Test Four

This is a self-diagnostic test. Each question relates to a worksheet in a series available in the MUMS the WORD series. For example question 4 relates to worksheet 4.4 Applications of Integration. If you score 100% on this test and test 3 then we feel you are adequately prepared for your first year mathematics course. For those of you who had trouble with a few of the questions, we recommend working through the appproriate worksheets and associated computer aided learning packages in this series.

1. (a) Differentiate $y=\log (3 x+2)$
(b) Find $\frac{d y}{d x}$ if $y=x^{2} \cos x$
2. (a) Given the following monotonically increasing function, find an upper and lower limit for the area under the curve between 0 and 4 .

x	0	1	2	3	4
$g(x)$	2	3	5	6.5	7

(b) Find the area under the curve $y=x^{2}+1$ between $x=1$ and $x=3$.
3. Evaluate the following indefinite integrals:
(a) $\int \frac{1}{x} d x$
(b) $\int \sec ^{2} x d x$
4. (a) Given $\frac{d^{2} x}{d t^{2}}=9$ for all x and when $t=0$ we have $\frac{d x}{d t}=4$ and $x=3$. What is x as a function of t ?
(b) A population $P(t)$ is given by the following formula:

$$
P(t)=P(0) e^{k t}
$$

If the initial population is 1000 , and the growth rate is 0.01 , what is the population at $t=100$? (You can leave the answer in terms of the natural exponential)
5. (a) What is the coefficient of x^{2} in the expansion of $(5 x-1)^{5}$?
(b) Evaluate $\frac{6!}{4!2!}$.
(c) How many 3 -digit numbers can be formed from the digits $1,2,3,4,5,6$, if repetition of digits are (i) allowed, (ii) not allowed.
6. (a) Write out the sum $\sum_{n=1}^{5} n^{3}$ without using sigma notation.
(b) Write the sum $x^{2}+2 x^{4}+3 x^{6}+\ldots+10 x^{20}$ in sigma notation.
7. Divide $6 x^{3}+x^{2}-x+4$ by $x+1$.
8. (a) Simplify $\frac{\sin 4 x}{\left(\cos ^{2} x-\sin ^{2} x\right) \sin x \cos x}$.
(b) Find the exact value of $\cos \frac{\pi}{8}$.
9. Sketch $y=2 \sqrt{x-3}+1$.
10. Let $f(x)=\frac{x+1}{x+2}$ and $g(x)=\sqrt{x}$.
(a) Find $(f \circ g)(x)$.
(b) Find $f^{-1}(x)$.
11. Let $f(x)=\frac{1}{e^{x}-3}$.
(a) Find the largest domain of f.
(b) Find the inverse of f.
12. Use Mathematical Induction to prove that

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

for all $n \in \mathbb{N}$.

1. (a) $\frac{3}{3 x+2}$
(b) $2 x \cos x-x^{2} \sin x$
2. (a) 16.5 and 21.5
(b) $32 / 3$
3. (a) $\log x+C$
(b) $\tan x+C$
4. (a) $x=\frac{9}{2} t^{2}+4 t+3$
(b) $1000 e$
5. (a) -250
(c) (i) 6^{3} (ii) $6 \times 5 \times 4$
(b) 15
6. (a) $1+2^{3}+3^{3}+4^{3}+5^{3}$
(b) $\sum_{n=1}^{10} n x^{2 n}$
7. $6 x^{2}-5 x+4$
8. (a) 4
(b) $\sqrt{\frac{1+\sqrt{2}}{2 \sqrt{2}}}$
9. (a) $\frac{\sqrt{x}+1}{\sqrt{x}+2}$
(b) $\frac{1}{1-x}-2$
10. (a) $x \neq \log _{e} 3$
(b) $\log _{e}\left(\frac{1}{x}+3\right)$
