient Arabic designs. Moreover, one way to enhance
this pattern is to extract a right kite from each of the right triangles, as shown in
Figure 12(iii). Omar Khayyam observed that what is required is a right triangle with
hypotenuse equal to the altitude perpendicular to it together with the shorter leg a.
An equivalent condition is that the longer leg b is equal to the shorter leg a together
with the shorter segment cut off the hypotenuse by the perpendicular altitude. He
then deduced, in effect, that the ratio v = b/a satisfies the cubic equation

v3 − 2v2 + 2v − 2v = 0.

But he also sensed that it would not be possible to find such a right triangle by
Euclidean means of straightedge and compasses alone, offering instead a solution as
the intersection of a parabola and a hyperbola. As it happens, solutions to all these
problems leading to cubic equations can be obtained by paper-folding. Construction
methods may, of course, fail, but, as observed in [11, (a) §4], there are more general
results on links between tilings with similar figures and irreducible polynomials with
integer coefficients.

We are pleased to think that Cundy and Rollett would have enjoyed finding that
their proposed shearing dissection for Elements I.47 had both a greater intricacy
and a richer historical resonance than they might have supposed in writing [10],
especially in view of Cundy’s late interest [9] in the cubic

w3 − w2 − w − 1 = 0.

But it remains something of a mystery why they thought it could be accomplished
in eight pieces without further qualification, all the more since earlier in their text
they are alert to constraints in dissecting a triangle into a rectangle (see [10, Figs.
4, 5] and compare [11, (b) p. 82]).
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5 A dynamic approach to the Law of Cosines

We comment briefly on the Law of Cosines — Elements II.12,13 as presented by
Euclid — only because it seems sometimes suggested that the dynamic approach of
Hermann von Baravalle does not carry over to general triangles, just as a similar
question arises with Euclid’s proof of I.47 . Euclid distinguishes the cases of obtuse
angles, in II.12 , and acute angles, in II.13 , because of a predilection in Elements II ,
as manifest in earlier pairings of propositions — II.4 with II.7 , II.5 with II.6 and
II.9 with II.10 — for juxtaposition (addition) of line segments to the exclusion of
overlapping (subtracting) them, in contrast to the treatment of areas in the proof of
I.35 , as discussed in Section 2, where avoiding subtraction would be more difficult.
The question at issue in II.12, 13 is where the foot of the perpendicular from the
vertex containing the angle falls externally or internally on the opposite side of the
triangle. Similarly, in generalising the proof of I.47 , interest centres in the location
of the orthocentre of the triangle. A triangle can have one internal altitude, in
which case the orthocentre lies outside the triangle, as in Figure 13(i), or all three
altitudes internal, meeting therefore inside the triangle, as in Figure 13(ii), with
the right triangle a borderline case in which two of the altitudes become sides and
the orthocentre is the vertex containing the right angle. Expositors [12, 5] tend to
favour an internal orthocentre, as it makes for the more compact diagram, Figure
13(ii). With this generalisation in view, it is only a little more difficult, if somewhat
more elaborate, to provide complementary illustrations, in Figures 13(iii) and (iv),
on which to base corresponding generalisations of the dynamic demonstration in
Figure 1. These latter diagrams have the merit of bringing the yet more general
configuration presented by Pappus into closer focus. But, in point of making this
type of shearing argument for I.48 , the converse of I.47 , such greater elaboration
can be circumvented.

Perhaps Euclid himself is a source of confusion here. Proclus tells us that, not only
is the extension of Elements I.47 offered in VI.31 due to Euclid, but the proof
of I.47 is also original with him. Yet, Euclid conspicuously fails to use his proof
technique to capture II.12, 13 , as well as I.48 in one fell swoop. Instead, so far as
has been traced, the generalisation of Euclid’s proof had to await the appearance, in
1647, of Opus Geometricum [23, Book I, Pt. 2.44, 45], the major work of Gregorius
a Sancto Vincentio (Grégoire de Saint-Vincent; 1584–1667), with another wave of
interest stemming from [20, (a) §214] only in 1828. For some, going back at least
to Petrus Ramus (Pierre de la Ramée; 1515–1572), discrepancies of this sort point
to Elements being a composite work of many hands, not always carefully edited
together or, as argued for example in [2, §15.3], being rewritten in a different order
informed by some other point of view. In particular, much is made of peculiarities
regarding II.12, 13 in [19]. Certainly, a more rudimentary version of II.12, 13 , in
the form of inequalities, can be proved by a simple dissection argument based on
I.47 , in effect giving an alternative proof of I.48 . Euclid may have wanted to point
out, in the proofs he supplies for II.12, 13 , that I.47 was sufficiently powerful to
establish the law of cosines as exact equalities. Moreover, it is not unknown for
instructors to vary their proof techniques for pedagogical reasons.
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Figure 13: General triangles

But looking at Figure 13, the diagrams themselves, while making a simple point,
are more complicated than Euclid needs for his proof, rendering their generality of
questionable advantage. After all, such issues seem much a matter of taste even
today, as seen on juxtaposing [13, (a), p. 65; (b), p. 37] with [2, §16.9, p. 154].

But perhaps the most remarkable extension of the Pythagorean Theorem that

dates back to the days of Greek antiquity is that given by Pappus of Alexandria

at the start of Book IV of his Mathematical Collection. [13]

There is another generalisation of this due to Pappus ... This is trivially true.

I have never seen any application of it. It is what one might call a shallow

generalization. It is so general that it is no longer of any use. [2]
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