Test Four

This is a self-diagnostic test. Each question relates to a worksheet in a series available in the MUMS the WORD series. For example question 4 relates to worksheet 4.4 *Applications of Integration*. If you score 100% on this test and test 3 then we feel you are adequately prepared for your first year mathematics course. For those of you who had trouble with a few of the questions, we recommend working through the appproriate worksheets and associated computer aided learning packages in this series.

- 1. (a) Differentiate $y = \log(3x+2)$
 - (b) Find $\frac{dy}{dx}$ if $y = x^2 \cos x$
- 2. (a) Given the following monotonically increasing function, find an upper and lower limit for the area under the curve between 0 and 4.

x	0	1	2	3	4
g(x)	2	3	5	6.5	7

- (b) Find the area under the curve $y = x^2 + 1$ between x = 1 and x = 3.
- 3. Evaluate the following indefinite integrals:

(a)
$$\int \frac{1}{x} dx$$

(b) $\int \sec^2 x dx$

- 4. (a) Given $\frac{d^2x}{dt^2} = 9$ for all x and when t = 0 we have $\frac{dx}{dt} = 4$ and x = 3. What is x as a function of t?
 - (b) A population P(t) is given by the following formula:

$$P(t) = P(0)e^{kt}$$

If the initial population is 1000, and the growth rate is 0.01, what is the population at t = 100? (You can leave the answer in terms of the natural exponential)

- 5. (a) What is the coefficient of x^2 in the expansion of $(5x 1)^5$?
 - (b) Evaluate $\frac{6!}{4!2!}$.
 - (c) How many 3-digit numbers can be formed from the digits 1,2,3,4,5,6, if repetition of digits are (i) allowed, (ii) not allowed.
- 6. (a) Write out the sum $\sum_{n=1}^{5} n^3$ without using sigma notation. (b) Write the sum $x^2 + 2x^4 + 3x^6 + ... + 10x^{20}$ in sigma notation.

7. Divide
$$6x^3 + x^2 - x + 4$$
 by $x + 1$.

8. (a) Simplify
$$\frac{\sin 4x}{(\cos^2 x - \sin^2 x) \sin x \cos x}$$
.
(b) Find the exact value of $\cos \frac{\pi}{8}$.

9. Sketch $y = 2\sqrt{x-3} + 1$.

10. Let
$$f(x) = \frac{x+1}{x+2}$$
 and $g(x) = \sqrt{x}$.

- (a) Find $(f \circ g)(x)$.
- (b) Find $f^{-1}(x)$.

11. Let $f(x) = \frac{1}{e^x - 3}$.

- (a) Find the largest domain of f.
- (b) Find the inverse of f.

12. Use Mathematical Induction to prove that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

for all $n \in \mathbb{N}$.

Answers to Test Four

1. (a)
$$\frac{3}{3x+2}$$

2. (a) 16.5 and 21.5
3. (a) $\log x + C$
4. (a) $x = \frac{9}{2}t^2 + 4t + 3$
5. (a) -250
(b) 15

6. (a) $1 + 2^3 + 3^3 + 4^3 + 5^3$

- (b) $2x \cos x x^2 \sin x$
- (b) 32/3
- (b) $\tan x + C$
- (b) 1000*e*
- (c) (i) 6^3 (ii) $6 \times 5 \times 4$

(b)
$$\sum_{n=1}^{10} nx^{2n}$$

7.
$$6x^2 - 5x + 4$$

8. (a) 4
(b) $\sqrt{\frac{1 + \sqrt{2}}{2\sqrt{2}}}$
10. (a) $\frac{\sqrt{x} + 1}{\sqrt{x} + 2}$
11. (a) $x \neq \log_e 3$

(b)
$$\frac{1}{1-x} - 2$$

(b) $\log_e(\frac{1}{x}+3)$